锁相环输出信号相位噪声噪声及杂散特性分析应用实践
- 格式:docx
- 大小:86.54 KB
- 文档页数:6
和响应速度之间折衷考虑,相位裕度越大,系统越稳定,但是响应速度变慢。
这里取相位裕度为60度。
同样的,这两个环路参数是估计出来的,在实际电路中仍然需要多次考虑。
最后根据上面的两个环路参数,利用第二章第六节的公式2-22到2-24可以计算出低通滤波器的电阻和电容的值大约为:R2=12K,C2=138PF,CI=1IPF。
根据以上估算的参数可以将锁相环系统的幅频和相频特性曲线画出,如图4.2所示。
图4-2PLL的幅频与相频特性曲线4.3锁相环系统级模型4.3.1Matlab构造数学模型Mauab是MathWorks公司开发的具有强大科学运算功能的数学工具,其中的软件包--Simulink是专门用于数学建模的工具。
通过建立锁相环系统的线性模型,如图4—3所示,分别建立环路中每个模块的传输函数,然后设置输入输出点。
该线性模型不仅可以分析系统的冲击响应和阶跃响应,还可以分析零极点与波特图。
冲击响应和阶越响应的模拟结果如图4-4所示,此模型可以很方便的修改参数,仿真速度非常快,模拟结果也非常直观,对于理解二阶系统的特性非常有帮助。
t№啦*血瞻呻目删e,ra口aap蝌m鼬rtrartim'哥缸眦h恤啪蚓of恤VCO图4-3Matlab建立PLL的线性模型图4—4PLL的阶跃响应与冲击响应4.3.2VerilogA构造行为级模型VerilogA语言是Verilog硬件描述语言的扩展,主要用来描述模拟系统的结构和行为,包括电子,机械,流体力学和热力学系统等㈣。
下面给出VerilogA描述锁相环的行为级模型,并应用Mica进行仿真。
首先,以电阻的行为级模型为例,简单的说明一下VerilogA语言的特点和应用。
、include“disciplines.”’’include“constants.h,’moduleres(a,b);inouta,b;electricala,b;parameterrealR21.O:analogbeginI(a,b)<+V(a,b)/R;//Altemative:V(a,b)<+I(a,b)4R;第五章锁相环电路设计及模拟第五章锁相环电路设计及模拟5.1整体设计本章主要是关于锁相环的晶体管级电路的设计,不但详细的分析了电路的结构,而且给出了模拟结构及相关的解释。
基于PLL锁相环的系统中噪声调制技术研究在现代通信系统中,PLL锁相环广泛应用于信号处理、调制解调等方面的处理。
传统的锁相环常常存在一定的干扰和噪声,对系统的可靠性和稳定性存在一定的影响。
因此,噪声调制技术被广泛研究和应用。
噪声调制技术是指在信号中添加特定的噪声以改善系统性能的技术。
在PLL锁相环系统中,噪声调制技术的主要作用是增加系统的稳定性和抗干扰能力。
一般情况下,PLL锁相环系统的输入信号会受到各种干扰和噪声的影响,这会导致输出信号的误差增大,甚至会失去锁定。
为了克服这些问题,噪声调制技术可以增加系统的噪声功率,从而降低系统的误差,提高系统的稳定性。
噪声调制技术主要分为两种类型:添加高斯噪声和随机扰动调制。
其中,添加高斯噪声是在PLL输出端口处添加一个高斯随机噪声,使PLL输出的频率波动具有一定的随机性,从而提高系统的稳定性和抗干扰能力。
随机扰动调制是指在PLL的相位控制回路中引入一个随机扰动信号,使该信号与参考信号同步,从而改变PLL输出频率波动的特性。
随机扰动信号可以是一个固定频率的正弦波或者一个随机噪声信号,其大小和频率可以通过调节扰动信号的参数来实现。
在具体实现噪声调制技术时,需要对噪声源和调制参数进行精确分析和设计。
首先需要确定噪声源的类型、大小和频率,以及加噪位置和加噪方式。
然后需要确定调制方式和相应的调制参数,以保证系统输出的稳定性和抗干扰能力。
噪声调制技术近年来在PLL锁相环系统中被广泛研究和应用。
其中,随机扰动调制技术在高速多媒体通信系统、AGC自动增益控制系统等领域取得了良好的应用效果。
通过噪声调制技术的应用,可以提高PLL锁相环的性能和稳定性,从而为现代通信系统的发展做出重要的贡献。
锁相环实验报告
《锁相环实验报告》
锁相环是一种常见的控制系统,广泛应用于通信、电力、自动控制等领域。
本
实验旨在通过搭建锁相环系统,验证其在信号同步和抑制噪声方面的性能。
实验设备包括信号发生器、锁相环模块、示波器等。
首先,我们将信号发生器
产生一个正弦波信号作为输入信号,然后将其输入到锁相环模块中。
锁相环模
块通过比较输入信号和反馈信号的相位差,控制其输出信号与输入信号同步。
最后,我们使用示波器观察输入信号、锁相环输出信号和反馈信号的波形,并
分析它们之间的相位关系和噪声抑制效果。
实验结果表明,锁相环系统能够有效地实现输入信号和输出信号的同步,且具
有良好的抑制噪声能力。
当输入信号频率发生变化时,锁相环系统能够迅速跟
随并调整输出信号,保持同步状态。
同时,锁相环系统还能够抑制输入信号中
