高中数学31《复数的概念》教案(新人教A版选修22)
- 格式:doc
- 大小:109.00 KB
- 文档页数:2
教学设计:2024秋季人教A版高中数学必修第二册第七章复数《复数的四则运算》一、教学目标(核心素养)1.数学抽象:学生能够理解复数四则运算的定义,抽象出复数运算与实数运算的区别与联系。
2.逻辑推理:通过复数四则运算的推导和应用,培养学生的逻辑推理能力,理解复数运算的代数和几何意义。
3.数学运算:熟练掌握复数四则运算(加、减、乘、除)的法则,提高数学运算能力。
4.数学建模:初步了解复数在解决实际问题中的应用,培养学生的数学建模意识。
二、教学重点•复数四则运算的法则及其推导过程。
•复数乘法和除法的运算技巧及注意事项。
三、教学难点•理解复数乘法中“模相乘、辐角相加”的原理及其在运算中的应用。
•掌握复数除法运算中共轭复数的使用及结果的化简。
四、教学资源•多媒体课件(包含复数四则运算的示例、动画演示、练习题等)•黑板与粉笔(用于板书关键步骤和结论)•教材及配套习题册•复数计算器(可选,用于学生实践运算)五、教学方法•讲授法:系统介绍复数四则运算的定义、法则及运算技巧。
•演示法:利用多媒体课件演示复数四则运算的过程,帮助学生直观理解。
•练习法:通过例题和习题,加强学生对复数四则运算的掌握。
•讨论法:组织学生讨论复数四则运算在实际问题中的应用,加深对复数运算的理解。
六、教学过程1. 导入新课•复习旧知:回顾复数的概念、代数表示及三角表示,为复数四则运算做铺垫。
•情境引入:通过物理、工程或经济等领域中涉及复数运算的实例,激发学生兴趣,引入复数四则运算的学习。
2. 新课教学•复数加法与减法:•简述复数加法与减法的定义,强调实部与实部相加(减)、虚部与虚部相加(减)的规则。
•通过例题演示复数加法与减法的运算过程,引导学生总结运算规律。
•复数乘法:•详细介绍复数乘法的运算法则,特别是“模相乘、辐角相加”的原理及其在代数表示下的应用。
•通过例题演示复数乘法的运算过程,注意运算结果的化简和辐角的处理。
•强调复数乘法与实数乘法的区别,以及复数乘法在几何变换中的意义。
高中数学必修第二册第七章复数(人教A 版2019)7.1复数的概念【基础梳理】 要点一、复数的概念我们把形如a bi +()R b a ∈,的数叫做复数,其中i 叫做虚数单位. 全体复数梭构成的集合C={}R b a bi a ∈+,|叫做复数集,其中.1i 2-= 复数的分类对于复数a bi +【a ,b R ∈】,当且仅当b=0时,它是实数;当且仅当a=b=c=0时,它是实数0;当b ≠0时,它叫做虚数,当a =0且b ≠0时,它叫做纯虚数. 显然,实数集R,是复数集C 的真子集,即CR ≠⊂.复数相等的充要条件在复数集C={}R b a |bi a ∈+,中任取两个数a bi +,c di +【a ,b ,c ,d ∈R 】,规定:a bi +与c di +相等当且仅当a=c 且b=d ,即当且仅当两个复数的实部与实部相等,虚部与虚部相等时,两个复数才相等。
要点二、复数的几何意义 复数z=a+bi()b a Z ,复平面内的点一一对应−−−→←.这是复数的一种几何意义.复数的几何意义---与向量对应 复数z=a+bi→−−−→←OZ平面向量一一对应,这是复数的另一种几何意义.复数的模和共轭复数 1.向量→OZ模叫做复数z=a bi +,的模或绝对值,记作z或bia +.即z=bia +=22b a +,其中a,b ∈R ,z表示复平面内的点Z ()b a ,到原点的距离。
2.如果b=0,那么z=a bi+是一个实数a,它的模就等于a()的绝对值a.共轭复数的定义:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复.虚部不等于 0的两个共轭复数,也叫做共轭虚数.复数z的共轭复数用-z表示,即如果z=a+bi,那么-z=a-bi.特别地,实数a的共轭复数仍是a本身.共轭复数的几何意义:互为共轭复数的两个复数在复平面内所对应的点关于实轴对称.【课堂探究】例1.以的虚部为实部,以的实部为虚部的新复数是()A. 2﹣2iB. 2+iC. ﹣+D. + i【答案】A【解析】解:的虚部为2,以=﹣2+ i的实部为﹣2,∴要求的新复数是2﹣2i,故选:A.【分析】利用实部与虚部的定义即可得出.例2已知z∈C,满足不等式的点Z的集合用阴影表示为()A. B. C. D.【答案】C【解析】解:设z=x+yi(x,y∈R),则,化为x2+y2+xi﹣y﹣xi﹣y=x2+y2﹣2y=x2+(y﹣1)2﹣1<0,即x2+(y﹣1)2<1,故选:C.【分析】设z=x+yi(x,y∈R),代入,化简即可得出.【课后练习】1.已知复数是纯虚数,则实数()A. -2B. -1C. 0D. 1【答案】 D【解析】,因为为纯虚数且为实数,故,故,故答案为:D【分析】由题意利用纯虚数的定义,求得m的值。
3.2.2 复数代数形式的乘除运算预习课本P109~111,思考并完成下列问题(1)复数乘法、除法的运算法则是什么?共轭复数概念的定义是什么?(2)复数乘法的多项式运算与实数的多项式运算法则是否相同?如何应用共轭复数的性质解决问题?[新知初探]1.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.2.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C,有交换律 z 1·z 2=z 2·z 1结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3) 分配律z 1(z 2+z 3)=z 1z 2+z 1z 33.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 4.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i≠0). [点睛] 在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)两个复数互为共轭复数是它们的模相等的必要条件.( ) (2)若z 1,z 2∈C,且z 21+z 22=0,则z 1=z 2=0.( ) (3)两个共轭虚数的差为纯虚数.( ) 答案:(1)× (2)× (3)√ 2.(北京高考)复数i(2-i)=( ) A .1+2i B .1-2i C .-1+2i D .-1-2i答案:A3.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( ) A .4+2i B .2+i C .2+2i D .3+4i答案:A4.复数i 2+i 3+i41-i =________.答案:12-12i复数代数形式的乘法运算[典例] (1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( ) A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i , 所以z 的实部是5. [答案] (1)A (2)51.两个复数代数形式乘法的一般方法(1)首先按多项式的乘法展开. (2)再将i 2换成-1.(3)然后再进行复数的加、减运算,化简为复数的代数形式. 2.常用公式(1)(a +b i)2=a 2-b 2+2ab i(a ,b ∈R). (2)(a +b i)(a -b i)=a 2+b 2(a ,b ∈R). (3)(1±i)2=±2i. [活学活用]1.已知x ,y ∈R,i 为虚数单位,且x i -y =-1+i ,则(1+i)x +y的值为( )A .2B .-2iC .-4D .2i解析:选D 由x i -y =-1+i 得x =1,y =1,所以(1+i)x +y=(1+i)2=2i.2.已知a ,b ∈R,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 解析:因为(a +i)(1+i)=a -1+(a +1)i =b i ,所以a -1=0,a +1=b ,即a =1,b =2,所以a +b i =1+2i.答案:1+2i复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 为( )A .2B .-2C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i 2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i 5=3+5i.(2)1+a i 2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A1.两个复数代数形式的除法运算步骤(1)首先将除式写为分式;(2)再将分子、分母同乘以分母的共轭复数;(3)然后将分子、分母分别进行乘法运算,并将其化为复数的代数形式. 2.常用公式(1)1i =-i ;(2)1+i 1-i =i ;(3)1-i 1+i =-i. [活学活用]1.(天津高考)i 是虚数单位,计算1-2i 2+i 的结果为________.解析:1-2i 2+i =(1-2i)(2-i)(2+i)(2-i)=(2-2)-i -4i 5=-i.答案:-i2.计算:(1+i)(4+3i)(2-i)(1-i)=________.解析:法一:(1+i)(4+3i)(2-i)(1-i)=1+7i 1-3i =(1+7i)(1+3i)10=-2+i.法二:(1+i)(4+3i)(2-i)(1-i)=⎝ ⎛⎭⎪⎫1+i 1-i ⎝ ⎛⎭⎪⎫4+3i 2-i=i(4+3i)(2+i)5=(-3+4i)(2+i)5=-10+5i5=-2+i. 答案:-2+ii 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .i B .-i C .1D .-1(2)计算i 1+i 2+i 3+…+i 2 016=________.[解析] (1)因为i 607=i4×151+3=i 3=-i ,所以其共轭复数为i ,故选A.(2)法一:原式=i(1-i 2 016)1-i =i[1-(i 2)1 008]1-i =i(1-1)1-i=0.法二:∵i 1+i 2+i 3+i 4=0, ∴i n +in +1+in +2+in +3=0(n ∈N), ∴i 1+i 2+i 3+…+i2 016,=(i 1+i 2+i 3+i 4)+(i 5+i 6+i 7+i 8)+…+(i 2 013+i2 014+i2 015+i2 016)=0.[答案] (1)A (2)0虚数单位i 的周期性(1)i4n +1=i ,i4n +2=-1,i4n +3=-i ,i 4n =1(n ∈N *).(2)i n+in +1+in +2+i n +3=0(n ∈N).[活学活用]计算1+i 1-i ·⎝ ⎛⎭⎪⎫1+i 1-i 2·⎝ ⎛⎭⎪⎫1+i 1-i 3·…·⎝ ⎛⎭⎪⎫1+i 1-i 10=______. 