自然语言处理宗成庆期末试题
- 格式:pdf
- 大小:752.19 KB
- 文档页数:2
1. 自然语言处理(NLP)的主要目标是什么?A. 使计算机能够理解和生成人类语言B. 提高计算机的计算速度C. 优化数据库查询D. 增强图形处理能力2. 在NLP中,词性标注(POS tagging)的主要目的是什么?A. 识别文本中的每个单词B. 确定每个单词在句子中的语法功能C. 分析文本的情感倾向D. 提取文本中的关键词3. 以下哪个不是自然语言处理的子领域?A. 机器翻译B. 语音识别C. 数据挖掘D. 文本分类4. 在NLP中,句法分析的主要任务是什么?A. 确定单词的词性B. 分析句子的结构和语法关系C. 识别文本中的实体D. 评估文本的情感5. 命名实体识别(NER)在NLP中的主要作用是什么?A. 识别和分类文本中的特定实体,如人名、地点、组织等B. 分析句子的语法结构C. 确定单词的词性D. 翻译文本6. 以下哪种技术常用于文本分类?A. 词袋模型(Bag of Words)B. 语音合成C. 图像识别D. 数据压缩7. 在NLP中,情感分析的主要目的是什么?A. 确定文本的情感倾向,如正面、负面或中性B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本8. 以下哪个是深度学习在NLP中的应用?A. 循环神经网络(RNN)B. 决策树C. 支持向量机(SVM)D. 关联规则学习9. 在NLP中,词嵌入(Word Embedding)的主要作用是什么?A. 将单词转换为数值向量,以便计算机处理B. 分析句子的语法结构C. 识别文本中的实体D. 翻译文本10. 以下哪个是NLP中的预处理步骤?A. 分词(Tokenization)B. 语音识别C. 图像处理D. 数据压缩11. 在NLP中,停用词(Stop Words)的主要作用是什么?A. 去除文本中不重要的词汇,如“的”、“是”等B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本12. 以下哪个是NLP中的序列标注任务?A. 命名实体识别(NER)B. 文本分类C. 情感分析D. 机器翻译13. 在NLP中,依存句法分析(Dependency Parsing)的主要目的是什么?A. 分析句子中单词之间的依赖关系B. 识别文本中的实体C. 确定单词的词性D. 翻译文本14. 以下哪个是NLP中的生成模型?A. 生成对抗网络(GAN)B. 支持向量机(SVM)C. 决策树D. 关联规则学习15. 在NLP中,语言模型(Language Model)的主要作用是什么?A. 预测下一个单词或短语的概率B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本16. 以下哪个是NLP中的无监督学习任务?A. 聚类分析B. 文本分类C. 情感分析D. 机器翻译17. 在NLP中,主题模型(Topic Model)的主要作用是什么?A. 识别文本中的主题或话题B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本18. 以下哪个是NLP中的序列到序列(Seq2Seq)模型?A. 机器翻译B. 文本分类C. 情感分析D. 命名实体识别19. 在NLP中,注意力机制(Attention Mechanism)的主要作用是什么?A. 提高模型对重要信息的关注度B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本20. 以下哪个是NLP中的强化学习任务?A. 对话系统B. 文本分类C. 情感分析D. 机器翻译21. 在NLP中,文本摘要(Text Summarization)的主要作用是什么?A. 生成文本的简洁概述B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本22. 以下哪个是NLP中的问答系统任务?A. 回答用户提出的问题B. 文本分类C. 情感分析D. 机器翻译23. 在NLP中,语义角色标注(Semantic Role Labeling)的主要作用是什么?A. 识别句子中各个成分的语义角色B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本24. 以下哪个是NLP中的知识图谱任务?A. 构建实体之间的关系图谱B. 文本分类C. 情感分析D. 机器翻译25. 在NLP中,词义消歧(Word Sense Disambiguation)的主要作用是什么?A. 确定单词在特定上下文中的确切含义B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本26. 以下哪个是NLP中的预训练模型?A. BERTB. 支持向量机(SVM)C. 决策树D. 关联规则学习27. 在NLP中,跨语言文本处理的主要任务是什么?A. 处理和分析不同语言的文本B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本28. 以下哪个是NLP中的语音处理任务?A. 语音识别B. 文本分类C. 情感分析D. 机器翻译29. 