2019年内蒙古通辽市中考数学试卷和答案
- 格式:doc
- 大小:500.56 KB
- 文档页数:26
2019年内蒙古省通辽市中考数学试卷考试时间:分钟 满分:分{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分.{题目}1.(2019年内蒙古通辽T 1)12019-的相反数是 ( ) A .2 019B .12019-C .-2 019D .12019{答案}D{解析}本题考查了相反数的意义,只有符号不同的两个数叫做互为相反数,由定义可知,12019-的相反数为12019,因此本题选D . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {考点:倒数} {类别:常考题} {难度:1-最简单}{题目}2.(2019年内蒙古通辽T 2 ( ) A .±4 B .4 C .±2 D .+2{答案}C{解析}16的算术平方根,∵42=1644的平方根.∵(±2)2=4,∴4的平方根是±2±2,因此本题选C . {分值}3{章节:[1-6-1]平方根} {考点:平方根的定义} {考点:算术平方根} {类别:易错题} {难度:2-简单}{题目}3.(2019年内蒙古通辽T 3)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7 300万人次,比上一年增长12%,其中7 300万用科学记数法表示为( ) A .73×106 B .7.3×103 C .7.3×107 D .0.73×108{答案}C{解析}本题考查了科学记数法.∵1万=104,∴7 300万=7 300×104=7.3×103×104=7.3×107,,因此本题选C . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}4.(2019年内蒙古通辽T 4)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( ){答案}B{解析}本题考查了几何本的三视图.选项逐项分析左视图、俯视图是否相同 左视图 俯视图A 不相同B 相同C 不相同D不相同因此本题选B . {分值}3{章节:[1-29-2]三视图}{考点:简单组合体的三视图} {类别:常考题} {难度:2-简单}{题目}5.(2019年内蒙古通辽T 5)如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为 ( ) A .x >-1 B D .x ≥-1{答案}D{解析}本题考查了一次函数与一元一次不等式之间的关系.由图象知,直线y =kx +b 经过点(-1,3)且经过第一、三象限.∴k >0.∴y 随x 的增大而增大.∵y =kx +b ,kx +b ≥3,∴y ≥3.∴不等式kx +b ≥3的解集就是当y ≥3时对应的自变量x 的取值范围.∵y 随x 的增大而增大,直线y =kx +b 经过点(-1,3),∴当x ≥-1时,y ≥3.∴不等式kx +b ≥3的解集为x ≥-1,,因此本题选D . {分值}3{章节:[1-19-3]一次函数与方程、不等式} {考点:一次函数与一元一次不等式} {类别:常考题}{难度:3-中等难度}{题目}6.(2019年内蒙古通辽T 6)一个菱形的边长是方程x 2-8x +15=0的一个根,其中一条对kx b+A .B .C .D .角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80{答案}B{解析}本题考查了一元二次方程的解法,菱形的性质以及面积公式.∵x2-8x+15=0,∴(x-3)(x -5)=0.∴x1=3,x2=5,即菱形的边长为3或5.如图,菱形ABCD中,对角线AC、BD相交于点O.不妨设对角线BD=8.∵四边形ABCD中菱形,∴AC⊥BC,BO=12BD=12×8=4.∴∠AOB=90°.在Rt△AOB中,∵AB>BO,∴AB>4.当AB=3时,不满足AB>4,舍去;当AB=5时,满足AB>4.∴菱形的边长为5.在Rt△AOB中,由勾股定理得OA=3.∵菱形ABCD是菱形,∴BD=2BO=2×3=6.∴S菱形ABCD=12AC·BD=12×6×8=24,,因此本题选B.{分值}3{章节:[1-18-2-2]菱形}{考点:解一元二次方程-因式分解法}{考点:菱形的判定}{类别:常考题}{难度:3-中等难度}{题目}7.(2019年内蒙古通辽T7)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.π3B.2π3C.4π3D2π{答案}C{解析}本题考查了,如图,连接OC.∵等边三角形ABC内接于⊙O,∴∠AOB=∠AOC=360 3︒=120.在△AOB和△AOC中,OA OAAOB AOCOB=OC=⎧⎪∠=∠⎨⎪⎩,,,∴△AOB≌△AOC.∴S△AOB=S△AOC.∴S阴影=S扇形OAC=120360×π×22=43π,因此本题选C.{分值}3{章节:[1-24-4]弧长和扇形面积} {考点:正多边形和圆}{考点:扇形的面积}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年内蒙古通辽T8)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条宜线与已知直垂直.其中真命题的个数有()A.1个B.2个C.3个D.4个{答案}B{解析}本题考查了真命题与假命题.考虑①,如果斜边上的中线相等,那么由“直角三角形斜边上的中线等于斜边的一半”可知,斜边相等,又一个锐角相等,而直角也相等,所以依据“AAS”可知这两个直角三角形全等,①正确;考虑②,一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行或在一条直线上,②不正确;考虑③,通常温度降到0℃以下,纯净的水会结冰是必然事件,③不正确;考虑④,一个角的两边与另一个的两边分别平行,那么这两个角相等或互补,③不正确;考虑⑤,这是垂线的性质,⑤正确.综合知,①⑤正确,,因此本题选B.{分值}3{章节:[1-5-4] 命题、定理、证明}{考点:命题}{类别:易错题}{难度:3-中等难度}{题目}9.(2019年内蒙古通辽T9)关于x、y的二元一次方程组2234x y kx y k-=⎧⎨-=-⎩,的解满足x<y,则直线y=kx-k-1与双曲线y=kx在同一平面直角坐标系中大致图象是(){答案}B{解析}本题考查了一次函数与反比例函数的图象与性质以及二元一次方程组的解法.∵关于x、y的二元一次方程组2234x y kx y k-=⎧⎨-=-⎩,①②的解满足x<y,∴x-y<0,②-①得x-y=-5k.∴-5k<0.∴k>0.∴在y=kx-k-1中,一次项系数k>0,常数项-k-1<0.∴直线y=kx-k-1经过第一、三、四象限,双曲线y=kx分布在第一、三象限,,因此本题选B.{分值}3{章节:[1-26-1]反比例函数的图像和性质}{考点:三元一次方程组的解法}{考点:反比例函数的图象}{考点:反比例函数的性质}{考点:一次函数的图象}{考点:一次函数的性质}{类别:易错题}{难度:3-中等难度}A B C D{题目}10.(2019年内蒙古通辽T 10)在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,现给以下结论:①abc <0;@c +2a <0;③9a -36+c =0,④a -b ≥m (am +b )(m 为实数);⑤4ac -b 2<0.其中错误结论的个数有( ) A .1个 B .2个D .4个{答案}A{解析}本题考查了二次函数的图象与性质,二次函数与一元二次方程的关系.考虑①,∵抛物线开口向上,∴a >0.∵对称轴为直线x =-1,∴2ba-=-1.∴b =2a >0.∵抛物线与y 轴负半轴相交,∴c <0.∴abc <0,①正确;考虑②∵抛物线y =ax 2+bx +c 与x 轴交于点(1,0),∴a +b +c =0.∵b =2a ,∴a +2a +c =0.∴c +2a =-a <0,②正确;考虑③,设抛物线y =ax 2+bx +c 与x 轴的另一个交点为(x 1,0),∵抛物线的对称轴为直线x =-1,∴112x +=-1.解得x 1=-3.∴抛物线y =ax 2+bx +c 与x 轴的另一个交点(-3,0).∴0=a ×(-3)2+b ×(-3)+c .∴9a -3b +c =0.③正确;考虑④,∵当x =-1时,y =ax 2+bx +c =a -b +c ,∴抛物线的顶点为(-1,a -b +c ).∴函数y =ax 2+bx +c 的最小值为a -b +c .当x =m 时,y =ax 2+bx +c =am 2+bm +c .∴a -b +c ≤am 2+bm +c .∴a -b ≤am 2+bm .④不正确;考虑⑤,∵抛物线y =ax 2+bx +c 与x 轴有两个公共点,∴b 2-4ac >0.∴4ac -b 2<0,故⑤正确.综合知,错误的是③,,因此本题选A . {分值}3{章节:[1-22-2]二次函数与一元二次方程} {考点:二次函数y =ax 2+bx +c 的性质} {考点:二次函数的系数与图象的关系} {类别:易错题}{类别:新定义} {难度:4-较高难度}{题型:2-填空题}二、填空题:本大题共 小题,每小题 分,合计分.{题目}11.(2019年内蒙古通辽T 11)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是________.{答案}27{解析}本题考查了折线统计图以及中位数的意义.由折线统计图可知,这7天的最高气温(单位:℃)分别为:24,29,27,28,28,25,26.将这组数据按由小到大的顺序排列是:24,25,26,27,28,28,29,处在最中间的数是27,∴这些最高气温的中位数是27℃. {分值}3{章节:[1-20-1-2]中位数和众数} {考点:折线统计图} {考点:中位数} {类别:常考题} {难度:2-简单}{题目}12.(2019年内蒙古通辽T 12)某机床生产一种零件,在6月6日至9日这4天中出现次品的数.{答案}12{解析}本题考查了众数,平均数以及方差的意义.,由表格可知,这4天中出现次品的数量分别为:1,0,2,a .∵出现次品数量的唯一众数为1,∴a =1.∴这组数据为1,0,2,1.它的平均数x =14×(1+0+2+1)=1.∴s 2=14×[(1-1)2×2+(0-1)2+(2-1)2]=12.{分值}3{章节:[1-20-2-1]方差} {考点:众数}{考点:算术平均数} {考点:方差的性质} {类别:常考题} {难度:2-简单}{题目}13.(2019年内蒙古通辽T 13)如图,在矩形ABCD 中,AD =8,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为点E ,且AE 平分∠BAC ,则AB 的长为________.{答案 {解析}本题考查了,∵四边形ABCD 是矩形,∴∠BAD =90°,OA =12AC ,OB =12BD ,AC =BD .∴OA =OB .∵AE ⊥BD ,∴∠AEB =∠AEO =90°.∵AE 平分∠BAC ,∴∠BAE=∠OAE .在△ABE 和△AOE 中,AEB AEOAE AE BAE OAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ABE ≌△AOE .∴AB =AO .∴AB =AO =OB .∴△ABO 是等边三角形.∴∠ABO =60°.在Rt △ABD 中,tan ∠ABO =ADAB.∴AB =tan AD ABO ∠=8tan 60︒{分值}3{章节:[1-18-2-1]矩形} {考点:矩形的性质}{考点:等边三角形的判定}C DE ABO{类别:常考题}{难度:3-中等难度}{题目}14.(2019年内蒙古通辽T 14)已知三个边长分别为2 cm ,3 cm ,5 cm 的正方形如图排列,则图中阴影部分的面积为________.{答案}154cm 2 {解析}本题考查了正方形的性质、相似三角形的性质以及梯形的面积公式,如图,∵四边形BCGH是正方形,∴BE ∥CF .∵四边形CDMN 是正方形,∴CF ∥DM .∴BE ∥DM .∴△ABE ∽△ADM .∴BE DM =AB AD ,即5BE =2235++.∴BE =1.∵BE ∥CF ,∴△ABE ∽△ACF .∴BE CF =AB AC .∴1CF =223+.∴∴CF =52.