的噪声,输出信号的波形更加稳定。
通过本次实验,我们深入了解了锁相环系统的工作原理和性能特点,为其在实
际应用中提供了有力的支持。
锁相环系统的同步性能和噪声抑制能力对于通信、电力系统等领域具有重要意义,本实验结果对于相关领域的研究和应用具有一
定的参考价值。
锁相环指标-回复锁相环指标:理解与应用锁相环(Phase-Locked Loop)是一种常见且重要的电子电路组件,广泛应用于通信、信号处理、时钟同步等领域。
锁相环旨在将输入信号与本地参考信号保持同步,并能根据需要调整两者之间的相位差。
本文将从基本原理、关键指标以及应用实践角度,逐步解析锁相环指标。
一、基本原理锁相环由相位比较器(Phase Comparator)、低通滤波器(Low Pass Filter)和控制电压产生器(Voltage-Controlled Oscillator)组成。
其工作原理如下:1. 相位比较器负责将输入信号与本地参考信号进行比较,产生误差信号。
常见的相位比较器有边沿比较器和多级相位比较器。
2. 误差信号经过低通滤波器,去除高频成分,得到平滑的控制电压。
3. 控制电压作用于控制电压产生器,改变其输出频率,并将其作为本地参考信号。
通过以上反馈机制,锁相环实现了输入信号与本地参考信号的同步,并能根据误差信号进行相位调整。
二、关键指标在设计和应用锁相环时,有几个关键指标需要考虑:1. 锁定时间(Lock Time):锁定时间是指锁相环从失锁状态到开始同步的时间。
它受到反馈环路的带宽和系统稳定性的影响。
通常,锁定时间越短越好。
2. 频率跟踪范围(Frequency Tracking Range):频率跟踪范围是指锁相环可以跟踪输入信号频率的范围。
频率跟踪范围受到控制电压产生器的输入电压范围和输出频率范围的限制。
较大的频率跟踪范围可以适应更广泛的工作条件。
3. 相位噪声(Phase Noise):相位噪声是指锁相环输出相位的随机波动。
它受到相位比较器、滤波器和控制电压产生器的性能限制。
较低的相位噪声有助于减少通信系统的误码率和提高信号质量。
4. 抖动(Jitter):抖动是指锁相环输出信号在时间上的随机变动。
它受到相位噪声和信号处理器的影响。
抖动越小,锁相环的输出稳定性越好。
这些指标的具体值和要求取决于具体的应用场景和需求。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、术语和缩略语表格 1 术语和缩略语二、问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。
图0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、解决思路相位噪声分析相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。
所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。
在实际运用中还礼滤波器的设计是非常重要的。
对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。
:锁相环测试及应用实验试验目的:1.了解锁相环的组成、基本原理及性能特点。
2.掌握集成锁相环4046芯片的使用方法。
3.掌握锁相环路及各部件性能(鉴相特性、压控特性、同步带和捕捉带)的测试方法。
4.掌握锁相调频、锁相鉴频电路的构成、基本原理及参数测试测试方法。
5.掌握简单锁相频率合成器的基本原理及性能指标的测试方法实验设备:1.调幅与调频发射模块。
2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器实验原理:1. 锁相环的组成及基本原理锁相环路(PLL )亦称自动相位控制(APC )电路,它是一种利用相位误差消除频率误差的反馈控制系统。
如图1所示,由鉴相器(相位比较器)、环路滤波器(低通滤波器)和压控振荡器三个基本部件组成。
若o i f f ≠,瞬时相位差ϕ∆将随时间而变化;若i of f ϕ∆=保持固定值。
锁相环就是利用两个信号之间相位差的变化,控制压控振荡器的输出信号频率,最终使两个信号相位差保持为常数,达到频率相等。
锁相环的工作过程:如图1所示,若o i f f ≠,必将引起ϕ∆的变化,鉴相器输出正比于ϕ∆的误差电压()d u t 。
经环路滤波器滤除()d u t 中的高频分量和噪声,产生缓慢变动的直流电压()c u t 。
VCO 受控于()c u t ,使得振荡频率o f 与输入参考频率i f 的频差逐渐减小,直到o i f f =,电路达到稳定平衡状态,即锁定状态。
此时,ϕ∆保持一个不变的稳态相差ϕ∞,以维持电路的平衡状态。
需要指出,环路能达到锁定状态,是在o f 与i f 相差不大的范围内。