在NLP中,文本蕴涵(Textual Entailment)的主要作用是什么?A. 判断一个文本是否蕴含另一个文本的信息B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本30. 以下哪个是NLP中的对话系统任务?A. 与用户进行自然语言对话B. 文本分类C. 情感分析D. 机器翻译31. 在NLP中,文本纠错(Text Correction)的主要作用是什么?A. 自动检测和修正文本中的错误B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本32. 以下哪个是NLP中的信息抽取任务?A. 从文本中提取有用信息B. 文本分类C. 情感分析D. 机器翻译33. 在NLP中,文本分割(Text Segmentation)的主要作用是什么?A. 将文本分割成有意义的单元,如句子或段落B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本34. 以下哪个是NLP中的文本生成任务?A. 自动生成文本内容B. 文本分类C. 情感分析D. 机器翻译35. 在NLP中,文本对齐(Text Alignment)的主要作用是什么?A. 将不同语言或版本的文本对齐B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本36. 以下哪个是NLP中的文本挖掘任务?A. 从大量文本数据中提取有用信息B. 文本分类C. 情感分析D. 机器翻译37. 在NLP中,文本相似度计算的主要作用是什么?A. 计算两个文本之间的相似度B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本38. 以下哪个是NLP中的文本聚类任务?A. 将相似的文本分组B. 文本分类C. 情感分析D. 机器翻译39. 在NLP中,文本规范化(Text Normalization)的主要作用是什么?A. 将文本转换为标准格式B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本40. 以下哪个是NLP中的文本去噪任务?A. 去除文本中的噪声或无关信息B. 文本分类C. 情感分析D. 机器翻译41. 在NLP中,文本表示(Text Representation)的主要作用是什么?A. 将文本转换为计算机可处理的格式B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本42. 以下哪个是NLP中的文本增强任务?A. 通过各种技术增强文本数据B. 文本分类C. 情感分析D. 机器翻译43. 在NLP中,文本过滤(Text Filtering)的主要作用是什么?A. 根据特定标准筛选文本B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本44. 以下哪个是NLP中的文本排序任务?A. 根据特定标准对文本进行排序B. 文本分类C. 情感分析D. 机器翻译45. 在NLP中,文本转换(Text Transformation)的主要作用是什么?A. 将文本从一种形式转换为另一种形式B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本46. 以下哪个是NLP中的文本压缩任务?A. 减少文本的数据量B. 文本分类C. 情感分析D. 机器翻译47. 在NLP中,文本可视化(Text Visualization)的主要作用是什么?A. 将文本数据以可视化形式展示B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本48. 以下哪个是NLP中的文本挖掘工具?A. NLTKB. 支持向量机(SVM)C. 决策树D. 关联规则学习49. 在NLP中,文本分析(Text Analysis)的主要作用是什么?A. 对文本数据进行深入分析B. 识别文本中的实体C. 分析句子的语法结构D. 翻译文本50. 以下哪个是NLP中的文本挖掘框架?A. spaCyB. 支持向量机(SVM)C. 决策树D. 关联规则学习答案:1. A2. B3. C4. B5. A6. A7. A8. A9. A10. A11. A12. A13. A14. A15. A16. A17. A18. A19. A20. A21. A22. A23. A24. A25. A26. A27. A28. A29. A30. A31. A32. A33. A34. A35. A36. A37. A38. A39. A40. A41. A42. A43. A44. A45. A46. A47. A48. A49. A50. A。
nlp考试题及答案**NLP考试题及答案**一、单项选择题(每题2分,共20分)1. 自然语言处理(NLP)的主要目标是什么?A. 机器翻译B. 语音识别C. 计算机视觉D. 使计算机能够理解、解释和生成人类语言答案:D2. 以下哪个不是NLP中的常见任务?A. 文本分类B. 情感分析C. 机器翻译D. 图像识别答案:D3. 在NLP中,词袋模型(Bag of Words)不考虑以下哪个因素?A. 单词顺序B. 单词频率C. 单词位置D. 单词本身答案:A4. 以下哪个算法不是用于文本聚类的?A. K-meansB. 层次聚类C. 决策树D. DBSCAN5. 在NLP中,TF-IDF是一种用于评估一个词对于一个文档集或一个语料库中的其中一份文档的重要性的加权技术。