∴S 阴影=S 正方形BCGH -S 梯形BCFE =32-12×(1+52)×3=154(cm 2).{分值}3{章节:[1-27-1-2]相似三角形的性质} {考点:由平行判定相似} {考点:相似三角形的性质} {考点:正方形的性质} {类别:常考题}{难度:3-中等难度}{题目}15.(2019年内蒙古通辽T 15)腰长为5,高为4的等腰三角形的底边长为________.{答案}.6或{解析}本题考查了等腰三角形、勾股定理以及分类思想,当高在等腰三角形的内部时,若高为底边上的高,如图1,由题意知腰AB =AC =5,高AD =4.在Rt △ABD 中,由勾股定理得BD =3.∵AB =AC ,AD ⊥BC ,∴BD =DC .∴DC =3.∴BC =6.若高为腰上的高,如图2,由题意知腰AB =AC =5,高CD =4.在Rt △ACD 中,由勾股定理得AD =3.∴BD =AB -AD =5-3=2.在Rt △BCD 中,由勾股定理得BC当高在等腰三角形的外部时,则高只能为腰上的高.如图3,由题意知腰AB =AC =5,高CD =4.在Rt △ACD 中,由勾股定理得AD =3.∴BD =AB +AD =5+3=8.在Rt △BCD 中,由勾股定理得BC =综合知,底边长为6或{分值}3{章节:[1-13-2-1]等腰三角形} {考点:等边三角形的性质} {考点:勾股定理} {类别:易错题}{难度:3-中等难度}{题目}16.(2019年内蒙古通辽T 16)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m ,则数字m 使分式方程11xx --=(1)(2)m x x -+无解的概率为________.{答案}15{解析}本题考查了分式方程的解法,等可能条件下的概率公式.在方程11xx --=(1)(2)m x x -+两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=m .解得x =m -2.检验:当x =m -2时,(x -1)(x +2)=(m -2-1)( m -2+2)=m (m -3).若m (m -3)=0,则m 1=0,m 2=3.∴当m =0或3时,分式方程11xx --=(1)(2)m x x -+无解.∴记“从1,2,3,4,5中任意抽出一个数m ,数字m 使分式方程11xx --=(1)(2)m x x -+无解”为事件A ,则P (A )=15. {分值}3{章节:[1-25-1-2]概率} {考点:分式方程的解} {考点:一步事件的概率} {类别:易错题}{难度:3-中等难度}{题目}17.(2019年内蒙古通辽T 17)如图,在边长为3的菱形ABCD 中,∠A =60°,M 是AD 边上的一点,且AM =13AD ,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A 'MN ,连接A 'C ,则A 'C 长度的最小值是________.{答案1CDABNMA 'C D AB图1图2 AB D图3AB CD{解析}本题考查了,∵菱形的边长为AD=3,AM=13AD,∴AM=13×3=1,MD=2.如图,以点M为圆心,MA为半径作⊙M.由折叠得MA=MA′=1.∴点A′在⊙M上.连接MC 交⊙M于点A1.当点M、A′、C不在一条直线上时,则在△MA′C中,A′C>|MC-MA′|,即A′C>|MC-1|.当点M、A′、C在一条直线上时,A′C=|MC-MA′|,即A′C=|MC-1|.∴折叠过程中,A′C≥|MC-1|.∴A′C的最小值为|MC-1|.过点M作ME⊥CD交CD的延长线于点E.∵四边形ABCD是菱形,∴AB∥CD.∴∠MDE=∠MAB=60°.在Rt△MDE中,sin∠MDE=MEMD ,cos∠MDE=DEMD.∴ME=MD·sin∠MDE=2×sin60°=2DE=MD·cos∠MDE=2×cos60°=2×12=1.∴CE=ED+CD=1+3=4.在Rt△MCE中,由勾股定理得MCA′C的最小值为1|1.{分值}3{章节:[1-18-2-2]菱形}{考点:菱形的性质}{考点:轴对称的性质}{考点:解直角三角形}{考点:点与圆的位置关系}{类别:思想方法}{类别:数学文化}{类别:北京作图}{类别:高度原创}{类别:发现探究}{类别:常考题}{类别:易错题}{类别:新定义}{难度:5-高难度}{题型:4-解答题}三、解答题:本大题共小题,合计分.{题目}18.(2019年内蒙古通辽T18)计算:-14-1|+1.414)0+2sin60°-11()2--.{解析}本题考查了实数的运算.解答时先分别计算出乘方、绝对值、零次幂、特殊角的三角函数以及负整数次数幂,再进行加减运算.{答案}解:原式=-1-1)+1+2-112-=-11+12=3.{分值}5{章节:[1-28-2-1]特殊角} {考点:有理数乘方的定义} {考点:绝对值的性质}{考点:零次幂}{考点:特殊角的三角函数值} {考点:负指数参与的运算}CDEA BNMA'1A{类别:易错题} {难度:2-简单}{题目}19.(2019年内蒙古通辽T 19)先化简,再求值.221211212x x x x x x +÷+--++,请从不等式组52130x x -⎧⎨+>⎩,…的整数解中选择一个你喜欢的求值. {解析}本题考查了分式的混合运算、一元一次不等式组的解法以及代数式的值.解答时先根据分式混合运算的顺序将算式化简,再解一元一次不等式组,从解集中确定出整数解,最后根据算式确定出能取的x 的值代入求值.{答案}解:221211212x x x x x x +÷+--++==21(1)11(2)2x x x x x -⋅+-++=11(2)2x x x x -+++=1(2)x x x x -++=212x x+. 解不等式5-2x ≥1,得x ≤2.解不等式x +3>0,得x >-3.∴不等式组的解集为-3<x ≤2.∴不等式组的整数解为-2,-1,0,1,2.由221211212x x x x x x +÷+--++知22010x x x ⎧+≠⎨-≠⎩,.解得x ≠0,x ≠-2,x ≠1.∴x =-1或2. 取x =2,则原式=21222+⨯=18.{分值}6{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {考点:解一元一次不等式}{考点:一元一次不等式的整数解} {考点:分式的值} {类别:常考题}{难度:3-中等难度}{题目}20.(2019年内蒙古通辽T 20)两栋居民楼之间的距离CD =30 cm ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻BD 的影子会遮挡到楼AC 的第1.7, 1.4){解析}本题考查了解直角三角形的应用.过点E 作EM ⊥BD 于点M ,在Rt △BEM 中求出BM 的长,进而求出DM 长,于是得到EC 长,用EC 长÷3可知影子会遮挡到楼AC 的层数.{答案}解:如图,设太阳光线GB 交AC 于点E ,过点E 作EM ⊥BD 于点M .由题意知AC =BD =3×10=30 m ,EM =CD =30 m ,∠BEM =∠α=30°.在Rt △BEM 中,tan ∠BEM =BMEM.∴BM =EM ·tan ∠BEM =30·tan30°=30=CE =AC -CE =30-BM =30-30-10×1.7=13(m ).∵13÷3≈4.3,∴此刻楼BD 的影子会遮挡到楼AC 的第5层.︒{分值}5{章节:[1-28-1-2]解直角三角形}{考点:一元二次方程的应用—增长率问题} {类别:常考题} {难度:2-简单}{题目}21.(2019年内蒙古通辽T 21)有四张反面完全相同的纸牌A 、B 、C 、D ,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是________;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A 、B 、C 、D 表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.{解析}本题考查了用树状图(或表格)求等可能条件下的概率.(1)在A 、B 、C 、D 4张纸牌中,牌面图形是中心对称图形的是A 、C 、D 3张,∴P (随机摸出一张纸牌,牌面图形是中心对称图形)=34;(2)先用表格(树状图)列出所有可能出现的结果数,再从中确定出两张牌面图形既是轴对称图形又是中心对称图形的数量,最后利用等可能条件下的概率公式求解.{答案}(1)34(2)游戏不公平,理由是:用表格(或树状图)列出所有可能出现的结果: A B C D A(A ,B )(A ,C ) (A ,D ) B (B ,A )(B ,C )(B ,D ) C (C ,A ) (C ,B )(C ,D )D(D ,A )(D ,B )(D ,C )由表格可知,一共出现了12种可能的结果,且每种结果出现的可能性相等,其中两张牌面图形既是中心对称图形又是轴对称图形的有两种,即(A ,C ),(C ,A ).∴P (两张牌面既是中心对称图形又是轴对称图形)=212=16≠12.∴游戏不公平. 修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.{分值}6{章节:[1-25-2]用列举法求概率} {考点:一步事件的概率} {考点:两步事件不放回}圆 A正五边形 B矩形 B平行四边形D︒{类别:常考题} {难度:2-简单}{题目}22.(2019年内蒙古通辽T 22)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比人年级多5人,九年级最喜欢排球的人数为10人.项目 排球 篮球 踢毯 跳绳 其它人数(人)7 8 14 6请根据以上统计表(图)解答下列问题: (1)本次调查共抽取了多少人? (2)补全统计表和统计图;(3)该校有学生1 800人,学校想对“最喜欢踢毯子”的学生每4人提供一个毯子,学校现有124个毽子,能否够用?请说明理由.{解析}本题考查了条形统计图,扇形统计图以及样本估计总体.(1)从扇形统计图中求出九年级“最喜欢排球”所占的百分比为20%,而由题意知,九年级“最喜欢排球”的有10人.∴抽取的九年级人数为10÷20%=50(人).∵三个年级抽取了相同数量的学生,∴本次调查抽取的总人数为50×3=150.(2)由(1)知,七年级抽取的人数为50.∴表格中跳绳的人数为50-7-8-14-6=15.∵七年级最喜欢跳绳的人数比人年级多5人,∴八年级跳绳的人数为15-5=10.∴八年级踢毯的人数为50-12-10-10-5=13.据此补全条形统计图.由(1)知,最喜欢喜欢排球“”所占的百分比为20%,据此补全扇形统计图.(3)先“最喜欢踢毯子”所占的百分比乘以全校总人数1 800,即为1 800×14135030%150++⨯=1 872(人),再用1 872÷4的值与124比较大小即可确定.{答案}解:(1)10÷(1-24%-16%-30%-10%)=50(人).50×3=150(人).答:本次调查共抽取了150人. (2)补全统计表和统计图如下: 项目 排球 篮球 踢毯 跳绳 其它 人数(人)78141561 八年级学生最喜欢的运动项目人数统计图 排球 其它 踢毯篮球 跳绳 10%30%24%16%%九年级学生最喜欢的 运动项目人数统计图(3)不够用,理由是:1 800×14135030%150++⨯÷4=504÷4=126.∵126>124,∴不够用.{分值}9{章节:[1-10-1]统计调查} {考点:统计表} {考点:条形统计图} {考点:扇形统计图}{考点:数据分析综合题} {类别:常考题}{难度:3-中等难度}{题目}23.(2019年内蒙古通辽T 23)如图,△ABC 内接于OO ,AB 是O 0的直径,AC =CE ,连接AE 交BC 于点D ,延长DC 至F 点,使CF =CD ,连接AF . (1)判断直线AF 与OO 的位置关系,并说明理由;(2)若AC =10,tan ∠CAE =34,求AE 的长.{解析}本题考查了切线的判定以及锐角三角函数.(1)证明OA ⊥AF ;(2)过点C 作CM ⊥AE 于点M .在Rt △ACM 中由tan ∠CAE =34可设CM =3k ,AM =4k ,∴AC =5k .而AC =10,∴k =2.∴AM =8.在△ACE 中由AC =CE ,CM ⊥AE 得AE =2AM =8.{答案}解:(1)直线AF 与OO 相切于点A .理由是:∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠B +∠BAC =90°,AC ⊥BC .