2. 几个重要概念 ⑴ 失锁与锁定开始工作时, o i f f ≠,ϕ∆不固定,环路处于不稳定状态,称为失锁。
当o i f f =时,ϕ∆保持常数,电路进入稳定状态,称为锁定。
⑵ 跟踪过程与捕捉过程在环路锁定状态下,如果输入信号频率i f 发生变化,环路通过自身的调节作用,使输出信号频率o f 以同样的规律跟随着变化,并且始终保持o i f f =,这个过程称为跟踪过程或同步过程。
改善锁相环相位噪声的方法锁相环(Phase-Locked Loop, PLL)是一种常用的频率合成器和时钟恢复方法。
然而,在某些应用中,锁相环的相位噪声成为限制系统性能的因素。
因此,改善锁相环相位噪声是一个重要的课题。
下面将介绍几种改善锁相环相位噪声的方法。
首先,一个容易实施的方法是优化锁相环的环路滤波器。
环路滤波器的设计直接影响锁相环的带宽和噪声性能。
通过增加滤波器的阻尼比,可以提高锁相环的稳定性和减小相位噪声。
另外,合理选择滤波器的带宽,可以平衡相位追踪性能和噪声抑制能力,从而改善锁相环的相位噪声。
其次,采用抖动降低技术可以有效减小锁相环的相位噪声。
抖动降低技术基于频率抖动和相位抖动之间的关系,通过控制频率抖动来减小相位噪声。
常用的抖动降低技术包括相位锁定环(Phase-Locked Loop, PPL)、时钟周期抖动降低技术等。
这些技术通过引入额外的控制环路或采用特殊的抖动降低算法,可以显著改善锁相环的相位噪声性能。
第三,优化参考信号源也是改善锁相环相位噪声的有效方法。
参考信号源的噪声特性直接传递到锁相环的输出。
因此,选择低噪声的参考信号源对于改善锁相环的相位噪声非常重要。
常见的低噪声参考信号源包括晶体振荡器(Crystal Oscillator, XO)或原子钟等。
通过使用低噪声的参考信号源,可以有效降低锁相环的相位噪声。
总结起来,改善锁相环相位噪声的方法包括优化环路滤波器、采用抖动降低技术和选择低噪声的参考信号源。
通过合理应用这些方法,可以显著提升锁相环的相位噪声性能,从而满足不同应用对于相位噪声的要求。
锁相环环路滤波器噪声特性分析与仿真金玉琳;余世刚;周毅;保玲【摘要】为估计环路滤波器对锁相频率合成器输出相位噪声的贡献,建立了一种常用的有源差分环路滤波器噪声模型,并推导出滤波器中各噪声源贡献的噪声的理论公式.针对一实际滤波器贡献的相位噪声进行理论计算,考虑了滤波器中运放的非理想特性后,对滤波器中各个噪声源贡献的相位噪声进行了仿真.通过理论结果和仿真结果对比,得出理论公式对实际环路滤波器噪声进行了很好的估计.最后给出环路滤波器设计时在噪声性能方面的考虑.%It is necessary to accurate phase noise prediction of synthesizer for loop filter's contribution, a noise model for loop filter that is used for differential output phase detector is built, and theoretical formula of the output phase noise contribution from each noise source in loop filter is derived. Theoretical value of phase noise is calculated aimed at the contribution from a actual loop filter, and the phase noise is simulated after considered the actual character of op-amp. Comparing the theoretical value and simulated value, the noise of the actual loop filter can be estimated by theoretical formula, and some considerations of loop filter design about the noise performance are provided.【期刊名称】《现代电子技术》【年(卷),期】2011(034)021【总页数】4页(P193-195,198)【关键词】频率合成器;锁相环;有源环路滤波器;相位噪声【作者】金玉琳;余世刚;周毅;保玲【作者单位】兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000;兰州空间技术物理研究所,甘肃兰州 730000【正文语种】中文【中图分类】TN713-34锁相频率合成器其潜在的出色性能、相对简单性和低成本而被普遍使用[1]。