解析:∵1+i 1-i =i ,∴原式=i·i 2·i 3·…·i 10=i 1+2+3+…+10=i 55=i 3=-i.答案:-i复数综合应用[典例] 设z 是虚数,ω=z +z是实数,且-1<ω<2,求|z |的值及z 的实部的取值范围.[解] 因为z 是虚数,所以可设z =x +y i ,x ,y ∈R,且y ≠0. 所以ω=z +1z =x +y i +1x +y i=x +y i +x -y i x 2+y 2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数且y ≠0, 所以y -yx 2+y2=0,所以x 2+y 2=1,即|z |=1.此时ω=2x .因为-1<ω<2,所以-1<2x <2, 从而有-12<x <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1. [一题多变]1.[变设问]若本例中条件不变,设u =1-z1+z ,证明u 为纯虚数.证明:设z =x +y i ,x ,y ∈R,且y ≠0, 由典例解析知,x 2+y 2=1,∴u =1-z 1+z =1-(x +y i)1+(x +y i)=(1-x -y i)(1+x -y i)(1+x )2+y 2=1-x 2-y 2-2y i (1+x )2+y 2=-y 1+xi. 因为x ∈⎝ ⎛⎭⎪⎫-12,1,y ≠0,所以y 1+x ≠0,所以u 为纯虚数.2.[变设问]若本例条件不变,求ω-⎝⎛⎭⎪⎫1-z 1+z 2的最小值.解:设z =x +y i ,x ,y ∈R,且y ≠0, 由典例解析知x 2+y 2=1. 则ω-⎝⎛⎭⎪⎫1-z 1+z 2=2x -⎝ ⎛⎭⎪⎫-y 1+x i 2=2x +⎝ ⎛⎭⎪⎫y 1+x 2=2x +1-x 2(1+x )2=2x +1-x1+x=2x -1+21+x =2(x +1)+21+x -3.因为-12<x <1,所以1+x >0. 于是ω-⎝ ⎛⎭⎪⎫1-z 1+z 2=2(x +1)+21+x -3≥22(x +1)·21+x-3=1.当且仅当2(x +1)=21+x, 即x =0时等号成立. 所以ω-⎝⎛⎭⎪⎫1-z 1+z 2的最小值为1,此时z =±i.复数运算的综合问题解决方法在有关复数运算的综合问题中,常与集合、数列、不等式、三角函数、函数、解析几何等内容结合在一起,要解决此类问题常将复数设为x +y i(x ,y ∈R)的形式,利用有关条件及复数相等转化为实数问题或利用复数的几何意义转化为点的坐标及向量问题进行解决.层级一 学业水平达标1.复数(1+i)2(2+3i)的值为( )A .6-4iB .-6-4iC .6+4iD .-6+4i解析:选D (1+i)2(2+3i)=2i(2+3i)=-6+4i. 2.(全国卷Ⅰ)已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-iD .2+i解析:选C z -1=1+ii=1-i ,所以z =2-i ,故选C.3.(广东高考)若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .2-3i B .2+3i C .3+2iD .3-2i解析:选A ∵z =i(3-2i)=3i -2i 2=2+3i ,∴z =2-3i. 4.(1+i)20-(1-i)20的值是( ) A .-1 024 B .1 024 C .0D .512解析:选 C (1+i)20-(1-i)20=[(1+i)2]10-[(1-i)2]10=(2i)10-(-2i)10=(2i)10-(2i)10=0.5.(全国卷Ⅱ)若a 为实数,且2+a i1+i =3+i ,则a =( )A .-4B .-3C .3D .4解析:选D2+a i 1+i =(2+a i)(1-i)(1+i)(1-i)=a +22+a -22i =3+i , 所以⎩⎪⎨⎪⎧a +22=3,a -22=1,解得a =4,故选D.6.(天津高考)已知a ,b ∈R,i 是虚数单位,若(1+i)(1-b i)=a ,则ab的值为________. 解析:因为(1+i)(1-b i)=1+b +(1-b )i =a , 又a ,b ∈R,所以1+b =a 且1-b =0,得a =2,b =1, 所以a b=2. 答案:27.设复数z =1+2i ,则z 2-2z =________.解析:∵z =1+2i ,∴z 2-2z =z (z -2)=(1+2i)(1+2i -2)=(1+2i)(-1+2i)=-3. 答案:-38.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________.解析:∵a ,b ∈R,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎪⎨⎪⎧ a =1-b ,0=1+b .∴⎩⎪⎨⎪⎧a =2,b =-1.∴|a +b i|=|2-i|=22+(-1)2= 5. 答案: 59.计算:(i -2)(i -1)(1+i)(i -1)+i +-3-2i2-3i .解:因为(i -2)(i -1)(1+i)(i -1)+i =(i -2)(i -1)i 2-1+i =(i -2)(i -1)-2+i =i -1,-3-2i2-3i=(-3-2i)(2+3i)(2-3i)(2+3i)=-13i 13=-i ,所以(i -2)(i -1)(1+i)(i -1)+i +-3-2i 2-3i =i -1+(-i)=-1.10.已知z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z . 解:设z =a +b i(a ,b ∈R), 则z =a -b i(a ,b ∈R),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i , 即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧a =-1,b =0,或⎩⎪⎨⎪⎧a =-1,b =3.所以z =-1或z =-1+3i.层级二 应试能力达标1.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D解析:选B 设z =a +b i(a ,b ∈R),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.2.设a 是实数,且1+a i1+i ∈R,则实数a =( )A .-1B .1C .2D .-2解析:选B 因为1+a i 1+i ∈R,所以不妨设1+a i1+i=x ,x ∈R,则1+a i =(1+i)x =x +x i ,所以有⎩⎪⎨⎪⎧x =1,a =x ,所以a =1.3.若a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =( )A .2 B. 3 C. 2 D .1解析:选B ∵a +ii=(a +i)(-i)=1-a i ,∴⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=1+a 2=2,解得a=3或a =-3(舍).4.计算(-1+3i)3(1+i)6+-2+i1+2i 的值是( ) A .0 B .1 C .iD .2i解析:选D 原式=(-1+3i)3[(1+i)2]3+(-2+i)(1-2i)(1+2i)(1-2i)=(-1+3i)3(2i)3+-2+4i +i +25=-12+32i 3-i +i =1-i +i =i(-i)i+i =2i.5.若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________. 解析:z 1z 2=a +2i 3-4i =(a +2i)(3+4i)9+16=3a +4a i +6i -825=(3a -8)+(4a +6)i25,∵z 1z 2为纯虚数,∴⎩⎪⎨⎪⎧3a -8=0,4a +6≠0,∴a =83.答案:836.设复数z 满足z 2=3+4i(i 是虚数单位),则z 的模为________. 解析:设z =a +b i(a ,b ∈R), 则z 2=a 2-b 2+2ab i =3+4i ,∴⎩⎪⎨⎪⎧ a 2-b 2=3,2ab =4,解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1.∴|z |=a 2+b 2= 5. 答案: 57.设复数z =(1+i)2+3(1-i)2+i ,若z 2+a z <0,求纯虚数a .解:由z 2+a z<0可知z 2+a z是实数且为负数. z =(1+i)2+3(1-i)2+i =2i +3-3i 2+i =3-i2+i =1-i.∵a 为纯虚数,∴设a =m i(m ∈R 且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m2-2i <0, ∴⎩⎪⎨⎪⎧-m2<0,m 2-2=0,∴m =4,∴a =4i.8.复数z =(1+i)3(a +b i)1-i 且|z |=4,z 对应的点在第一象限,若复数0,z ,z 对应的点是正三角形的三个顶点,求实数a ,b 的值.解:z =(1+i)2·(1+i)1-i (a +b i)=2i·i(a +b i)=-2a -2b i. 由|z |=4,得a 2+b 2=4,①∵复数0,z ,z 对应的点构成正三角形, ∴|z -z |=|z |.把z =-2a -2b i 代入化简得|b |=1.② 又∵z 对应的点在第一象限, ∴a <0,b <0. 由①②得⎩⎨⎧a =-3,b =-1.故所求值为a =-3,b =-1.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,复数7-i3+i =( )A .2+iB .2-iC .-2+iD .-2-i解析:选B7-i 3+i =(7-i)(3-i)10=20-10i10=2-i. 2.(全国卷Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2解析:选B ∵(2+a i)(a -2i)=-4i , ∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4.解得a =0.故选B.3.若复数z 满足z1-i=i ,其中i 是虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i解析:选A z =(1-i)i =-i 2+i =1+i ,z =1-i ,故选A. 4.