又∵CD =CF ,∴.AD =AF .又∵AC ⊥BC ,∴∠DAC =∠FAC .∵AC =EC ,∴∠DAC =∠E .又∵∠E =∠B ,∴∠FAC =∠B .∴∠FAC +∠BAC =90°,即∠BAF =90°.∴OA ⊥AF .∴直线AF 与OO 相切于点A .(2)如图,过点C 作CM ⊥AE 于点M .又∵AC =CE ,∴AE =2AM .在Rt △AMC 中,tan ∠CAE =CM AM .∵tan ∠CAE =34,∴CM AM =34.设CM =3k ,AM =4k (k >0).在Rt △AMC 中,由勾股定理得AM 2+CM 2=AC 2.∴(3k )2+(4k )2=102.解得k =2.∴AM =4k =4×2=8.∴AE =2AM =2×8=16.1 八年级学生最喜欢的 运动项目人数统计图排球 其它踢毯篮球跳绳10%30%24%16%20%九年级学生最喜欢的 运动项目人数统计图{分值}8{章节:[1-28-3]锐角三角函数}{考点:切线的判定}{考点:勾股定理}{考点:三线合一}{考点:正切}{类别:常考题}{难度:3-中等难度}{题目}24.(2019年内蒙古通辽T24)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本.书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1 960元,求a的值.{解析}本题考查了用二次函数解决实际问题.(1)y关于x的函数关系式根据“当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本”求解,自变量的取值范围根据“书店要求每本书的利润不低于10元且不高于18元”求解;(2)先列出W关于a的函数关系式W=(x-20-a)(-10x+500),再利用二次函数的性质求解.{答案}解:(1)y=-10x+500(30≤x≤38)【解析】∵当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,∴销售量y(本)与销售单价x(元)之间的函数关系式为:y=250-25101x-⨯,∴y=-10x+500.∵书店要求每本书的利润不低于10元且不高于18元,∴10≤x-20≤18.∴30≤x≤38,即为所求自变量的取值范围.(2)设每天扣除捐赠后可获得的利润为W元,则W=(x-20-a)(-10x+500)=-10x2+(10a+700)x-500a-1 000.∵对称轴为x=12a+35,且0<a≤6,∴:30<12a+35≤35.∴当x=12a+35时,W有最大值.∴1 960=(12a+35-20-a)[-10(12a+35)+500].∴a1=2,a2=58(不符合题意,舍去).答:a的值为2.{分值}9{章节:[1-22-3]实际问题与二次函数}{考点:商品利润问题}{类别:常考题}{难度:3-中等难度}{题目}25.(2019年内蒙古通辽T25)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP ≌△DCQ ; (2)如图,延长BP 交直线DQ 于点E .①如图2,求证:BE ⊥DQ ;②如图3,若△BCP 为等边三角形,判断△DEP 的形状,并说明理由.{解析}本题考查了正方形的性质,图形的旋转,全等三角形的判定与性质以及等腰三角形的判定.(1)由正方形ABCD 得BC =CD ,∠BCD =90°.由旋转得CP =CQ ,∠PCQ =90°.∴∠BCP =∠DCQ .利用“SAS ”可证明△BCP ≌△DCQ ;(2)①设BE 交CD 于点M .在△DEM 与△BCM 中利用三角形内角和定理及(1)中△BCP ≌△DCQ 证明∠DEM =∠BCM 即可.②△DEP 是等腰直角三角形.由正方形ABCD 、等边三角形BPC 、等边三角形CDQ 及等腰三角形CDP 分别计算出∠EPD 与∠EDP 的度数.{答案}.解:(1)证明:∵线段CP 绕点C 顺时针旋转90°至CQ ,∴∠PCQ =90°,CP =CQ .∵四边形ABCD 为正方形,∴.BC =CD ,∠BCD =90°.∴∠BCP =∠DCQ .∴△BCP ≌△DCQ . (2)①证明:由(1)知,△BCP ≌△DCQ .∴∠CDQ =∠CBP .设BE 交CD 于点M .∵∠BMC =∠EMD ,∴∠DEM =∠BCM =90°.∴BE ⊥DQ .②△DEP 为等腰直角三角形,理由是:∵线段CP 绕点C 顺时针旋转90°至CQ ,又∵△BCP 为等边三角形,∴CP =CQ ,∠BCP =∠DCO =60°.∴CP =CD ,∠BPC =∠QDC =∠BCP =60°.∴∠PCD =∠BCD -∠BCP =90°-60°=30°.∴∠CPD =∠CDP =75°.∴∠EPD =∠EDP =180°-60°-75°=45°.∴EP =ED ,∠PED =90°.∴△PED 为等腰直角三角形. {分值}9{章节:[1-23-1]图形的旋转} {考点:全等三角形的判定SAS } {考点:等角对等边} {考点:旋转的性质}{考点:等边三角形的判定与性质} {类别:常考题}{难度:3-中等难度}{题目}26.(2019年内蒙古通辽T 26)已知,如图,抛物线y =ax 2+bx +c (a ≠0)的顶点为M (1,9),经过抛物线上的两点A (-3,-7)和B (3,m )的直线交抛物线的对称轴于点C . (1)求抛物线的解析式和直线AB 的解析式;(2)在抛物线上A 、M 两点之间的部分(不包含A 、M 两点),是否存在点D ,使得S △DAC =2S △DCM ?若存在,求出点D 的坐标;若不存在,请说明理由;(3)若点P 在抛物线上,点Q 在x 轴上,当以点A ,M ,P ,Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.图1 CQDABP 图2 E CQDA BP 图3 CQDAB PE{解析}想.(1)利用待定系数法求解;(2)设D(t,-t2+2t+8),过点D作DE⊥x轴将△DCE的面积转化△DEA、△DEC面积之和求解,进而由S△ACD=2S△DCM列方程求出t的值,得到点D的坐标;(3)按平行四边形的对角线分三种情形求解.求解时利用两条对角线的中点坐标相同列方程求解.{答案}解:(1)∵抛物线y=ax2+bx+c(a≠0)的顶点为(1,9),又经过点A(-3,-7),∴-7=a(-3-1)2+9.∴a=-1.∴抛物线的解析式为y=-(x-1)2+9.∵抛物线经过点B(3,m),∴m=-(3-1)2+9=5.∴B(3,5).设直线AB的解析式为y=kx+b(k≠0).把A(-3,-7)、B(3,5)代入,得7353k bk b-=-+⎧⎨=+⎩,.解得k=2,b=-1.∴直线AB的解析式y=2x-1.(2)存在.如图,过点D作DE⊥x轴交直线AB于点E,连接CD、DM、AD.设D(t,-t2+2t+8),则E(t,2t-1).∵点C是直线y=2x-1与抛物线对称轴的交点,∴C(1,1).∵S△ACD=2S△DCM,∴12(-t2+2t+8-2t+1)×(1+3).∴x1=-1,x2=5.∵-3<x<1,∴x=-1.∴D(-1,5).(3)∵y=-(x-1)2+9=-x2+2x+8,点P在抛物线上,∴可设P(n,-n2+2n+8).①当AM为对角线时,∵A(-3,-7),M(1,9),∴AM的中点坐标为(-1,1).∵四边形APMQ是平行四边形,∴PQ的中点坐标为(-1,1).又∵P(n,-n2+2n+8),∴Q(-2-n,n2-2n-6).∵点Q在x轴上,∴n2-2n-6=0.解得n1=1+,n2=1n2-2n-6=0,∴n2-2n=6.∴-n2+2n+8=-6+8=2.∴P ((1,2)或(1,2).②当MP为对角线时,同理可求P(6,-16)或(-4,-16).③当AP为对角线时,同理可求Q(n-4,-n2+2n-8).∵点Q在x轴上,∴-n2+2n-8=0.∵b2-4ac=22-4×(-1)×(-8)=4-32<0,∴此方程没有实数根.综合知,点P坐标为(12)或(12)或(6,-16)或(-4,-16).{分值}12{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:代数综合}{考点:二次函数与平行四边形综合}{类别:常考题}{难度:5-高难度}。
2021年内蒙古通辽市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1. -5的相反数是〔〕A. 5B. - 5 C — D.一2,以下四个几何体的俯视图中与众不同的是〔3 .空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是〔〕A.折线图B.条形图C.直方图D.扇形图4 .以下图形中,是轴对称图形,不是中央对称图形的是〔〕5 .假设数据10, 9, a, 12, 9的平均数是10,那么这组数据的方差是〔〕A. 1 B, 1.2 C, 0.9 D, 1.46,近似数5.0X 102精确到〔〕A.十分位B.个位C.十位D.百位7.志远要在报纸上刊登广告,一块10cmx 5cm的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费〔〕A. 540 元B. 1080 元C. 1620 元D. 1800 元8,假设关于x的一元二次方程〔k+1〕 x2+2 〔k+1〕 x+k-2=0有实数根,那么k的取值范围在数轴上表示正确的选项是〔〕A. —:t d ■B. 0 ------ 业C . -1 d 、D. 0~*9 .以下命题中,假命题有〔 〕①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与直线平行;④垂直于同一直线的两条直线平行;⑤假设.O 的弦AB, CD 交于点P,贝U PA?PB=PC?PDA. 4个B. 3个C. 2个D. 1个10 .如图,点P 在直线AB 上方,且/ APB=9〔J, PCX AB 于C,假设线段AB=6, AC=x,&PAB =y,那么y 与x 的函数关系图象大致是〔 〕、填空题〔本大题共7小题,每题3分,共21分〕r 2x+l>-l11 .不等式组12 .如图,CD 平分/ ECB 且 CD// AB,假设/ A=36°,那么/ B=13 .毛泽东在?沁园春?雪?中提到五位历史名人:秦始皇、汉武帝、唐太宗、 宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上, 小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是14 .假设关于x 的二次三项式x 2+ax+:是完全平方式,那么a 的值是.15 .在?ABCD 中,AE 平分/ BAD 交边BC 于E, DF 平分/ ADC 交边BC 于F,假设的整数解是 A c BAD=11, EF=5, WJ AB=.16 .如图,将八个边长为1的小正方形摆放在平面直角坐标系中, 假设过原点的直 线l 将图形分成面积相等的两局部,那么将直线 l 向右平移3个单位后所得直线l '17 .如图,直线y=-乂g x -6与x, y 轴分别交于点A, B,与反比例函数y="的 J A 图象在第二象限交于点C,过点A 作x 轴的垂线交该反比例函数图象于点 D.假设三、解做题〔本大题共9小题,共69分〕18 .计算:〔l 2021〕 0+6sin60 - | 5 -^| - 〔^〕19 .先化简,再求化〔1-看〕+咛普,其中x 从0, 1, 2, 3四个数中适中选取.20 . 一汽车从甲地出发开往相距 240km 的乙地,出发后第一小时内按原方案的 速度匀速行驶,1小时后比原来的速度加快;,比原方案提前24min 到达乙地, 求汽车出发后第1小时内的行驶速度.21 .小兰和小颖用下面两个可以自由转动的转盘做游戏, 每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,假设两次指针所指数字之和小于4,那么小兰 胜,否那么小颖胜〔指针指在分界线时重转〕,这个游戏对双方公平吗?请用树状 图或列表法说明理由.的函数关系式为7AD=AG 那么点D 的坐标为22 .如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角/ EOA=30,在OB的位置时俯角/ FOB=60,假设OC,EF,点A比点B高7cm.求:(1)单摆的长度(Vs-1.7);(2)从点A摆动到点B经过的路径长(兀=3.1).Vco s , >■ J'a, \ t l> c23 .