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X 基站系统中800MHz 的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、 术语和缩略语表格 1 术语和缩略语 缩写全名 含义 CDMACode Division Multiple Access 码分多址 PLLPhase Locked Loop 锁相环 FSFrequency S ynthesizer 频率合成器 LPFLoop Filter 环路滤波器 VCO Voltage Control Oscillator压控振荡器 二、 问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD )、环路滤波器(LPF )和压控晶体振荡器(VCXO ),如图 0-1所示。
÷R 分频器VCO 参考频率鉴相器÷N 分频器LPF ΦK O θS K VCO )(S F rθ+iθ-e θ图 0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X 基站系统中800MHz 的FS 单板应用为背景,在CDMA 基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、 解决思路相位噪声分析相位噪声主要由VCO 、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
锁相环相位噪声锁相环是一种常用的电路技术,用于抑制信号中的相位噪声。
相位噪声是指信号中的相位变化不稳定性,它可以导致信号的频偏和抖动,影响系统的性能和稳定性。
锁相环通过比较输入信号和参考信号的相位差,然后通过反馈调节输入信号的相位,以达到消除相位噪声的目的。
在现代通信系统中,相位噪声是一个非常重要的问题。
相位噪声的存在会导致信号的频谱扩展,降低系统的信噪比,影响通信质量。
因此,研究和解决相位噪声问题对于提高通信系统的性能至关重要。
锁相环通过利用负反馈原理来消除相位噪声。
它由相位检测器、低通滤波器、电压控制振荡器和除相器等组成。
首先,相位检测器将输入信号和参考信号进行比较,产生相位误差信号。
然后,低通滤波器对相位误差信号进行滤波,得到控制电压。
接下来,电压控制振荡器根据控制电压来调节输出信号的相位。
最后,除相器将输出信号和参考信号进行比较,得到反馈信号,闭环控制系统实现了相位的稳定。
锁相环的关键是相位检测器。
常用的相位检测器有边沿检测器、比较器和混频器等。
边沿检测器通过检测信号的边沿来获得相位信息,适用于高频信号。
比较器通过比较两个信号的幅值来获得相位信息,适用于低频信号。
混频器通过将信号与参考信号相乘,然后滤波得到直流分量来获得相位信息,适用于宽频带信号。
除了相位检测器,滤波器也是锁相环中的重要组成部分。
低通滤波器的作用是滤除高频噪声,使得控制电压变化平稳。
滤波器的带宽决定了锁相环对相位噪声的抑制能力。
带宽越宽,抑制能力越强,但相应的噪声增益也会增加。
因此,在选择滤波器带宽时需要进行权衡。
锁相环的另一个关键参数是环路带宽。
环路带宽决定了锁相环的跟踪能力和响应速度。
带宽越高,跟踪能力越好,但相应的稳定性也会降低。
因此,在设计锁相环时需要根据具体应用需求来选择合适的环路带宽。
除了上述基本结构,锁相环还可以通过添加频率鉴频器、倍频器和除频器等模块来实现更复杂的功能。
例如,可以利用频率鉴频器来实现频率锁定,将输入信号的频率锁定到参考信号的频率上。
相位噪声对一个给定载波功率的输出频率来说,相位噪声是载波功率相对于给定的频率偏移处(频率合成器通常定义1kHz频率偏移)1-Hz的带宽上的功率,单位为dBc/Hz@offset frequency。
锁相环频率合成器的带内相位噪声主要取决于频率合成器,VCO的贡献很小。
相位噪声的测量需要频谱分析仪。
注意一点,普通频谱分析仪读出的数据需要考虑分辨带宽的影响。
即,频谱分析仪的读数减掉10log(RBW)才是正确的相位噪声数值。
高端的频谱分析仪往往可以直接给出单边带相位噪声。
相位噪声是信号在频域的度量。
在时域,与之对应的是时钟抖动(jitter),它是相位噪声在时间域里的反映,大的时钟抖动在高速ADC应用中会严重恶化采样数据的信噪比,尤其是当ADC模拟前端信号的频率较高时,更是要求低抖动的时钟。
图1形象地描述了时钟抖动。
图表 1 相位噪声和时钟抖动时钟抖动可以通过相位噪声积分得到,具体实现如下如下:计算从给定的起始频率偏移处到结束频率(通常定义为两倍输出频率)偏移处的相位噪声和A,单位为dBc;对A进行取对数操作;求相位抖动均方值(rms phase jitter),单位为弧度;将弧度值转换成时间单位,秒或者皮秒。
图表 2. 时钟抖动与相位噪声和白噪声之间的关系参考杂散锁相环中最常见的杂散信号就是参考杂散。
这些杂散信号会由于电荷泵源电流与汇电流的失配,电荷泵漏电流,以及电源退耦不够而增大。