设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选B2i 1-i =2i(1+i)(1-i)(1+i)=2(i -1)2=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.5.已知(1-i)2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i解析:选D 由(1-i)2z =1+i ,得z =(1-i)21+i =-2i 1+i =-2i(1-i)(1+i)(1-i)=-1-i ,故选D.6.设复数z =-1-i(i 为虚数单位),z 的共轭复数是z ,则2-zz等于( )A .-1-2iB .-2+iC .-1+2iD .1+2i解析:选C 由题意可得2-z z =2-(-1+i)-1-i=(3-i)(-1+i)(-1-i)(-1+i)=-1+2i ,故选C.7.已知复数z =-12+32i ,则z +|z |=( )A .-12-32iB .-12+32iC.12+32i D.12-32i 解析:选D 因为z =-12+32i ,所以z +|z |=-12-32i +⎝ ⎛⎭⎪⎫-122+322=12-32i.8.已知复数z 满足(1-i)z =i 2 016(其中i 为虚数单位),则z 的虚部为( )A.12B .-12C.12i D .-12i解析:选B ∵2 016=4×504,∴i 2 016=i 4=1.∴z =11-i =12+12i ,∴z =12-12i ,∴z的虚部为-12.故选B.9.A ,B 分别是复数z 1,z 2在复平面内对应的点,O 是原点,若|z 1+z 2|=|z 1-z 2|,则三角形AOB 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形解析:选B 根据复数加(减)法的几何意义,知以OA ――→,OB ――→为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB 为直角三角形.10.设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C.z 对应的点在实轴的下方 D .z 一定为实数解析:选C ∵t 2+2t +2=(t +1)2+1>0,∴z 对应的点在实轴的上方.又∵z 与z 对应的点关于实轴对称.∴C 项正确.11.设z 的共轭复数为z ,若z +z =4,z ·z =8,则zz等于( )A .1B .-iC .±1D .±i解析:选 D 设z =a +b i(a ,b ∈R),则z=a -b i ,由条件可得⎩⎪⎨⎪⎧2a =4,a 2+b 2=8.解得⎩⎪⎨⎪⎧a =2,b =±2.因此⎩⎪⎨⎪⎧z =2+2i ,z =2-2i ,或⎩⎪⎨⎪⎧z =2-2i ,z =2+2i.所以zz=2-2i 2+2i =1-i1+i=(1-i)2(1+i)(1-i)=-2i 2=-i ,或z z =2+2i 2-2i =1+i 1-i =(1+i)2(1-i)(1+i)=2i2=i ,所以z z=±i.12.已知复数z =(x -2)+y i(x ,y ∈R)在复平面内对应的向量的模为3,则yx的最大值是( )A.32B.33C.12D. 3解析:选D 因为|(x-2)+yi|=3,所以(x-2)2+y2=3,所以点(x ,y)在以C(2,0)为圆心,以为半径的圆上,如图,由平面几何知识-3≤yx≤ 3.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 解析:复数z =(5+2i)2=21+20i ,其实部是21. 答案:2114.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________. 解析:由(1-2i)(a +i)=(a +2)+(1-2a )i 是纯虚数可得a +2=0,1-2a ≠0,解得a =-2.答案:-215.设复数a +b i(a ,b ∈R)的模为3,则(a +b i)(a -b i)=________. 解析:∵|a +b i|=a 2+b 2=3, ∴(a +b i)(a -b i)=a 2+b 2=3. 答案:316.若关于x 的方程x 2+(2-i)x +(2m -4)i =0有实数根,则纯虚数m =________. 解析:设m =b i(b ∈R 且b ≠0),则x 2+(2-i)x +(2b i -4)i =0,化简得(x 2+2x -2b )+(-x -4)i =0,即⎩⎪⎨⎪⎧x 2+2x -2b =0,-x -4=0,解得⎩⎪⎨⎪⎧x =-4,b =4,∴m =4i.答案:4i三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i(m ∈R),试求m 取何值时?(1)z 是实数. (2)z 是纯虚数.(3)z 对应的点位于复平面的第一象限.解:(1)由m 2+3m +2=0且m 2-2m -2>0,解得m =-1或m =-2,复数表示实数. (2)当实部等于零且虚部不等于零时,复数表示纯虚数. 由lg(m 2-2m -2)=0,且m 2+3m +2≠0, 求得m =3,故当m =3时,复数z 为纯虚数.(3)由lg(m 2-2m -2)>0,且m 2+3m +2>0,解得m <-2或m >3,故当m <-2或m >3时,复数z 对应的点位于复平面的第一象限.18.(本小题满分12分)已知(1+2i)z =4+3i ,求z 及z z.解:设z =a +b i(a ,b ∈R),则z =a -b i. ∴(1+2i)(a -b i)=4+3i , ∴(a +2b )+(2a -b )i =4+3i.由复数相等,解得⎩⎪⎨⎪⎧a +2b =4,2a -b =3,解得⎩⎪⎨⎪⎧a =2,b =1.∴z =2+i.∴zz =z ·zz ·z =z 2|z |2=4-1+4i 5=35+45i. 19.(本小题满分12分)已知z =1+i ,a ,b 为实数. (1)若ω=z 2+3z -4,求|ω|;(2)若z 2+az +bz 2-z +1=1-i ,求a ,b 的值.解:(1)ω=(1+i)2+3(1-i)-4=-1-i , 所以|ω|= 2.(2)由条件,得(a +b )+(a +2)ii =1-i ,所以(a +b )+(a +2)i =1+i ,所以⎩⎪⎨⎪⎧a +b =1,a +2=1,解得⎩⎪⎨⎪⎧a =-1,b =2.20.(本小题满分12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解:设z =x +y i(x ,y ∈R,y ≠0),∴x 2+y 2=1. 则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i. ∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧2x +1=0, ①x 2-y 2+3x <0, ②又x 2+y 2=1. ③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.21.(本小题满分12分)已知复数z 满足|z |=2,z 2的虚部是2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平面上的对应点分别为A ,B ,C ,求△ABC 的面积.解:(1)设z =a +b i(a ,b ∈R),则z 2=a 2-b 2+2ab i ,由题意得a 2+b 2=2且2ab =2,解得a =b =1或a =b =-1,所以z =1+i 或z =-1-i.(2)当z =1+i 时,z 2=2i ,z -z 2=1-i ,所以A (1,1),B (0,2),C (1,-1),所以S △ABC=1.当z =-1-i 时,z 2=2i ,z -z 2=-1-3i , 所以A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =1.22.(本小题满分12分)已知复数z 1满足(z 1-2)(1+i)=1-i(i 为虚数单位),复数z 2的虚部为2,且z 1·z 2是实数,求z 2.解:∵(z 1-2)(1+i)=1-i ,∴z 1-2=1-i 1+i =(1-i)2(1+i)(1-i)=-2i2=-i ,∴z 1=2-i.设z 2=a +2i(a ∈R),则z 1·z 2=(2-i)(a +2i)=(2a +2)+(4-a )i. 又∵z 1·z 2∈R,∴a =4.∴z 2=4+2i.。
复数小结(考点小析) 教学时间: 第7课时考纲要求:1. 理解复数的基本概念.2. 理解复数相等的充要条件.3. 了解复数的代数表示形式及其几何意义.4. 会进行复数代数形式的四则运算.5. 了解复数的代数形式的加、减运算的几何意义.学情分析:本班为文科普通班,学生基础较差,理解力较为困难,学习积极性不够高。
教学目标:掌握复数相关知识的基础上能完成高考中常常出现的几种考点形式的题目。
教学重点:复数的有关概念、复数的几何意义与运算法则在考点中的应用和理解。
教学难点:怎样去落实考点得到此分。
教学方法:讲练结合教学过程:一、知识回顾1.定义: 形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做实部,b 叫做虚部(i 为虚数单位)2.分类:满足条件(a ,b 为实数)复数的分类 a +b i 为实数⇔__b=0____ a +b i 为虚数⇔__b ≠0__ a +b i 为纯虚数⇔_a =0且b ≠0___________3.复数相等:a +b i =c +d i ⇔ a =c 且b =d (a ,b ,c ,d ∈R ).4.共轭复数:a +b i 与c +d i 共轭⇔ a =c,b =-d (a ,b ,c ,d ∈R ).5.复数的模:向量OZ →的长度叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|= a 2+b 2 (a ,b ∈R ).二、例题选讲考点一 复数的基本概念(1)处理有关复数基本概念的问题,关键是掌握复数的相关概念,找准复数的实部与虚部(即实部和虚部必须是实数),从定义出发解决问题;(2)利用复数相等的充要条件转化为实数问题是求解复数常用的方法.(3)实数的共轭复数是它本身.【例1】(1) 设m ∈R ,(m +2) (m -1)+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =__________.【思路点拨】根据纯虚数的定义可得(m +2) (m -1)=0,m 2-1≠0,由此解得实数m 的值.【解答过程】因为复数z =(m +2) (m -1)+(m -1)i 为纯虚数,所以(m +2) (m -1)=0,m 2-1≠0,解得m =-2.