某校举办了一次成语知识竞赛,总分值10分,学生得分均为整数,成绩到达6分及6分以上为合格,到达9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如下图.(1)求出以下成绩统计分析表中a, b的值:组别平均分中位数方差合格率优秀率甲组 6.8 a 3.76 90% 30%乙组 b 7.5 1.96 80% 20%(2)小英同学说:这次竞赛我得了7分,在我们小组中排名属中游略偏上!〞观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法, 认为他们组的成绩要好于甲组. 请你写出两条支持乙组同学观点的理由.24 .如图,AB 为..的直径,D 为菽的中点,连接OD 交弦AC 于点F,过点D 作DE// AC,交BA 的延长线于点E.(1)求证:DE 是..的切线;(2)连接CD,假设OA=AE=4求四边形ACDE 的面积.25 .邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第 一次操作;在余下的四边形纸片中再剪去一个菱形, 又余下一个四边形,称为第 二次操作;・•依此类推,假设第n 次操作余下的四边形是菱形,那么称原平行四边形 为n 阶准菱形,如图1, ?ABCD 中,假设AB=1, BC=2 M ?ABCD 为1阶准菱形.(1)猜测与计算:邻边长分别为3和5的平行四边形是 阶准菱形;?ABCD 的邻边长分别为a, b (a>b),满足a=8b+r, b=5r,请写出?ABCD 是 阶准菱形.(2)操作与推理:小明为了剪去一个菱形,进行了如下操作:如图 2,把?ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F 处,得到四边形ABFE 请证实四边形ABFExOy 中,抛物线 y=a*+bx+2过点 A (-2, 0), B (2, 2),6 b° 1 2 3 4 5 6 7 8 910>26.在平面直角坐标系与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)假设点D在抛物线y=ax2+bx+2的对称轴上,求^ ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使4ACP是直角三角形? 假设存在直接写出点P的坐标,假设不存在,请说明理由.力5 -3 -2 -1 --5 -4 9 -2-1 质2 3 4 5〞*1-2--52021年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题〔本大题共10小题,每题3分,共30分〕1. -5的相反数是〔〕A. 5B. - 5C. —D.一【考点】14:相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数. 【解答】解:-5的相反数是5,应选:A.2,以下四个几何体的俯视图中与众不同的是〔【考点】U2:简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:A、的俯视图是第一列两个小正方形,第二列一个小正方形,B、的俯视图是第一列是两个小正方形,第二列是两个小正方形,C、的俯视图是第一列两个小正方形,第二列一个小正方形,D、的俯视图是第一列两个小正方形,第二列一个小正方形,应选:B.3.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是〔〕A.折线图B.条形图C.直方图D.扇形图【考点】VE:统计图的选择.【分析】扇形统计图表示的是局部在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个工程的具体数目;频数分布直方图,清楚显示在各个不同区间内取值, 各组频数分布情况,易于显示各组之间频数的差异.【解答】解:由分析可知,要求直观反映空气的组成情况,即各局部在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.应选D.4.以下图形中,是轴对称图形,不是中央对称图形的是(【考点】R5:中央对称图形;P3:轴对称图形.【分析】根据中央对称图形和轴对称图形的定义逐个判断即可.【解答】解:A、是中央对称图形,故本选项不符合题意;B、是中央对称图形,故本选项不符合题意;C是中央对称图形,故本选项不符合题意;D、不是中央对称图形,故本选项符合题意;应选D.5.假设数据10, 9, a, 12, 9的平均数是10,那么这组数据的方差是(A. 1 B, 1.2 C, 0.9 D, 1.4【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【解答】解:二.数据10, 9, a, 12, 9的平均数是10,・•. (10+9+a+12+9) +5=10,解得:a=10,「•这组数据的方差是看[(10- 10) 2+ (9-10) 2+ (10- 10) 2+ (12-10) 2+(9-10) 2]=1.2.应选B.6 .近似数5.0X 102精确到〔〕A.十分位B.个位C.十位D.百位【考点】1H:近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数5.0X102精确到十位.应选C.7 .志远要在报纸上刊登广告,一块10cmx 5cm的长方形版面要付广告费180 元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费〔〕A. 540 元B, 1080 元C, 1620 元D. 1800 元【考点】SA相似三角形的应用.【分析】根据题意可知版面的边长都扩大为原来的3倍后的面积,然后根据每平方厘米的广告费即可求出答案.【解答】解:二•一块10cm x 5cm的长方形版面要付广告费180元,1 0「•每平方厘米的广告费为:180+ 50亭元,1 Q「•把该版面的边长都扩大为原来的3倍后的广告费为:30X 15X亍=1620元应选〔C〕8,假设关于x的一元二次方程〔k+1〕 x2+2 〔k+1〕 x+k-2=0有实数根,那么k的取值范围在数轴上表示正确的选项是〔〕A ■予D ? C V * > A. J 0 B. 0 C . / 0D. ~~0 *【考点】AA:根的判别式;C4:在数轴上表示不等式的解集.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围,将其表示在数轴上即可得出结论.【解答】解:二.关于x的一元二次方程(k+1) x2+2 (k+1) x+k-2=0有实数根,] 2-4 (k+1) (k-2)>0解得:k>-1.应选A.9.以下命题中,假命题有( )①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与直线平行;④垂直于同一直线的两条直线平行;⑤假设.O 的弦AB, CD交于点P, WJ PA?PB=PC?PDA. 4个B. 3个C. 2个D. 1个【考点】O1:命题与定理.【分析】根据线段的性质公理判断①;根据角平分线的性质判断②;根据垂线的性质、平行公理的推论判断③④;连接AC、DB,根据同弧所对的圆周角相等,证出△ ACW△DBP,然后根据相似三角形的性质得出结论.依此判断⑤.【解答】解:①两点之间线段最短,说法正确,不是假命题;②到角的两边距离相等的点在角的平分线上,说法正确,不是假命题;③过直线外一点有且只有一条直线与直线平行, 原来的说法错误,是假命题;④在同一平面内,垂直于同一直线的两条直线平行,原来的说法错误,是假命题;⑤如图,连接AC BD..•/A=/ D, /C=/ B,・ .△ACP^ ADBP,PA PC —=— . . PD PE,PA?PB=PC?P P故假设.O的弦AB, CD交于点P,那么PA?PB=PC?PDJ说法正确,不是假命题.应选:C.10 .如图,点P在直线AB上方,且/ APB=9(J, PCX AB于C,假设线段AB=6, AC=x, &PAB=y,那么y与x的函数关系图象大致是( )【考点】E7:动点问题的函数图象.【分析】根据条件推出△AP8△ PBC,根据相似三角形的性质得到PC必(6r),根据三角形的面积公式即可得到结论.【解答】解:.. PC!AB于C, /APB=90,・•/ACP玄BCP=90,・•• / APG/ BPCN APC+/ PAC=90,・•. / PAC= BPC・•.△AP8 APBCPC EC ..-—AC FC'・. AB=6, AC=x・•. BC=6- x,・・ PG=x (6 - x),・.PC= :,…,・. y=-AB?PC=3 ' ,二3;;-|二,।,应选D.二、填空题〔本大题共7小题,每题3分,共21分〕11 .不等式组2kl、的整数解是0, 1, 2 .【考点】CC 一元一次不等式组的整数解.【分析】根据不等式组的解法得出不等式组的解集,再求得整数解即可.【解答】解:解不等式一得,x> - 1,解不等式二得,x< 2,不等式组的解集为-1<x0 2,不等式组的整数解为0, 1, 2,故答案为0, 1, 2.12 .如图,CD平分/ ECB 且CD// AB,假设/ A=36°,贝叱B= 36【考点】JA平行线的性质.【分析】先根据平行线的性质,得出/ A=/ ECD ZB=Z BCD,再根据角平分线的定义,即可得到/ ECD之BCD 进而彳4出/ B=/A.【解答】解:= CD// AB,. ./A=/ ECD /B=/ BCD又.. CD平分/ ECB・••/ ECDN BCD.•・ / B=/ A=36°,故答案为:36°.13 .毛泽东在?沁园春?雪?中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗,小红将这五位名人简介分别写在五张完全相同的知识卡片上,小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是春.□【考点】X4:概率公式.【分析】先找出唐朝以后出生的人物,然后依据概率公式计算即可.【解答】解:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.「•在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=--5故答案为:一.14 .假设关于x的二次三项式x2+ax+■是完全平方式,那么a的俏是± 1 .【考点】4E:完全平方式.【分析】这里首末两项是x和1■这两个数的平方,那么中间一项为加上或减去x 和二积的2倍,故-a=± 1,求解即可【解答】解:中间一项为加上或减去x和点积的2倍,故a=± 1,解得a=±1,故答案为:± 1.15 .在?ABCD中,AE平分/ BAD交边BC于E, DF平分/ ADC交边BC于F,假设AD=11, EF=5,贝4 AB= 8 或3 .【考点】L5:平行四边形的性质.【分析】根据平行线的性质得到/ ADF=Z DFC由DF平分/ADC,得至上ADF= /CDF 等量代换得到/ DFC4FDC根据等腰三角形的判定得到CF=CD同理BE=AB根据平行四边形的性质得到AB=CD AD=BC得出AB=BE=CF=Cp分两种情况,即可得到结论.【解答】解:①如图1,在?ABCD中,V BC=AD=11 BC// AD, CD=AB CD// AB, ・ ./DAE=Z AEB, /ADF=Z DFC「AE平分/ BAD交BC于点E, DF平分/ ADC交BC于点F,丁• / BAE玄DAE, / ADF之CDF••/BAE玄AEB, /CFD之CDFAB=BE CF=CD• . AB=BE=CF=CD ; EF=5BC=BSCF- EF=2AB- EF=2AB- 5=11,AB=8;②在?ABCD中,v BC=AD=11 BC// AD, CD=AB CD// AB,• ./DAE=Z AEB, /ADF=Z DFC「AE平分/ BAD交BC于点E, DF平分/ ADC交BC于点F, 丁• / BAE玄DAE, / ADF=Z CDF••/BAE玄AEB, /CFD之CDFAB=BE CF=CD• . AB=BE=CF=CD••・ EF=5BC=B+CF=2AB-EF=2AB-5=11,AB=3;综上所述:AB的长为8或3.D16.