在接收机设计中,杂散信号与其他干扰信号相混频有可能产生有用信号频率从而降低接收机的灵敏度。
锁相环处于锁定状态时,电荷泵会周期性的(频率等于鉴相频率)产生交替变换(正负)脉冲电流给环路滤波器。
环路滤波器对其进行积分产生稳定的控制电压。
图表 3 环路锁定时,PLL电荷泵电流输出波形当鉴相频率较低时,由电荷泵的漏电流引起的杂散占主要地位。
当鉴相频率较高时,由电荷泵的交替电流(源电流I和汇电流I)引起的杂散占主要地位。
sourcesink二者频率的界定。
锁相环路相位噪声分析张文军 电信0802【摘要】本文对锁相电路的相位噪声进行了论述,并对其中各组成部件的相位噪声也做了较为详细的分析。
文中最后提出了改进锁相环相位噪声的办法. 【关键词】锁相环;相位噪声;分析 引言相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的影响很大,从频域看它分布的载波信号两旁按幂律谱分布。
用这种信号无论做发射激励信号,还是接收机本振信号以及各种频率基准,这些信号在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降.在通信系统中使环路信噪比下将,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。
接收机本振的相位噪声遇到强干扰信号时,会产生“倒混频”,使接收机有效噪声系数增加.随着电子技术的发展,对频率源的信号噪声要求越来越严格,因此低相位噪声在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器仪表等各种领域里都受到重视。
1 相位噪声概述相位噪声 ,就是指在系统内各种噪声作用下所表现的相位随机起伏,相位的随机起伏起必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度。
理想情况下,合成器的输出信号在频域中为根单一的谱线,而实际上任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带.由于相位噪声的存在,使波形发生畸变。
在频域中其输出信号的谱线就不再是一条单根的谱线,而是以调制边带的形式连续地分布在载波的两边,在主谱两边出现了一些附加的频谱,从而导致频谱的扩展,相位噪声的边带是双边的,是以0f 为中心对称的,但为了研究方便,一般只取一个边带。
其定义为偏离载频1Hz 带宽内单边带相位噪声的功率与载频信号功率之比,它是偏离 载频的复氏频率m f 的函数 ,记为()m f ζ,单位为d B c / Hz ,即()010lg[/](1)m SSB f P P ζ=式中SSB P为偏离载频m f 处,1Hz 带宽内单边带噪声功率;0P 为载波信号功率.2 表征相位噪声物理量2.1即时相位抖动()t Φ()02cos()()t s s v t t t πωθφΦ=+++其中,0v是源的标称频率,常数.cos()s s w t θ+是()t Φ的周期性扰动,称为杂散,()t φ则是相位的随机扰动,称为相位噪声2。
电气传动2021年第51卷第11期摘要:随着信息化社会的发展,数字锁相环越发受研发人员的重视。
而相位噪声是衡量数字锁相环性能的关键技术,更是研究的重点。
介绍数字锁相环的组成结构和工作原理,建立环路各个模块的相位噪声模型,从闪烁噪声和白噪声的特性入手,定性分析相位噪声的影响因素,并针对电荷泵增益和环路滤波器阻抗对锁相环电路相位噪声的影响进行了仿真,进一步验证了分析结果,为设计高性能的数字锁相环提供理论基础。
关键词:数字锁相环;相位噪声;振荡器;电荷泵;环路滤波器中图分类号:TM28文献标识码:ADOI :10.19457/j.1001-2095.dqcd21463Analysis of Phase Noise in Digital Phase -locked Loop ZHANG Zhanrong 1,WANG Yunfei 2,QU Meixia 2,ZHAO Li 3(1.Department of Mechanical and Electrical Engineering ,Ordos Vocational College ofEco-environment ,Ordos 017010,Nei Moggol ,China ;2.Basic Department ,Ordos Vocational College of Eco-environment ,Ordos 017010,Nei Moggol ,China ;3.School of Software ,Shanxi University ,Taiyuan 030013,Shanxi ,China )Abstract:With the development of information society ,digital phase-locked loop (DPLL )attracts