【跟踪训练1】若i(x +y i)=3+4i ,x ,y ∈R ,则复数x +y i 的模是( )A .2B .3C .4D .5解析:因为i(x +y i)=x i -y =3+4i ,x ,y ∈R ,所以x =4,-y =3,即x =4,y =-3.所以|x +y i|=|4-3i|=42+(-3)2=5.考点二 复数的几何意义复数与复平面内的点,以及复平面内以原点为起点的向量是一一对应的,只要把复数与向量对应起来,就可以根据平面向量的知识理解复数的模、加法、减法的几何意义,并根据这些几何意义解决问题.【例2】(1)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【思路点拨】 (1)化简复数z ,根据复数与复平面内点的对应关系可得答案;【解答过程】(1)z =i·(1+i)=-1+i ,故复数z 对应的点为(-1,1),在复平面的第二象限.【跟踪训练2】已知复数z 1,z 2在复平面内对应的点分别为A (0,1),B (-1,3),则z 2z 1=( ) A .-1+3i B .-3-iC .3+iD .3-i解析:由题意可得z 1=i ,z 2=-1+3i.所以z 2z 1=-1+3i i =-i (-1+3i )-i 2=i +3. 考点三 复数的代数形式的运算(1)两个复数相除,可以先把他们的商写成分式的形式,然后把分子、分母同乘以分母的共轭复数,把结果化简;(2)在进行复数的代数运算时,记住以下结论,可提高计算速度:①(1+i)2=2i ;②(1-i)2=-2i ;③1+i 1-i =i ;④1-i 1+i=-i ;⑤-b +a i =i(a +b i);⑥i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,n ∈N *.【例3】已知复数z 满足(3+4i)z =25,则z =( )A .-3+4iB .-3-4iC .3+4iD .3-4i【思路点拨】 利用分式的分母平方,复数分母实数化,运算求得结果;解析:由(3+4i)z =25,得z =253+4i =25(3-4i )(3+4i )(3-4i )=3-4i. 【跟踪训练3】已知a ,b ∈R ,i 是虚数单位.若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i解析: 先由共轭复数的条件求出a ,b 的值,再求(a +b i)2的值.由题意知a -i =2-b i ,所以a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.三.巩固练习高考真题复平面内表示复数z =i(-2+i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】∵z =i(-2+i)=-1-2i ,(1+i)(2+i)等于( )A.1-i B.1+3iC.3+i D.3+3i【解析】(1+i)(2+i)=2+i+2i-1=1+3i.四.课后小结复数的基本概念复数的几何意义复数的代数形式的运算五.课后作业配套练习复习题。
复数的基本概念及其运算一、目标要求:(1) 复数的概念的发展和有关概念(实数、虚数、纯虚数、复数相等、共轭复数);复数的代数表示与向量表示。
(2) 掌握复数的表示方法。
(3掌握复数的运算法则,能正确地进行复数的运算(复数代数形式的加法与减法,乘法与除法)二、思想方法(1)化归思想—将复数问题实数化。
(2)方程思想—利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。
三、教学进程1。
引人:实数的局限性,比如说:在实数范围内-2没有平方根,那么-2真的没有平方根吗? 2.复数的有关概念和性质:(1)i 称为虚数单位,规定21i =-,形如a+bi 的数称为复数,其中a ,b ∈R . (2)复数的分类(下面的a ,b 均为实数)(3)复数的相等设复数1112221122,(,,,)z a bi z a b i a b a b R =+=+∈,那么12z z =的充要条件是:1122a b a b ==且.(4)复数的几何表示复数z=a+bi (a ,b ∈R )可用平面直角坐标系内点Z(a ,b)来表示.这时称此平面为复平面,x 轴称为实轴,y 轴除去原点称为虚轴.这样,全体复数集C 与复平面上全体点集是一一对应的.复数z=a+bi (),a b R ∈.在复平面内还可以用以原点O 为起点,以点Z(a ,b)向量所成的集合也是一一对应的(例外的是复数0对应点O ,看成零向量).(6)复数与实数不同处:①任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.②实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.复数的代数运算(1)i 4n =1,i 41n +=i ,i 42n +=-1,i 43n +=-i ;(2)i n · i 1n +· i 2n +·i 3n +=-1, i n +i 1n ++i 2n ++i 3n +=0;;()()()()()()()()()()()()052222221222212121≠+-+++=-+-+=++=+==•∈+=++-=•±+±=±∈+=+=z i dc adbc d c bd ac di c di c di c bi a di c bi a z z b a z z z R b a bi a z i ad bc bd ac z z i d b c a z z R d c b a di c z bi a z ;,则,;特别,若;,,,,,四、典型例题分析①实数?②虚数?③纯虚数? ④在复平面上对应的点第三象限?①复数z 是实数的充要条件是:∴当m =-2时复数z 为实数.②复数z 是虚数的充要条件:∴当m ≠-3且m ≠-2时复数z 为虚数 ③复数z 是纯虚数的充要条件是:∴ 当m =1时复数z 为纯虚数.【说明】 要注意复数z 实部的定义域是m ≠-3,它是考虑复数z 是实数,虚数纯虚数的必要条件. 要特别注意复数z =a+bi(a ,b ∈R)为纯虚数的充要条件是a =0且b ≠0.例2 (1).若__________723=∈++∈x R iix R x ,则,(2).复数a+bi 与c+di (a ,b ,c ,d ∈R )的积是纯虚数的充要条件是( ) A . 0=-bd ac B.0=+bc ad C.00=+≠-bc ad bd ac 且D.00≠+=-bc ad bd ac 且(3)已知33333-+∈++=m m C m i m z ,且,其中为纯虚数 求m 的对应点的轨迹.例3.设复数()i b az z ii i z +=+++-++=1213122,若)(,求实数b a ,的值.例4:计算:()221521232132⎪⎭⎫⎝⎛+-++++-i i i i(2 )1+i+32i +…+1000999i【说明】 计算时要注意提取公因式,要注意利用i 的幂的周期性, (2 ) 法 1:原式=(1+2i -3-4i)+(5+6i -7-8i)+…+(997+998i -999-1000i)=250(-2-2i)=-500-500i法2:设 S =1+2i+32i +…+1000999i ,则iS =i+22i +33i +…+999999i+10001000i,∴(1-i)S =1+i+2i +…+999i-10001000i【说明】 充分利用i 的幂的周期性进行组合,注意利用等比数列求和的方法. 例5 (2004上海市普通高校春季高考数学试卷18) 已知实数p 满足不等式0212<++x x ,试判断方程05222=-+-p z z 有无实根,并给出证明. 【解】由0212<++x x ,解得212-<<-x ,212-<<-∴p . 方程05222=-+-p z z 的判别式)4(42-=∆p . 212-<<-p ,4241<<∴p ,0<∆,由此得方程05222=-+-p z z 无实根.课后训练1、下列说法正确的是 ( )A .0i 是纯虚数B .原点是复平面内直角坐标系的实轴与虚轴的公共点C .实数的共轭复数一定是实数,虚数的共轭复数一定是虚数D .2i 是虚数 2、下列命题中,假命题是 ( )A .两个复数不可以比较大小B .两个实数可以比较大小C .两个虚数不可以比较大小D .一虚数和一实数不可以比较大小3、复数1+i+2i +…+10i 等于 ( )A .iB .-IC .2iD .-2i 4、下列命题中: (1) 两个复数不能比较大小;(2) 若z=a+bi, 则当且仅当a =0且b ≠0时,z 为纯虚数; (3) (z 1-z 2)2+(z 2-z 3)2=0 则z 1=z 2=z 3; (4)x+yi=1+i 1==⇔y x。
1 3.2.2 复数的代数形式的乘除运算教学要求:掌握复数的代数形式的乘、除运算。
教学重点:复数的代数形式的乘除运算及共轭复数的概念教学难点:乘除运算教学过程:一、复习准备:1. 复数的加减法的几何意义是什么?2. 计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[3. 计算:(1)(1(2⨯ (2)()()a b c d +⨯+ (类比多项式的乘法引入复数的乘法)二、讲授新课:1.复数代数形式的乘法运算①.复数的乘法法则:2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++。
例1.计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+ (3)[(32)(43)](5)i i i -⨯-+⨯+(4)(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?例2.1、计算(1)(14)(14)i i +⨯- (2)(14)(72)(14)i i i -⨯-⨯+(3)2(32)i +2、已知复数Z ,若,试求Z 的值。
变:若(23)8i Z +≥,试求Z 的值。
②共轭复数:两复数a bi a bi +-与叫做互为共轭复数,当0b ≠时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数32,43,5,52,7,2i i i i i --++--。
=,试写出复数的除法法则。
2.复数的除法法则:2222()()()()()()a bi a bi c di ac bd bc ad a bi c di i c di c di c di c d c d ++-+-+÷+===+++-++ 其中c di -叫做实数化因子例3.计算(32)(23)i i -÷+,(12)(32)i i +÷-+(师生共同板演一道,再学生练习) 练习:计算232(12)i i -+,23(1)1i i -+- 2.小结:两复数的乘除法,共轭复数,共轭虚数。