如图,将八个边长为1的小正方形摆放在平面直角坐标系中, 假设过原点的直线l将图形分成面积相等的两局部,那么将直线l向右平移3个单位后所得直线l '的函数关系式为y=--x:- -【分析】设直线l和八个正方形的最上面交点为A,过A作AB,OB于B, B过A 作AC± OC于C,易知OB=3,利用三角形的面积公式和条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB,OB于B, B 过A 作AC,OC于C,;正方形的边长为1,OB=3•••经过原点的一条直线l将这八个正方形分成面积相等的两局部, 两边分别是4,一•三角形ABO面积是5,••. -OB?AB=5,AB4••.OC丹,由此可知直线l经过〔警,3〕,设直线方程为y=kx,那么3Lk,k=i,91••・直线l解析式为y『x,,, 一 . 八、.,、一. . .................. I 9 271・•・将直线l向右平移3个单位后所得直线l的函数关系式为y=jx-yy;"x-陋与x, y 轴分别交于点A, B,与反比例函数y4的图象在第二象限交于点C,过点A 作x 轴的垂线交该反比例函数图象于点D.假设 AD=AG 那么点D 的坐标为 〔—3 4、巧—2〕【考点】G8:反比例函数与一次函数的交点问题.【分析】过C 作CH x 轴于E,求得A 〔-3, 0〕, B 〔0,-冷〕,解直角三角形 得至 ij/ OAB=3 0,求得 / CAE=30,设 D 〔― 3, 士〕,得至 U AD± , 是得到C 〔-阴+哈-昌,列方程即可得到结论.【解答】解:过C 作CE!x 轴于E,二.直线y=-亨一行与x, y 轴分别交于点A, B,• .A (-3, 0), B (0, -V3), , OB Vsl• .tan/OAB 小亭,丁. / OAB=30 ,丁. / CAE=30,设 D (-3,2),V AD±x 轴, k• .AD —,AD=AC17.如图,直线y=- I TAC=7,于 -J・•・C在反比例函数y管勺图象上,(-6+空? (-1) =k, 6 6k=6- 12 叵• .D (-3, 4/3-2),故答案为:(3, 4禽-2).三、解做题(本大题共9小题,共69分)18 .计算:(l 2021) 0+6sin60 - | 5 -\/^\ -(—)2.【考点】2C:实数的运算;6E:零指数幕;6F:负整数指数幕;T5:特殊角的三角函数值.【分析】根据零指数幕的定义、特殊角的三角函数值、绝对值的性质、负指数幕的性质化简即可解决问题.【解答】解:原式=1+6xW1 —M+5 —4=2._ 窄J一耳R19 .先化简,再求值:(1-TLT)+岂一^之,其中x从0, 1, 2, 3四个数中适中选取.【考点】6D:分式的化简求值.I 分析】首先化简〔1 一段「兰衿,然后根据X 的取值范围,从0, 1 2, 3四个数中适中选取,求出算式的值是多少即可.xw 1, 2, 3,当x=0时,20 . 一汽车从甲地出发开往相距 240km 的乙地,出发后第一小时内按原方案的 速度匀速行驶,1小时后比原来的速度加快 作,比原方案提前24min 到达乙地, 求汽车出发后第1小时内的行驶速度.【考点】B7:分式方程的应用.【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.【解答】解:设汽车出发后第1小时内的行驶速度是x 千米/小时,根据题意可解得:x=120,经检验得:x=120是原方程的根, 答:汽车出发后第1小时内的行驶速度是120千米/小时.21 .小兰和小颖用下面两个可以自由转动的转盘做游戏, 每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,假设两次指针所指数字之和小于4,那么小兰 胜,否那么小颖胜〔指针指在分界线时重转〕,这个游戏对双方公平吗?请用树状 图或列表法说明理由. 24024+ ।x- 1金0, x- 2w0, x- 3金0,【分析】首先依据题先用树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比拟是否相等即可.【解答】解:这个游戏对双方是公平的.如图,一共有6种情况,和大于4的有3种,• ・ P 〔和大于4〕 =-4,・•・这个游戏对双方是公平的.22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角/ EOA=30,在OB的位置时俯角/ FOB=60,假设OC EF,点A比点B高7cm.求:〔1〕单摆的长度〔6=1.7〕;〔2〕从点A摆动到点B经过的路径长〔3.1〕.Vco s「iJ 'l>c【考点】TA解直角三角形的应用-仰角俯角问题;O4:轨迹.【分析】〔1〕作API OG BQ±OC,由题意得/ AOP=60、/ BOQ=30,设OA=OB=x 根据三角函数得OP=OAco支AOP春x、OQ=OBco更BOQ=^-x,由PQ=OQ- OPN 2可得关于x的方程,解之可得;(2)由(1)知/AOB=90、OA=OB=/+7V3,利用弧长公式求解可得.【解答】解:(1)如图,过点A作APLOC于点P,过点B作BQ,OC于点Q,EOA=30、/ FOB=60,且OCX EF,・ ./AOP=60、/BOQ=30,设OA=OB=x那么在Rt^ AOP中,OP=OAcoS AOP吉x, 在RtA BOQ 中,OQ=OBcoS BOQ亨x, 由PQ=OQ- OP 可得号x- yx=7, 解得:x=7+7/j=18.9 (cm),答:单摆的长度约为18.9cm;(2)由(1)知,/ AOP=60、/BOQ=30,且OA=OB=7^7^, ・ ./AOB=90,那么从点A摆动到点B经过的路径长为-一二 f弋29.295,1 sU答:从点A摆动到点B经过的路径长为29.295cm.23 .某校举办了一次成语知识竞赛,总分值10分,学生得分均为整数,成绩到达6分及6分以上为合格,到达9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如下图.(1)求出以下成绩统计分析表中a, b的值:组别平均分中位数方差合格率优秀率甲组6.8 a 3.76 90% 30% 乙组 b7.5 1.96 80% 20%(2)小英同学说: 这次竞赛我得了 7分,在我们小组中排名属中游略偏上! 〞 观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于 乙组.但乙组同学不同意甲组同学的说法, 认为他们组的成绩要好于甲组. 请你 写出两条支持乙组同学观点的理由.【考点】W7:方差;VD:折线统计图;W1:算术平均数;W4:中位数.【分析】(1)由折线图中数据,根据中位数和甲权平均数的定义求解可得;(2)根据中位数的意义求解可得;(3)可从平均数和方差两方面阐述即可.【解答】解:(1)由折线统计图可知,甲组成绩从小到大排列为: 3、6、6、6、 6、6、7、9、9、10,;其中位数a=6,6,乙组的中位数为7.5,而小英的成绩位于全班中上游, 「•小英属于甲组学生;(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.24 .如图,AB 为..的直径,D 为求的中点,连接OD 交弦AC 于点F,过点D 作DEE// AC,交BA 的延长线于点E.(1)求证:DE 是..的切线;654m 21口1 2 3 4 5 6 7 8 910 成赛分乙组学生成绩的平均分 5X 2+6X 1+7 X 2^8 X 3+9X2 b= 10=7.2; (2)二•甲组的中位数为 -甲组 一乙组(2)连接CD,假设OA=AE=4求四边形ACDE的面积.【考点】ME:切线的判定与性质.【分析】(1)欲证实DE是..的切线,只要证实AC± OD, ED± OD即可.(2)由△AF3 ACFD (SAS,推出S AAFC F S X CFD,推出S 四边形ACDF S XODE,求出△ODE的面积即可.【解答】(1)证实:: D为面的中点,OD± AC,v AC// DE,OD± DE,DE是.O的切线;(2)解:连接DC,••.D为最的中点,• .OD,AC, AF=CFAC// DE,且OA=AE・•.F为OD的中点,即OF=FD在AAFO和ACFD中,[AF=CFZAF0=ZCFD. .△AF3ACFD (SAS ,S\ AFC F S X CFD,• • S 四边形ACD[F S\ODE在ODE中,0D F0A F AE=4OE=8DE =CE 2-0D^=4V1,25.邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第 一次操作;在余下的四边形纸片中再剪去一个菱形, 又余下一个四边形,称为第 二次操作;・•依此类推,假设第n 次操作余下的四边形是菱形,那么称原平行四边形 为n 阶准菱形,如图1, ?ABCD 中,假设AB=1, BC=2 M ?ABCD 为1阶准菱形.(1)猜测与计算:邻边长分别为3和5的平行四边形是 3阶准菱形;?ABCD 的邻边长分别 为a, b (a>b),满足a=8b+r, b=5r,请写出?ABCD 是 12 阶准菱形.(2)操作与推理:小明为了剪去一个菱形,进行了如下操作:如图 2,把?ABCD 沿BE 折叠(点E 在AD 上),使点A 落在BC 边上的点F 处,得到四边形ABFE 请证实四边形ABFE 是菱形.【考点】LO:四边形综合题.【分析】(1)利用平行四边形准菱形的意义即可得出结论;(2)先判断出/ AEB=Z ABE,进而/U 断出AE=BF 即可得出结论.【解答】解:(1)如图1,利用邻边长分别为3和5的平行四边形进行3次操作,所剩四边形是边长为1 的菱形, X 4X 4J3=8/3. S 四边形 ACDE =S\ODE=7^-X OD XBC S故邻边长分别为3和5的平行四边形是3阶准菱形:如图2,; b=5r,a=8b+r=40r+r=8x 5r+r,利用邻边长分别为41r和5r的平行四边形进行8+4=12次操作,所剩四边形是边长为1的菱形,故邻边长分别为41r和5r的平行四边形是12阶准菱形:故答案为:3, 12(2)由折叠知:/ ABE=Z FBE AB=BF•••四边形ABCD^平行四边形,AE// BF,• ./AEB=Z FBE•・./AEB=Z ABE• . AE=AB• . AE=BF••・四边形ABFE是平行四边形,一•四边形ABFE是菱形26.在平面直角坐标系xOy中,抛物线y=a*+bx+2过点A (-2, 0), B (2, 2), 与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)假设点D在抛物线y=ax2+bx+2的对称轴上,求^ ACD的周长的最小值;(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使4ACP是直角三角形?假设存在直接写出点P的坐标,假设不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的函数表达式;(2)由轴对称的最短路径得:由于B与C关于对称轴对称,所以连接AB交对称轴于点D,此时4ACD的周长最小,利用勾股定理求其三边相加即可;(3)存在,当A和C分别为直角顶点时,画出直角三角形,设P (1, y),根据三角形相似列比例式可得P的坐标.【解答】解:(1)把点A (-2, 0), B (2, 2)代入抛物线y=aW+bx+2中,中3笆.,^a+2h42=2,抛物线函数表达式为:y=- yx2+|-x+2 ;(2) y=-宗+|"x+2=-9(x- 1)吟;「•对称轴是:直线x=1, 如图1,过B作BEE±x轴于E,. C (0, 2), B (2, 2),对称轴是:x=1,・•.C与B关于x=1对称,CD=BD连接AB交对称轴于点D,此时4ACD的周长最小,v BE=2 AE=2^2=4, OC=Z OA=2,AB=2 2 + 4 2=2、后,AC=,"2 + 2 2=2点,••. △ ACD的周长=AC+CD+AD=AG F BD+AD=AG-AB=2/2+2/5;答:△ ACD的周长的最小值是2j回+2行,(3)存在,分两种情况:①当/ACP=90时,4ACP是直角三角形,如图2,过P作PD±y轴于D,设P (1, y),那么△CGP/3 AAOCCG=1• .OG=2- 1=1,••P (1, 1);②当/CAP=90时,z\ACP是直角三角形,如图3,设P (1, y),那么△PE* AAOGAE PE —=—,3 PE二?,• . PE=3•••P (1, -3);综上所述,△ ACP是直角三角形时,点P的坐标为(1, 1)或(1, -3).2021年7月12日。