more and more attention of researchers.As the key technology to evaluate the performance of DPLL ,phase noise becomes the key point of the study.The structure and work principle of DPLL were introduced ,the phase noise model of each module of the loop was established.Starting from the characteristics of flicker noise and white noise ,the influence factors of phase noise were analyzed qualitatively ,and the influence of charge pump gain and loop filter impedance on phase noise of PLL circuit was simulated to further verify the analysis results.The theoretical basis was provided for improving the phase noise performance of DPLL.Key words:digital phase-locked loop (DPLL );phase noise ;oscillator ;charge pump ;loop filter基金项目:山西省科技厅基础研究计划项目—青年科技研究基金(2014021039-6)作者简介:张占荣(1969—),男,本科,副教授,Email :131****************数字锁相环的相位噪声分析张占荣1,王云飞2,屈美霞2,赵丽3(1.鄂尔多斯生态环境职业学院机电工程系,内蒙古鄂尔多斯017010;2.鄂尔多斯生态环境职业学院基础部,内蒙古鄂尔多斯017010;3.山西大学软件学院,山西太原030013)现代频率源一般是由直接频率合成、间接频率合成和直接数字频率合成这三种合成技术实现的[1]。
锁相环频率合成器的相位噪声分析与抑制方法研究摘要:随着科技的不断发展,锁相环频率合成器在电子通信、雷达系统等领域扮演着重要的角色。
然而,相位噪声是其性能的一项关键指标。
本文将介绍锁相环频率合成器及其应用,并对相位噪声的来源和度量进行分析。
同时,还将探讨相位噪声对系统性能的影响,以及相位噪声分析的方法。
最后,我们将探讨各层面的相位噪声抑制方法,包括系统级、组件级和信号处理技术的应用。
这些抑制方法将帮助提高锁相环频率合成器的性能,并满足实际应用的需求。
关键词:锁相环频率合成器;相位噪声;抑制方法引言随着现代通信和雷达系统对高精度、稳定频率的需求不断增加,锁相环频率合成器作为一种常见的频率合成技术被广泛应用。
然而,锁相环频率合成器的性能受到相位噪声的限制。
相位噪声会引起频率合成器输出信号的不稳定性和扩展带宽。
因此,相位噪声的分析和抑制是实现高性能锁相环频率合成器的关键问题。
本文将深入分析锁相环频率合成器的相位噪声特性,并提出一系列抑制方法,以提高其性能和应对各种应用场景的要求。
这些研究对于推动锁相环频率合成器技术的发展具有重要意义。
1.介绍锁相环频率合成器的基本原理和应用锁相环频率合成器是一种常见的电路技术,用于生成稳定的高精度频率信号。
其基本原理是通过比较参考信号和反馈信号的相位差,并利用反馈控制来调整振荡器的频率,使两者同步。
锁相环频率合成器广泛应用于无线通信、雷达系统、钟表等领域,用于频率调制、频率合成、时钟同步等功能。
它能够提供稳定且高精度的频率输出,并具备快速锁定时间和抗干扰能力,因此成为现代电子设备中不可或缺的关键组件之一。
2.相位噪声分析相位噪声是指在锁相环频率合成器中由于器件非线性、温度变化、电源波动等因素引起的相位不稳定性。
对于频率合成器的性能和精度至关重要。
相位噪声可以通过相位噪声密度和相位噪声功率来衡量,通常以dBc/Hz或rad^2/Hz的形式表示。
相位噪声的频率特性分析可以揭示主要来源和噪声传播途径,而幅度特性分析可以评估抑制方法的有效性。
锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。
并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。
为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。
【关键词】锁相环设计,相位噪声一、术语和缩略语表格 1 术语和缩略语二、问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。