复数的概念【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?二、新知探究探究点1:复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④解析:对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.答案:D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a +b i 的形式,更要注意这里a ,b 均为实数时,才能确定复数的实部、虚部.提醒:解答复数概念题,一定要紧扣复数的定义,牢记i 的性质. 探究点2: 复数的分类当实数m 为何值时,复数z =m2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?解:(1)当⎩⎨⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m ≠0,m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i (a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i (a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0. 探究点3: 复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i (m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________. 解析:(1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A .(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎨⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎨⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2. 【答案:(1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.注意:在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立. 三、课堂总结1.复数的有关概念 (1)复数的定义形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)复数集全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集. (3)复数的表示方法复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i (a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.(2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i (b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i (b ∈R )才是纯虚数. 四、课堂检测1.若复数z =a i 2-b i (a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B .z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D .因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎨⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i (x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题: 1.复平面是如何定义的?2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么? 二、新知探究探究点1:复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.解:(1)若z 对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. 故a 的取值范围是⎝ ⎛⎭⎪⎫-1,12. 互动探究:变条件:本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值.解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i (a ,b ∈R )可以用复平面内的点Z(a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.探究点2:复数与复平面内的向量在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶点D 所对应的复数.解:法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝ ⎛⎭⎪⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,所以⎩⎨⎧x =3,y =3,即点D的坐标为(3,3),所以点D 对应的复数为3+3i .法二:由已知得OA →=(0,1),OB →=(1,0),OC →=(4,2),所以BA →=(-1,1),BC →=(3,2),所以BD →=BA →+BC →=(2,3),所以OD →=OB →+BD →=(3,3), 即点D 对应的复数为3+3i .复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.探究点3: 复数的模(1)设复数z 1=a +2i ,z 2=-2+i 且|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a <-1或a >1 C .a >1D .a >0(2)(2019·贵州遵义贵龙中学期中测试)已知复数z 满足|z |2-2|z |-3=0,则复数z 在复平面内对应点的集合是( )A .1个圆B .线段C .2个点D .2个圆解析:(1)由题意得a 2+22<(-2)2+12,即a 2+4<5(a ∈R ),所以-1<a <1. (2)由题意知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1, 因为|z |≥0,所以|z |=3,所以复数z 在复平面内对应点的集合是1个圆. 答案:(1)A (2)A求解复数的模的思路解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解. 三、课堂总结1.复平面建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R ) ←――→一一对应平面向量OZ →.3.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|4.共轭复数(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(2)虚部不等于0的两个共轭复数也叫做共轭虚数. (3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i . ■名师点拨复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称. 四、课堂检测1.已知z =(m +3)+(m -1)i (m ∈R )在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选A .由题意得⎩⎨⎧m +3>0,m -1<0,解得-3<m <1.2.在复平面内,O 为原点,向量OA →对应的复数为-1-2i ,若点A 关于实轴的对称点为B ,则向量OB→对应的复数为( ) A .-2-i B .2+i C .1+2iD .-1+2i解析:选D .由题意可知,点A 的坐标为(-1,-2),则点B 的坐标为(-1,2),故向量OB→对应的复数为-1+2i . 3.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是____________. 解析:依题意,可知z =a +i (a ∈R ),则|z |2=a 2+1.因为0<a <2,所以a 2+1∈(1,5),即|z |∈(1,5).答案:(1,5)4.若复数z 1=2+b i 与复数z 2=a -4i 互为共轭复数,则a =________,b =________. 解析:因为z 1与z 2互为共轭复数, 所以a =2,b =4. 答案:2 4复数的三角表示【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数z =a +b i 的三角形式是什么? 2.复数的辐角、辐角的主值是什么? 3.复数三角形式的乘、除运算公式是什么? 4.复数三角形式乘、除运算的几何意义是什么? 二、基础知识1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数z =a +b i 都可以表示成r (cos θ+isin θ)的形式,其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ→所在射线(射线OZ →)为终边的角,叫做复数z =a+b i 的辐角,我们规定在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z .r (cos θ+isin θ)叫做复数z =a +b i 的三角表示式,简称三角形式.a +b i 叫做复数的代数表示式,简称代数形式.■名师点拨(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍. (2)复数0的辐角是任意的.(3)在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z ,且0≤arg z <2π. (4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等. 2.