内蒙古通辽市2019年中考数学试题含答案解析(word版)2019年内蒙古通辽市中考数学试卷一、选择题(本题包括10个小题,每小题3分,共30分,每小题只有一个正确选项)1.(3分)(2019•通辽)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查2.(3分)(2019•通辽)√2的算术平方根是()A.-2 B.±2 C.无理数 D.23.(3分)(2019•通辽)实数tan45°,π,-√3,sin60°,0.xxxxxxxx13…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.34.(3分)(2019•通辽)已知反比例函数y=k/x的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,-2)B.(-2,-3)C.(1,-6)D.(-6,1)5.(3分)(2019•通辽)下列说法中,正确的是()A.-x²的系数是负数B.πa²的系数是πC.3ab²的系数是3aD.xy²的系数是y²6.(3分)(2019•通辽)如图,由几个相同的小正方体搭成的一个几何体,它的俯视图为()A.B.C.D.7.(3分)(2019•通辽)一组数据2,1,x,3的平均数是2,则这组数据的方差是()A.2 B.4 C.1 D.38.(3分)(2019•通辽)如图,已知AB∥CD,若∠A=25°,∠E=40°,则∠C等于()A.40° B.65° C.115° D.25°9.(3分)(2019•通辽)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m²-12=0的解;③m满足不等式组m>0,m≠3;④m是12的算术平方根.A.①② B.①③ C.③ D.①②④10.(3分)(2019•通辽)菱形ABCD的一条对角线长为6,边AB的长为方程y²-7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10二、填空题(本题包括7小题,每小题3分,共21分)11.(3分)(2019•通辽)在数1,-1,| -2 |中,最小的数是-2.12.(3分)(2019•通辽)因式分解:x³y-xy=x²(x-1)y。
内蒙古通辽市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–23.下列几何体中三视图完全相同的是()A.B.C.D.4.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是5.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.B.C.D.6.如图,已知直线PQ⊥MN 于点O,点A,B 分别在MN,PQ 上,OA=1,OB=2,在直线MN 或直线PQ 上找一点C,使△ABC是等腰三角形,则这样的 C 点有()A.3 个B.4 个C.7 个D.8 个7.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣18.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为()A.4 B.5 C.6 D.79.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.510.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×10 8元B.3.122×10 3元C.3122×10 11元D.3.122×10 11元11.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.312.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.14.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.15.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 16.不解方程,判断方程2x 2+3x ﹣2=0的根的情况是_____. 17.使21x -有意义的x 的取值范围是__________.18.关于x 的一元二次方程230x x c -+=有两个不相等的实数根,请你写出一个满足条件的c 值__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y =ax ﹣1的图象与反比例函数ky x=的图象交于A ,B 两点,与x 轴交于点C ,与y 轴交于点D ,已知OA =10,tan ∠AOC =13(1)求a ,k 的值及点B 的坐标; (2)观察图象,请直接写出不等式ax ﹣1≥k的解集;20.(6分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.21.(6分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.22.(8分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN (保留作图痕迹,不写作法)为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.24.(10分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.25.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.26.(12分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣3|.27.(12分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【解析】【分析】把x=1代入x2+mx+n=0,可得m+n=-1,然后根据完全平方公式把m2+2mn+n2变形后代入计算即可. 【详解】把x=1代入x2+mx+n=0,代入1+m+n=0,∴m+n=-1,∴m2+2mn+n2=(m+n)2=1.故选C.【点睛】本题考查了方程的根和整体代入法求代数式的值,能使方程两边相等的未知数的值叫做方程的根.3.A【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.4.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数5.B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.6.D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选D.点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.7.D【分析】根据有理数加法的运算方法,求出算式2577⎛⎫-+-⎪⎝⎭的正确结果是多少即可.【详解】原式251.77⎛⎫=-+=-⎪⎝⎭故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同1相加,仍得这个数.8.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′=22'BC BD+=2234+=1.故选B.9.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D 、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D . 【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量. 10.D 【解析】 【分析】可以用排除法求解. 【详解】第一,根据科学记数法的形式可以排除A 选项和C 选项,B 选项明显不对,所以选D. 【点睛】牢记科学记数法的规则是解决这一类题的关键. 11.B 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【点睛】此题考查由三视图判断几何体,解题关键在于识别图形 12.B 【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,, 根据勾股定理,2222435AB OA OB cm =+=+=, 设菱形的高为h , 1即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】 【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数. 【详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°, ∵AB ∥CD , ∴∠1+∠3=180°, ∴∠1=180°﹣70°=1°, 故答案为1.14.②③④ 【解析】分析:根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得到-2m=n 故②正确;把A (-2,m )、B (1,n )代入y=k 1x+b 得到y=-mx-m ,求得P (-1,0),Q (0,-m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确. 详解:由图象知,k 1<0,k 2<0, ∴k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得-2m=n , ∴m+1n=0,故②正确;112m k b n k b -+⎧⎨+⎩==, ∴1323n m k n m b -⎧⎪⎪⎨+⎪⎪⎩==, ∵-2m=n ,∴y=-mx-m ,∵已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点,∴P (-1,0),Q (0,-m ),∴OP=1,OQ=m ,∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ;故③正确;由图象知不等式k 1x+b >2k x 的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.15.1.【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】 解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1.【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a +=-,12c x x a=. 16.有两个不相等的实数根.【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.详解:∵a=2,b=3,c=−2,∴24916250b ac =-=+=>V ,∴一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.17.12x ≥ 【解析】【分析】根据二次根式的被开方数为非负数求解即可.【详解】由题意可得:210x -≥,解得:12x ≥. 所以答案为12x ≥. 【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.18.1【解析】【分析】先根据根的判别式求出c 的取值范围,然后在范围内随便取一个值即可.【详解】 224(3)41940b ac c c -=--⨯⨯=-> 解得94c < 所以可以取0c =故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)a=23,k=3, B(-23,-2) (2) ﹣32≤x<0或x≥3;(3) (0,94)或(0,0)【解析】【分析】1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=90o时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.