其中,TF 代表什么?A. 词频B. 逆文档频率C. 总文档数D. 单词总数答案:A6. 以下哪个是序列到序列(Seq2Seq)模型的典型应用?A. 文本分类B. 机器翻译C. 情感分析D. 问答系统7. 在NLP中,BERT模型的主要贡献是什么?A. 引入了注意力机制B. 提供了一种新的词嵌入方法C. 实现了双向上下文编码D. 引入了卷积神经网络答案:C8. 以下哪个不是自然语言处理中的预训练语言模型?A. GPTB. BERTC. Word2VecD. ELMo答案:C9. 在NLP中,CRF(条件随机场)通常用于哪种类型的任务?A. 词性标注B. 机器翻译C. 情感分析D. 文本分类答案:A10. 以下哪个不是自然语言处理中的语义分析任务?A. 语义角色标注B. 指代消解C. 命名实体识别D. 拼写检查答案:D二、多项选择题(每题3分,共15分)1. NLP中的语义分析任务包括哪些?A. 命名实体识别B. 依存句法分析C. 语义角色标注D. 拼写检查答案:A, B, C2. 在NLP中,以下哪些模型属于深度学习模型?A. 循环神经网络(RNN)B. 长短期记忆网络(LSTM)C. 卷积神经网络(CNN)D. 支持向量机(SVM)答案:A, B, C3. 以下哪些是自然语言处理中的文本生成任务?A. 机器翻译B. 文本摘要C. 问答系统D. 对话系统答案:A, B, D4. 在NLP中,以下哪些技术用于文本情感分析?A. 词袋模型B. 情感词典C. 深度学习模型D. 决策树答案:A, B, C5. 以下哪些是自然语言处理中的信息抽取任务?A. 实体识别B. 关系抽取C. 事件抽取D. 拼写检查答案:A, B, C三、简答题(每题10分,共30分)1. 简述自然语言处理中的语义分析和句法分析的区别。
【超级干货】自动化所宗成庆:108页PPT完全梳理NLP 【新智元导读】最近,一道谷歌面试题火了。
这是TechLead在谷歌100多次面试中提到的问题,这引起了本文作者Kevin Ghadyani的极大兴趣,并讨论了解决该问题的所有传统方法。
为了更了解其他人对软件工程的看法,我开始疯狂在 YouTube 上追 TechLead 的视频。
在接下来的几天里,我为他在 Google 工作时提出的一道面试题想出了各种解决方案。
通过 TechLead 模拟 Google 面试(软件工程师职位)TechLead 在 Google 的 100 多次面试中都提出了一个问题,这引起了我对 RxJS 的兴趣。
本文会讨论解决该问题的所有传统方法。
他问这个问题的真正目的是从应聘者得到下列信息:在编码之前,他们会问正确的问题吗?提出的解决方案是否符合项目指南?他甚至指出,是否得到正确的答案一点都不重要,重要的是应聘者的思考方式,以及应聘者是否能够理解这个问题。
他谈到了一些解决方案,包括递归方法(受堆栈大小限制)和迭代方法(受内存大小限制)。
本文将对这两个解决方案进行详细讨论。
TechLead 的问题在 TechLead 的问题中,他要求应聘者在如下网格中,计算出所有颜色相同的最大连续块的数量。
当看到这个问题时,我的第一反应是,必须做一些 2D 图像建模才能解决这个问题。
听起来这道题在面试中几乎不可能回答出来。
但在听完他的详细解释之后,我方知情况并非如此。
在这个问题中,我们需要处理的是已经捕获的数据,而不是解析图像。
数据建模在编写任何代码之前都需要定义数据模型。
对于任何问题,首先要弄清楚我们在处理什么,并收集业务需求。
在我们案例中,TechLead 为我们定义了许多具体的需求,例如:彩色方块或“节点”的概念数据集中包含 1 万个节点节点被组织成行和列,即二维数据列数和行数可能不同节点有颜色信息,并具有对“邻接”这一概念的表示方式我们还可以从数据中获得更多信息:节点不会重叠节点不会和其自身邻接节点不会有重复的邻接位于边角的节点会比其他节点少一个或两个邻接还有一些未知信息,例如:行数与列数的比可能的颜色数量只有一种颜色的可能性颜色的大致分布开发人员的水平越高,其需要问的问题越多。
名称
授课时间授课地点助教
课程主页
平时成绩期末笔试
计算语言学是一门交叉学科。
计算语言
语言障碍
终极目标当前目标
建立形式化的适于计算机处理的语言模研制分析、生成以及处理语言的各种算
规则方法举例
计算语言学的研究方法
用上述规则分析句子“the boy saw the girl with a telescope”
All grammar leak (Sapir 1921)
一般而言,很多基于规则的系统不能满
融合规则驱动和数据驱动的方法
从学术会议看计算语言学的研究方法
规则驱动的方法在1990年前是主流研究方法机器学习以及统计技术目前是主流研究方法
联机QA系统
AnswerBus / AskJeeves /
信息检索系统Google、百度、天网
访问: Columbia Newsblaster
/nlp/newsblaster/
文本数据结构化
文本分类(自动判别文本的类别)音字转换(汉字整句输入法)
拼写检查和自动勘校系统。