复数三角形式的乘、除运算若复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),且z 1≠z 2,则 (1)z 1z 2=r 1(cos θ1+isin θ1)·r 2(cos θ2+isin θ2) =r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)]. (2)z 1z 2=r 1(cos θ1+isin θ1)r 2(cos θ2+isin θ2)=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 即:两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和. 两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差. 三、合作探究1.复数的代数形式与三角形式的互化 角度一 代数形式化为三角形式把下列复数的代数形式化成三角形式:(1)3+i ; (2)2-2i.【解】(1)r =3+1=2,因为3+i 对应的点在第一象限, 所以cos θ=32,即θ=π6,所以3+i =2⎝ ⎛⎭⎪⎫cos π6+isin π6.(2)r =2+2=2,cos θ=22, 又因为2-2i 对应的点位于第四象限, 所以θ=7π4.所以2-2i =2⎝⎛⎭⎪⎫cos 7π4+isin7π4.复数的代数形式化三角形式的步骤 (1)先求复数的模. (2)决定辐角所在的象限. (3)根据象限求出辐角. (4)求出复数的三角形式.[提醒]一般在复数三角形式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定取主值.角度二 三角形式化为代数形式分别指出下列复数的模和辐角的主值,并把这些复数表示成代数形式.(1)4⎝ ⎛⎭⎪⎫cos π6+isin π6;(2)32(cos 60°+isin 60°);(3)2⎝⎛⎭⎪⎫cos π3-isin π3.【解】(1)复数4⎝⎛⎭⎪⎫cos π6+isin π6的模r =4,辐角的主值为θ=π6.4⎝⎛⎭⎪⎫cos π6+isin π6=4cos π6+4isin π6=4×32+4×12i=23+2i.(2)32(cos 60°+isin 60°)的模r =32,辐角的主值为θ=60°. 32(cos 60°+isin 60°)=32×12+32×32i =34+34i.(3)2⎝⎛⎭⎪⎫cos π3-isin π3=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝ ⎛⎭⎪⎫2π-π3=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π. 所以复数的模r =2,辐角的主值为53π.2⎝ ⎛⎭⎪⎫cos 53π+isin 53π=2cos 53π+2isin 53π =2×12+2×⎝ ⎛⎭⎪⎫-32i=1-3i.复数的三角形式z =r (cos θ+isin θ)必须满足“模非负、余正弦、+相连、角统一、i 跟sin ”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,如本例(3).2.复数三角形式的乘、除运算计算:(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π;(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)]; (3)4÷⎝⎛⎭⎪⎫cos π4+isin π4.【解】(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π=32⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫43π+56π+isin ⎝ ⎛⎭⎪⎫43π+56π=32⎝ ⎛⎭⎪⎫cos 136π+isin 136π=32⎝⎛⎭⎪⎫cos π6+isin π6=32⎝ ⎛⎭⎪⎫32+12i=163+16i.(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)] =32[cos(225°-150°)+isin(225°-150°)] =62(cos 75°+isin 75°) =62⎝ ⎛⎭⎪⎫6-24+6+24i =6-238+6+238i =3-34+3+34i.(3)4÷⎝⎛⎭⎪⎫cos π4+isin π4=4(cos 0+isin 0)÷⎝⎛⎭⎪⎫cos π4+isin π4=4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4 =22-22i.(1)乘法法则:模相乘,辐角相加. (2)除法法则:模相除,辐角相减.(3)复数的n 次幂,等于模的n 次幂,辐角的n 倍. 3.复数三角形式乘、除运算的几何意义在复平面内,把复数3-3i 对应的向量分别按逆时针和顺时针方向旋转π3,求所得向量对应的复数.【解】因为3-3i =23⎝ ⎛⎭⎪⎫32-12i=23⎝ ⎛⎭⎪⎫cos 116π+isin 116π所以23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎝ ⎛⎭⎪⎫cos π3+isin π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π+π3+isin ⎝ ⎛⎭⎪⎫116π+π3=23⎝ ⎛⎭⎪⎫cos 136π+isin 136π=23⎝ ⎛⎭⎪⎫cos π6+isin π6=3+3i ,23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π-π3+isin ⎝ ⎛⎭⎪⎫116π-π3=23⎝ ⎛⎭⎪⎫cos 32π+isin 32π=-23i.故把复数3-3i 对应的向量按逆时针旋转π3得到的复数为3+3i ,按顺时针旋转π3得到的复数为-23i.两个复数z 1,z 2相乘时,先分别画出与z 1,z 2对应的向量OZ 1→,OZ 2→,然后把向量OZ 1→绕点O 按逆时针方向旋转角θ2(如果θ2<0,就要把OZ 1→绕点O 按顺时针方向旋转角|θ2|),再把它的模变为原来的r 2倍,得到向量OZ →,OZ →表示的复数就是积z 1z 2. 四、课堂检测1.复数1-3i 的辐角的主值是( ) A .53π B .23π C .56πD .π3解析:选A .因为1-3i =2⎝ ⎛⎭⎪⎫12-32i =2⎝ ⎛⎭⎪⎫cos 53π+isin 53π,所以1-3i 辐角的主值为53π.2.复数9(cos π+isin π)的模是________. 答案:93.arg(-2i)=________.答案:32π 4.计算:(1)(cos 75°+isin 75°)(cos 15°+isin 15°);(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π. 解:(1)(cos 75°+isin 75°)(cos 15°+isin 15°) =cos(75°+15°)+isin(75°+15°) =cos 90°+isin 90° =i.(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫53π-34π+isin ⎝ ⎛⎭⎪⎫53π-34π=2⎝ ⎛⎭⎪⎫cos 1112π+isin 1112π=-1+32+3-12i.复数的四则运算【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的加、减法运算法则是什么?运算律有哪些? 2.复数的加、减法的几何意义是什么?二、新知探究探究点1:复数的加、减法运算(1)计算:(5-6i )+(-2-i )-(3+4i );(2)设z 1=x +2i ,z 2=3-y i (x ,y ∈R ),且z 1+z 2=5-6i ,求z 1-z 2. 解:(1)原式=(5-2-3)+(-6-1-4)i =-11i . (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i ,所以(3+x )+(2-y )i =5-6i , 所以⎩⎨⎧3+x =5,2-y =-6,所以⎩⎨⎧x =2,y =8,所以z 1-z 2=(2+2i )-(3-8i )=(2-3)+[2-(-8)]i=-1+10i .解决复数加、减运算的思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).探究点2:复数加、减法的几何意义已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i .(1)求AO→表示的复数; (2)求CA→表示的复数.解:(1)因为AO→=-OA →,所以AO →表示的复数为-(3+2i ),即-3-2i . (2)因为CA→=OA →-OC →, 所以CA →表示的复数为(3+2i )-(-2+4i )=5-2i . 互动探究:1.变问法:若本例条件不变,试求点B 所对应的复数.解:因为OB →=OA →+OC →,所以OB →表示的复数为(3+2i )+(-2+4i )=1+6i .所以点B所对应的复数为1+6i .2.变问法:若本例条件不变,求对角线AC ,BO 的交点M 对应的复数.解:由题意知,点M 为OB 的中点,则OM →=12OB →,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为⎝ ⎛⎭⎪⎫12,3,所以点M 对应的复数为12+3i .复数加、减法几何意义的应用技巧(1)复数的加减运算可以转化为点的坐标或向量运算.(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则. 三、课堂总结1.复数加、减法的运算法则及加法运算律 (1)加、减法的运算法则设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .(2)加法运算律 对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加、减法的几何意义如图所示,设复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2对应的向量是Z 2Z 1→.四、课堂检测1.(6-3i )-(3i +1)+(2-2i )的结果为( ) A .5-3i B .3+5i C .7-8iD .7-2i解析:选C .(6-3i )-(3i +1)+(2-2i )=(6-1+2)+(-3-3-2)i =7-8i .2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,则实数a 的值为____________.解析:由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得⎩⎨⎧a 2-2+a =0,a 2-3a +2≠0⇒a =-2.答案:-23.