【详解】解:(1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,OA=,tan∠AOC=,设AE=x,则OE=3x,根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,将A坐标代入反比例解析式得:1=,即k=3,联立一次函数与反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根据图象得:不等式x﹣1≥的解集为﹣32≤x<0或x≥3;(3)显然P与O重合时,△PDC∽△ODC;当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=94,此时P坐标为(0,94),综上,满足题意P的坐标为(0,94)或(0,0).【点睛】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.20.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y1<y2时,则3<x<1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.21.(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:15{128152 x yx y+=+=解得:8{7xy==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.22.见解析【解析】【分析】作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.点P即为所求.【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.23.(1)14;(2)116【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【详解】原式=2121x x x x x --+÷ =()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.25.(1)抛物线解析式为y=﹣12x 2﹣32x+2;(2)△ABC 为直角三角形,理由见解析;(3)当P 点坐标为(﹣32,54)时,△PBC 周长最小 【解析】【分析】(1)设交点式y=a (x+4)(x-1),展开得到-4a=2,然后求出a 即可得到抛物线解析式;(2)先利用两点间的距离公式计算出AC 2=42+22,BC 2=12+22,AB 2=25,然后利用勾股定理的逆定理可判断△ABC 为直角三角形;(3)抛物线的对称轴为直线x=-32,连接AC 交直线x=-32于P 点,如图,利用两点之间线段最短得到PB+PC 的值最小,则△PBC 周长最小,接着利用待定系数法求出直线AC 的解析式为y=12x+2,然后进行自变量为-32所对应的函数值即可得到P 点坐标. 【详解】(1)抛物线的解析式为y=a (x+4)(x ﹣1),即y=ax 2+3ax ﹣4a ,∴﹣4a=2,解得a=﹣,∴抛物线解析式为y=﹣12x 2﹣32x+2; (2)△ABC 为直角三角形.理由如下:当x=0时,y=﹣x 2﹣x+2=2,则C (0,2),∵A (﹣4,0),B (1,0),∴AC 2=42+22,BC 2=12+22,AB 2=52=25,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形,∠ACB=90°;(3)抛物线的对称轴为直线x=﹣,连接AC交直线x=﹣于P点,如图,∵PA=PB,∴PB+PC=PA+PC=AC,∴此时PB+PC的值最小,△PBC周长最小,设直线AC的解析式为y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,当x=﹣时,y=x+2=,则P(﹣,)∴当P点坐标为(﹣32,54)时,△PBC周长最小.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.26.3【解析】【分析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.【详解】原式=3231=331 3【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.27.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)。
2019年内蒙古通辽市中考数学试卷含答案解析一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)的平方根是()A.±4B.4C.±2D.+23.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.7.3×103C.7.3×107D.0.73×1084.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣16.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或807.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是℃.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.15.(3分)腰长为5,高为4的等腰三角形的底边长为.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM =AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣119.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.24.(9分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.25.(9分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.26.(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC =2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.2019年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.【考点】14:相反数.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)的平方根是()A.±4B.4C.±2D.+2【考点】21:平方根;22:算术平方根.【分析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.【解答】解:=4,±=±2,故选:C.【点评】本题考查了平方根,先求算术平方根,再求平方根.3.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.7.3×103C.7.3×107D.0.73×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:其中7300万用科学记数法表示为7.3×107.故选:C.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.【点评】此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣1【考点】FD:一次函数与一元一次不等式.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.6.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或80【考点】A8:解一元二次方程﹣因式分解法;L8:菱形的性质.【分析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.7.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π【考点】KK:等边三角形的性质;MA:三角形的外接圆与外心;MO:扇形面积的计算.【分析】连接OC,如图,利用等边三角形的性质得∠AOC=120°,S△AOB=S△AOC,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形AOC进行计算.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==π.故选:C.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】分别利用全等三角形的性质、平移的性质、随机事件等知识分别判断后即可确定正确的选项.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;真命题有2个,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的性质、平移的性质、随机事件等知识,难度不大.9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.【考点】FE:一次函数与二元一次方程(组);G2:反比例函数的图象.【分析】关于x、y的二元一次方程组的解满足x<y确定k的取值范围,然后根据一次函数和反比例函数的性质确定图象即可.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.【点评】本题考查了反比例函数的图象及一次函数与二元一次方程组的知识,解题的关键是根据题意确定k的取值范围.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是27℃.【考点】VD:折线统计图;W4:中位数.【分析】先找出这7天的最高气温,然后根据中位数的概念求解.【解答】解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.【考点】W5:众数;W7:方差.【分析】求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.【点评】本题考查了方差,熟练运用方差公式是解题的关键.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.【考点】KM:等边三角形的判定与性质;LB:矩形的性质.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为 3.75cm2.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=2.5,即阴影梯形的上底就是3﹣2.5=0.5(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+0.5)×3÷2=3.75(cm2).故答案为:3.75cm2.【点评】本题考查的是相似三角形的性质,相似三角形的对应边成比例.15.(3分)腰长为5,高为4的等腰三角形的底边长为6或2或4.【考点】KH:等腰三角形的性质;KQ:勾股定理.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.【点评】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.【考点】B2:分式方程的解;X4:概率公式.【分析】由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.【点评】本题考查了概率,熟练掌握解分式方程是解题的关键.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM =AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1.【考点】KM:等边三角形的判定与性质;L8:菱形的性质;PB:翻折变换(折叠问题).【分析】过点M作MH⊥CD,由勾股定理可求MC的长,由题意可得点A'在以M为圆心,AM为半径的圆上,则当点A'在线段MC上时,A'C长度有最小值.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1【点评】本题考查了翻折变换,菱形的性质,勾股定理,确定A'C长度有最小值时,点A'的位置是本题的关键.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.