图0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。
在本文中以CDMA 1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。
输出功率比较好控制,只要调整衰减网络就能保证。
锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。
在锁相环设计中,相位噪声和杂散成为系统设计主要难点。
三、解决思路相位噪声分析相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。
环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。
一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。
所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。
在实际运用中还礼滤波器的设计是非常重要的。
对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。
而近端相位噪声如100Hz主要由鉴频鉴相器、分频器和输入参考信号的相位噪声决定,但如果还礼带宽取得很小的话如200Hz则VCO的影响也将非常之大。
而如果环路带宽远远大于1KHz如为6KHz 以上时1KHz处的相位噪声也将主要由鉴频鉴相器、分频器和输入参考信号的相位噪声决定。
下面就分别分析这三部分相位噪声。
由鉴相器引入的相位噪声由于鉴相器引入的相位噪声为:PD Phase Noise = ( 1 Hz Normalized Phase Noise Floor from Table )+ 10log( Comparison Frequency ) + 20log( N )现在FS板的中频环路采用的PLL芯片为NS的LMX2306,其相位噪声基底为-210dBc/Hz。
在CDMA 1X 基站系统800MHz的FS单板中采用的鉴相频率为30KHz,两个中频分别为69.99MHz和114.99MHz,由鉴相器产生的相位噪声为:69.99MHz:PD Phase Noise= -210+10log(30000)+20log(69990000/30000)= -97.9dBc/Hz 114.99MHz:PD Phase Noise= -210+10log(30000)+20log(114990000/30000)=-93.5dBc/Hz 射频本振范围为754~779MHz。
步进为30KHz,鉴相频率为240KHz。
对于779MHz 的本振由鉴相器引入的相位噪声为:PD Phase Noise= -210+10log(240000)+20log(779000000/240000)=-85.9dBc/Hz由分频器引入的相位噪声由分频器引入的相位噪声的计算公式入下:DIV Phase Noise = (Device Phase Noise Floor )+ 20log( N )PLL芯片中分频器的相位噪声在器件手册中并没有给出。
一般高频分频器的相位噪声基底约为-165dBc/Hz左右。
因此就假设分频器的相位噪声基底为-165dBc/Hz,于是得到分频器引起的相位噪声如下:69.99MHz的中频频率为:DIV Phase Noise= -165+20log(69990000/30000)= -97.6dBc/Hz114.99MHz的中频频率为:DIV Phase Noise= -165+20log(114990000/30000)= -93.3dBc/Hz779MHz的射频频率为:DIV Phase Noise= -165+20log(779000000/240000)= -94.7dBc/Hz由参考信号引入的相位噪声参考信号引起的相位噪声的计算公式如下REF Phase Noise = (REF’S Phase Noise )-20log(R)+ 20log( N )系统的参考信号都是由GPSTM模块提供的,GPSTM输出的参考信号的相位噪声为-130dBc/Hz@100Hz和-145dBc/Hz@1KHz。
最后参考信号通过FDM板到FS板,FDM板输出的参考信号的相位噪声为-120dBc/Hz@100Hz和-130dBc/Hz@1KHz。
在单板调试和测试时使用的参考信号12MHz的采用了OCXO的输出,10MHz的参考信号采用了VCO/PLL测试仪4352B的10MHz参考输出,其相位噪声应该比GPSTM差些应该接近FDM的输出。
这两个参考信号用4352B VCO/PLL测试仪测试出的相位噪声如下两图所示:其中图0-2为OCXO输出的相位噪声图,图0-3为VCO/PLL测试仪的10MHz参考输出相位噪声图。