已知复数z 1=-2+i ,z 2=-1+2i . (1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.解:(1)由复数减法的运算法则得z 1-z 2=(-2+i )-(-1+2i )=-1-i .(2)在复平面内作复数z 1-z 2所对应的向量,如图中OZ→.【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的乘法和除法运算法则各是什么? 2.复数乘法的运算律有哪些? 3.如何在复数范围内求方程的解? 二、新知探究探究点1: 复数的乘法运算(1)(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=( )A .1+3iB .-1+3iC .3+iD .-3+i(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i )2=( )A .5-4iB .5+4iC .3-4iD .3+4i(3)把复数z 的共轭复数记作z -,已知(1+2i ) z -=4+3i ,求z .解:(1)选B .(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=(1-i )(1+i )⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i=2⎝ ⎛⎭⎪⎫-12+32i =-1+3i . (2)选D .因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i )2=(2+i )2=3+4i . (3)设z =a +b i (a ,b ∈R ),则z -=a -b i ,由已知得,(1+2i )(a -b i )=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知,{a +2b =4,2a -b =3,解得a =2,b =1,所以z =2+i .复数乘法运算法则的应用复数的乘法可以按照多项式的乘法计算,只是在结果中要将i 2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a +b i )2=a 2+2ab i +b 2i 2=a 2-b 2+2ab i ,(a +b i )3=a 3+3a 2b i +3ab 2i 2+b 3i 3=a 3-3ab 2+(3a 2b -b 3)i .探究点2: 复数的除法运算计算:(1)(1+2i )2+3(1-i )2+i;(2)(1-4i )(1+i )+2+4i 3+4i.解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i2+i=i2+i=i (2-i )5=15+25i .(2)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i =7+i 3+4i=(7+i )(3-4i )(3+4i )(3-4i )=21-28i +3i +425=25-25i 25=1-i .复数除法运算法则的应用复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.探究点3: i 的运算性质(1)复数z =1-i1+i,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1 B .-1 C .iD .-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019等于________. 解析:(1)z 2=⎝⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i )2 019=⎝ ⎛⎭⎪⎫2i 22 019=i 2 019=(i 4)504·i 3=1504·(-i )=-i .答案:(1)B (2)-i(1)i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N *). (2)记住以下结果,可提高运算速度. ①(1+i )2=2i ,(1-i )2=-2i .②1-i 1+i =-i ,1+i 1-i =i . ③1i =-i . 探究点4:在复数范围内解方程在复数范围内解下列方程. (1)x 2+5=0;(2)x 2+4x +6=0.解:(1)因为x 2+5=0,所以x 2=-5, 又因为(5i )2=(-5i )2=-5, 所以x =±5i ,所以方程x 2+5=0的根为±5i . (2)法一:因为x 2+4x +6=0, 所以(x +2)2=-2,因为(2i )2=(-2i )2=-2, 所以x +2=2i 或x +2=-2i , 即x =-2+2i 或x =-2-2i ,所以方程x 2+4x +6=0的根为x =-2±2i . 法二:由x 2+4x +6=0知Δ=42-4×6=-8<0, 所以方程x 2+4x +6=0无实数根.在复数范围内,设方程x 2+4x +6=0的根为x =a +b i (a ,b ∈R 且b ≠0), 则(a +b i )2+4(a +b i )+6=0, 所以a 2+2ab i -b 2+4a +4b i +6=0,整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,所以⎩⎨⎧a 2-b 2+4a +6=0,2ab +4b =0,又因为b ≠0,所以⎩⎨⎧a 2-b 2+4a +6=0,2a +4=0,解得a =-2,b =±2. 所以x =-2±2i ,即方程x 2+4x +6=0的根为x =-2±2i .在复数范围内,实系数一元二次方程ax 2+bx +c =0(a ≠0)的求解方法 (1)求根公式法①当Δ≥0时,x =-b ±b 2-4ac2a.②当Δ<0时,x =-b ±-(b 2-4ac )i2a .(2)利用复数相等的定义求解设方程的根为x=m+n i(m,n∈R),将此代入方程ax2+bx+c=0(a≠0),化简后利用复数相等的定义求解.三、课堂总结1.复数乘法的运算法则和运算律(1)复数乘法的运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律2.复数除法的运算法则设z1=a+b i,z2=c+d i(c+d i≠0)(a,b,c,d∈R),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).■名师点拨对复数除法的两点说明(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.(2)代数式:注意最后结果要将实部、虚部分开.四、课堂检测1.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-1 2C.12D.2解析:选D.因为(1+b i)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.2.已知i为虚数单位,则复数i2-i的模等于()A.5B.3C.33D.55解析:选D.因为i2-i=i(2+i)(2-i)(2+i)=i(2+i)5=-15+25i,所以|i2-i |=|-15+25i|=(-15)2+(25)2=55,故选D.3.计算:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018;(2)(4-i5)(6+2i7)+(7+i11)(4-3i).解:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018=2+2i-2i+⎝⎛⎭⎪⎫22i1 009=i(1+i)+⎝⎛⎭⎪⎫1i1 009=-1+i+(-i)1 009=-1+i-i=-1.(2)原式=(4-i)(6-2i)+(7-i)(4-3i)=22-14i+25-25i=47-39i.。
3.2.1 复数代数形式的加、减运算及其几何意义1.复数的加法与减法 (1)复数的加减法运算法则(a +b i)±(c +d i)=□01(a ±c )+(b ±d )i. (2)复数加法的运算律复数的加法满足□02交换律、□03结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=□04z 2+z 1;(z 1+z 2)+z 3=□05z 1+(z 2+z 3). 2.复数加、减法的几何意义 (1)复数加法的几何意义若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→,OZ 2→的□06终点,并指向被减向量的向量Z 2Z 1→所对应的复数. (3)复平面内的两点间距离公式:d =□07|z 1-z 2|. 其中z 1,z 2是复平面内的两点Z 1和Z 2所对应的复数,d 为Z 1和Z 2间的距离.1.两点间的距离公式结合模的知识可得复平面上两点间的距离公式,设z 1=x 1+y 1i ,z 2=x 2+y 2i ,则|Z 2Z 1→|=|z 1-z 2|=|(x 1+y 1i)-(x 2+y 2i)|=|(x 1-x 2)+(y 1-y 2)i|=x 1-x 22+y 1-y 22.2.复数模的两个重要性质(1)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|; (2)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.1.判一判(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案 (1)× (2)× (3)× 2.做一做(1)计算:(3+5i)+(3-4i)=________. (2)(5-6i)+(-2-2i)-(3+3i)=________.(3)已知向量OZ 1→对应的复数为2-3i ,向量OZ 2→对应的复数为3-4i ,则向量Z 1Z 2→对应的复数为________.答案 (1)6+i (2)-11i (3)1-i探究1 复数的加减运算例1 计算:(1)(3-5i)+(-4-i)-(3+4i); (2)(-7i +5)-(9-8i)+(3-2i).[解] (1)原式=(3-4-3)+(-5-1-4)i =-4-10i. (2)原式=(5-9+3)+(-7+8-2)i =-1-i. 拓展提升复数代数形式的加减法运算,其运算法则是对它们的实部和虚部分别进行加减运算.在运算过程中应注意把握每一个复数的实部和虚部.这种运算类似于初中的合并同类项.【跟踪训练1】 计算:(1)(1+2i)+(-2+i)+(-2-i)+(1-2i); (2)(i 2+i)+|i|+(1+i).解 (1)原式=(-1+3i)+(-2-i)+(1-2i) =(-3+2i)+(1-2i)=-2. (2)原式=(-1+i)+0+12+(1+i) =-1+i +1+(1+i)=1+2i. 