图0-2用4352B测试出的OCXO的12MHz输出相位噪声图0-3用4352B测试出的其10MHz的参考输出相位噪声由上面两张图分析这两个输出的相位噪声在100Hz和1KHz射分别约为-80dBc/Hz和-105dBc/Hz,于刚才分析的分别约为-120dBc/Hz和-130dBc/Hz差别较大,这应该是由于测试仪器产生的,也就是说4352B VCO/PLL测试仪在100Hz和1KHz时基本只能测到-80dBc/Hz和-105dBc/Hz。
下面假定使用的参考信号的相位噪声就为上面提到的为-120dBc/Hz@100Hz和-130dBc/Hz@1KHz。
可以分析由于参考信号的相位噪声引起的最后输出的相位噪声。
69.99MHz的中频频率100Hz处为:REF Phase Noise = -120 - 20log(12000000/30000) + 20log(69990000/30000)= -104.6dBc/Hz69.99MHz的中频频率1KHz处为:REF Phase Noise = -130 - 20log(12000000/30000) + 20log(69990000/30000)= -114.6dBc/Hz114.99MHz的中频频率100Hz处为:REF Phase Noise = -120 - 20log(12000000/30000) + 20log(114990000/30000)= -100.3dBc/Hz114.99MHz的中频频率1KHz处为:REF Phase Noise = -130 - 20log(12000000/30000) + 20log(114990000/30000)= -110.3dBc/Hz779MHz的射频频率100Hz处为:REF Phase Noise = -120-20log(12000000/240000)+20log(779000000/240000)= -83.7dBc/Hz779MHz的射频频率1KHz处为:REF Phase Noise = -130-20log(12000000/240000)+20log(779000000/240000)= -93.7dBc/Hz近端相位噪声以上是分别分析了参考信号、分频器和鉴频鉴相器单独对输出信号相位噪声的影响,实际上的相位噪声是这三种噪声之和,加上VCO的相位噪声。
这里先不考虑VCO的相位噪声则可以分析出各频率点在100Hz和1KHz处的相位噪声。
Phase Nois=10log[10EXP(PD Phase Nois/10)+2* 10EXP(DIV Phase Nois/10) +10EXP(REF Phase Nois/10)] (4)69.99MHz的中频频率100Hz处为:Phase Noise= 10log[10EXP(-97.9/10)+2*10EXP(-97.6/10)+10EXP(-104.6/10)]=-92.6dBc/Hz69.99MHz的中频频率1KHz处为:Phase Noise= 10log[10EXP(-97.9/10)+2*10EXP(-97.6/10)+10EXP(-114.6/10)]=-92.9dBc/Hz114.99MHz的中频频率100Hz处为:Phase Noise= 10log[10EXP(-93.5/10)+2*10EXP(-93.3/10)+10EXP(-100.3/10)]=-88.3dBc/Hz114.99MHz的中频频率1KHz处为:Phase Noise= 10log[10EXP(-93.5/10)+2*10EXP(-93.3/10)+10EXP(-110.3/10)]=-88.6dBc/Hz779MHz的射频频率100Hz处为:Phase Noise= 10log[10EXP(-85.9/10)+2*10EXP(-94.7/10)+10EXP(-83.7/10)]=-81.2dBc/Hz779MHz的射频频率1KHz处为:Phase Noise= 10log[10EXP(-85.9/10)+2*10EXP(-94.7/10)+10EXP(-93.7/10)]=-84.3dBc/Hz上述计算结果是不考虑VCO的相位噪声和参考信号较好且为上述假设的值实际是要考虑VCO的相位噪声和参考会比以上假设的差的情况,所以实际上结果比上述计算值差2-3dB应该是正常的,如果差得很大则设计有问题需要修改,这个可以作为调试时的目标期望值,对电路调试具有指导意义。
而单板的指标是系统根据系统性能要求对单板提出的要求,其值应该是比以上的计算结果差比较多的,这样才可能有足够的余量留给开发和生产。
在开发是应该尽可能的达到以上的计算值,而不是仅仅满足系统指标要求,这样才有足够的余量留给生产。
在大批量生产生产过程中由于器件的离散性,有许多板的性能指标是无法达到开发样本的指标的。
如果开发样板的指标很接近系统要求指标将回在生产时有许多的板无法达到系统指标要求,在现有的FS板在生产中就有不少这样坏板,造成故障率较高。