探究2 复数加减运算的几何意义例2 已知ABCD 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,求点D 对应的复数.[解] 解法一:设D 点对应复数为x +y i(x ,y ∈R ),则D (x ,y ). 又由已知A (1,3),B (0,-1),C (2,1),∴AC 中点为⎝ ⎛⎭⎪⎫32,2,BD 中点为⎝ ⎛⎭⎪⎫x 2,y -12.∵平行四边形对角线互相平分, ∴⎩⎪⎨⎪⎧32=x 2,2=y -12,∴⎩⎪⎨⎪⎧x =3,y =5.即点D 对应的复数为3+5i.解法二:设D 点对应的复数为x +y i(x ,y ∈R ).则AD →对应的复数为(x +y i)-(1+3i)=(x -1)+(y -3)i , 又BC →对应的复数为(2+i)-(-i)=2+2i. 由已知AD →=BC →,∴(x -1)+(y -3)i =2+2i ,∴⎩⎪⎨⎪⎧x -1=2,y -3=2,∴⎩⎪⎨⎪⎧x =3,y =5,即点D 对应的复数为3+5i.[条件探究] 若一个平行四边形的三个顶点对应的复数分别为1+3i ,-i,2+i ,求第四个顶点对应的复数.[解] 设1+3i ,-i,2+i 对应A ,B ,C 三点,D 为第四个顶点,则①当ABCD 是平行四边形时,D 点对应的复数是3+5i.②当ABDC 是平行四边形时,D 点对应的复数为1-3i.③当ADBC 是平行四边形时,D 点对应复数为-1+i.拓展提升(1)根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.(2)复数的加减运算用向量进行时,同样满足平行四边形法则和三角形法则. (3)复数及其加减运算的几何意义为数形结合思想在复数中的应用提供了可能. 【跟踪训练2】 已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:(1)点C ,D 对应的复数; (2)平行四边形ABCD 的面积.解 (1)因为向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i , 所以向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,所以点C 对应的复数为(2+i)+(2-3i)=4-2i. 因为AD →=BC →,所以向量AD →对应的复数为3-i ,即AD →=(3,-1), 设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),所以⎩⎪⎨⎪⎧x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧x =5,y =0.所以点D 对应的复数为5. (2)因为BA →·BC →=|BA →||BC →|cos B ,所以cos B =BA →·BC →|BA →||BC →|=3-25×10=152=210.所以sin B =752=7210,所以S =|BA →||BC →|sin B =5×10×7210=7.所以平行四边形ABCD 的面积为7. 探究3 复数加减运算的几何意义的应用 例3 已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|.[解]解法一:设z1=a+b i,z2=c+d i(a,b,c,d∈R),∵|z1|=|z2|=|z1-z2|=1,∴a2+b2=c2+d2=1,①(a-c)2+(b-d)2=1.②由①②得2ac+2bd=1.∴|z1+z2|=a+c2+b+d2=a2+c2+b2+d2+2ac+2bd= 3.解法二:设O为坐标原点,z1,z2,z1+z2对应的点分别为A,B,C.∵|z1|=|z2|=|z1-z2|=1,∴△OAB是边长为1的正三角形,∴四边形OACB是一个内角为60°,边长为1的菱形,且|z1+z2|是菱形的较长的对角线OC的长,∴|z1+z2|=|OC|=|OA|2+|AC|2-2|OA||AC|cos120°= 3.拓展提升掌握以下常用结论:在复平面内,z1,z2对应的点为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB:①为平行四边形;②若|z1+z2|=|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.【跟踪训练3】若复数z满足|z+i|+|z-i|=2,求|z+i+1|的最小值.解解法一:设复数-i,i,-(1+i)在复平面内对应的点分别为Z1,Z2,Z3.如图,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以复数z对应的点Z的集合为线段Z1Z2.问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3|的最小值,由图可知|Z1Z3|为最小值且最小值为1.解法二:设z=x+y i(x,y∈R).因为|z+i|+|z-i|=2,所以x2+y+12+x2+y-12=2,又x2+y+12=2-x2+y-12≥0,所以0≤1-y=x2+y-12≤2,即(1-y)2=x2+(y-1)2,且0≤1-y≤2.所以x=0且-1≤y≤1,则z=y i(-1≤y≤1).所以|z+i+1|=|1+(y+1)i|=12+y+12≥1,等号在y=-1即z=-i时成立.所以|z+i+1|的最小值为1.1.复数的加法规定:实部与实部相加,虚部与虚部相加,两个复数的和仍是一个复数,这一法则可以推广到多个复数相加.2.因为复数可以用向量来表示,所以复数加法的几何意义就是向量加法的平行四边形法则.3.复数的减法可根据复数的相反数,转化为复数的加法来运算.1.复数z 1=3+i ,z 2=1-i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 ∵z 1-z 2=(3+i)-(1-i)=2+2i , ∴z 1-z 2在复平面内对应的点位于第一象限. 2.已知|z |=3,且z +3i 是纯虚数,则z 等于( ) A .-3i B .3i C .±3i D.4i 答案 B解析 设z =x +y i(x ,y ∈R ),由z +3i =x +(y +3)i 为纯虚数,得x =0,且y ≠-3,又|z |=x 2+y 2=|y |=3,∴y =3.故选B.3.非零复数z 1,z 2分别对应复平面内的向量O A →,O B →,若|z 1+z 2|=|z 1-z 2|,则( ) A .O A →=O B → B .|O A →|=|O B →| C .O A →⊥O B →D .O A →,O B →共线答案 C解析 如图,由向量的加法及减法法则可知,O C →=O A →+O B →,B A →=O A →-O B →.由复数加法及减法的几何意义可知,|z 1+z 2|对应O C →的模,|z 1-z 2|对应B A →的模.又|z 1+z 2|=|z 1-z 2|,所以四边形OACB 是矩形,则O A →⊥O B →.4.复数z 满足z -(1-i)=2i ,则z 等于( )A .1+iB .-1-iC .-1+iD .1-i答案 A解析 z =2i +(1-i)=1+i.故选A.5.如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应复数0,3+2i ,-2+4i.求:(1)向量AO →对应的复数; (2)向量CA →对应的复数; (3)向量OB →对应的复数.解 (1)因为AO →=-OA →,所以向量AO →对应的复数为-3-2i.(2)因为CA →=OA →-OC →,所以向量CA →对应的复数为(3+2i)-(-2+4i)=5-2i. (3)因为OB →=OA →+OC →,所以向量OB →对应的复数为(3+2i)+(-2+4i)=1+6i.。
复数的概念
教学目标:
1.理解复数的有关概念以及符号表示;
2.掌握复数的代数形式和几何表示法,理解复平面、实轴、虚轴等概念的意义掌握复数集C 与复平面内所有点成一一对应;
3.理解共轭复数的概念,了解共轭复数的几个简单性质.
教学重点:复数的有关概念,复数的表示和共轭复数的概念;
教学难点:复数概念的理解,复数与复平面上点一一对应关系的理解. 教学过程
一、引入
我们知道,对于实系数一元二次方程 ,当 时,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?
二、授课
1.引入数i
我们引入一个新数i ,i 叫做虚数单位,并规定:
(1)i 2= -1 ;
(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.
根据前面规定,-1可以开平方,而且-1的平方根是
.
2.复数的概念
根据虚数单位i 的第(2)条性质,i 可以与实数b 相乘,再与实数a 相加.由于满足乘法交换律及加法交换律,从而可以把结果写成a +bi .
形如 的数,我们把它们叫做复数. 复数的代数形式、复数、虚数、纯虚数、实部、虚部.
全体复数所形成的集合叫做复数集,一般用字母C 表示,显然有: N* N Z Q R C .
数的分类
复数⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧虚数(特例:纯虚数)
无理数分数整数有理数实数 3.相等复数
如果两个复数的实部和虚部分别相等,我们就说这两个复数相等.即: a,b,c,d ∈R, 则a+bi=c+di ⇔a=c 且b=d
注意:两个复数中若有一个是虚数,则它们不能比较大小.
4.复数的几何表示法
任何一个复数都可以由一个有序实数对(a,b) 唯一确定.而有序实数对(a,b) 与平面直角坐标系中的点是一一对应的.由此,可以建立复数集与平面直角坐标系中的点集之间的一一对应.
复平面、实轴、虚轴等概念,并结合实例对这些概念进行一一说明.
由此可知,复数集C和复平面内所有的点所组成的集会是—一对应的,即
这就是复数的几何意义.这时提醒学生注意复数中的字母z用小写字母表示,点Z(a,b) 中的Z 用大写字母表示.
复数的向量表示.
5.共轭复数
(1)当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不为0的两个共轭复数也叫做互为共轭虚数.
(2)复数z的共轭复数用表示,即如果,那么.三、例题
例1实数分别取什么值时,复数
2
2
6
(215)
3
a a
z a a i
a
--
=+--
+
是(1)实数(2)
虚数(3)纯虚数。
例2 设(),,当取何值时,
(1)z1=z2;(2)
例3设复数和复平面的点Z(a,b)对应,、必须满足什么条件,才能使点Z位于:(1)实轴上?(2)虚轴上?(3)上半平面(含实轴)?(4)左半平面(不含虚轴及原点)?
例4 计算.
四、作业同步练习。