【分析】根据分式的除法和加法可以化简题目中的式子,然后由不等式组,可以求得x的取值范围,再从中选取一个使得原分式有意义的整数x代入化简后的式子即可解答本题.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)【考点】T8:解直角三角形的应用;U5:平行投影.【分析】设太阳光线GB交AC于点F,过F作FH⊥BD于H,解Rt△BFH,求出BH≈17,那么FC=HD=BD﹣BH≈13,由≈4.3,可得此刻楼BD的影子会遮挡到楼AC的第5层.【解答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×1.7=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.【点评】本题考查了解直角三角形的应用,平行投影,难度一般,解答本题的关键是利用直角三角形的性质和三角函数解答.21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.【考点】P3:轴对称图形;R5:中心对称图形;X6:列表法与树状图法;X7:游戏公平性.【分析】(1)直接根据概率公式计算即可.(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.【考点】V5:用样本估计总体;V A:统计表;VB:扇形统计图;VC:条形统计图.【分析】(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分数,又知九年级最喜欢排球的人数为10人,所以求出九年级最喜欢运动的人数,再由七、八、九年级的学生中,分别抽取相同数量的学生,得出本次调查共抽取的学生数;(2)先根据(1)得七年级最喜欢跳绳的人数,从而能求出八、九年级最喜欢跳绳的人数,然后求出最喜欢跳绳的学生数,补全统计表和统计图即可;(3)根据题意列式计算即可得到结论.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表。
2019年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.【解答】解:﹣的相反数是:.故选:D.2.【解答】解:=4,±=±2,故选:C.3.【解答】解:其中7300万用科学记数法表示为7.3×107.故选:C.4.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.5.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.6.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.7.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==π.故选:C.8.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;真命题有2个,故选:B.9.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.10.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.【解答】解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.12.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.13.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:.14.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=2.5,即阴影梯形的上底就是3﹣2.5=0.5(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+0.5)×3÷2=3.75(cm2).故答案为:3.75cm2.15.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.16.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.17.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.19.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.20.【解答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×1.7=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.21.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.22.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×÷4=126,∵126>124,∴不够用.故答案为:15.23.【解答】解:(1)直线AF是⊙O的切线,理由是:连接AC,∵AB为⊙O直径,∴∠ACB=90°,∴AC⊥BC,∵CF=CD,∴∠CAF=∠EAC,∵AC=CE,∴∠E=∠EAC,∵∠B=∠E,∴∠B=∠F AC,∵∠B+∠BAC=90°,∴∠F AC+∠BAC=90°,∴OA⊥AF,又∵点A在⊙O上,∴直线AF是⊙O的切线;(2)过点C作CM⊥AE,∵tan∠CAE=,∴=,∵AC=10,∴设CM=3x,则AM=4x,在Rt△ACM中,根据勾股定理,CM2+AM2=AC2,∴(3x)2+(4x)2=100,解得x=2,∴AM=8,∵AC=CE,∴AE=2AE=2×8=16.24.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.25.【解答】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.26.【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(x C﹣x A)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).。
内蒙古通辽市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC V 的面积为( )A .40B .46C .48D .502.估算18的值是在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间3.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .134.在如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果 C 也是图中的格点,且使得△ABC 为等腰直角三角形,则这样的点C 有( )A .6个B .7个C .8个D .9个5.如图,是反比例函数4y (x 0)x=>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是()A .B .C .D .6.将不等式组2(23)3532x x x x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( ) A .B .C .D . 7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )A .甲种方案所用铁丝最长B .乙种方案所用铁丝最长C .丙种方案所用铁丝最长D .三种方案所用铁丝一样长:学*科*网] 8.2cos 30°的值等于( )A .1B 2C 3D .2 9.化简221x -÷11x -的结果是( ) A .21x + B .2x C .21x - D .2(x +1)10.如图,正六边形ABCDEF 中,P 、Q 两点分别为△ACF 、△CEF 的内心.若AF=2,则PQ 的长度为何?( )A .1B .2C .23﹣2D .4﹣2311.下列运算正确的是( )A .B . =﹣3C .a•a 2=a 2D .(2a 3)2=4a 612.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1.其中正确的个数为A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:223x 6xy 3y -+- =14.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______. 15.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____. 16.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .17.某一时刻,测得一根高1.5m 的竹竿在阳光下的影长为2.5m .同时测得旗杆在阳光下的影长为30m ,则旗杆的高为__________m .18.分解因式x 2﹣x=_______________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.20.(6分)如图,在▱ABCD 中,AE ⊥BC 交边BC 于点E ,点F 为边CD 上一点,且DF =BE.过点F 作FG ⊥CD ,交边AD 于点G .求证:DG =DC .21.(6分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.22.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:OC OP PD AP;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.23.(8分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.24.(10分)抛物线y=﹣x 2+(m ﹣1)x+m 与y 轴交于(0,3)点.(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 值的增大而减小?25.(10分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)26.(12分)在Rt △ABC 中,∠BAC=,D 是BC 的中点,E 是AD 的中点.过点A 作AF ∥BC 交BE的延长线于点F .(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCFD 的面积.27.(12分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE∠∠=;()2若BAD45o∠=,AF22=+,过点B作BG FC⊥于点G,连接DG.依题意补全图形,并求四边形ABGD的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=12×BF×AC=12×12×8=48,故选C.2.C【解析】【分析】161825,推出4185,即可得出答案.【详解】161825,∴4185,∴18的值是在4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出16<18<25,题目比较好,难度不大.3.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.4.A【解析】【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB 为等腰直角△ABC 其中的一条腰时,符合条件的C 点有4个.故选:C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5.A【解析】【分析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线2y (x 2)2=---向上平移5个单位后形成的图象.【详解】 解:如图,反比例函数4y (x 0)x=>图象与坐标轴围成的区域内(不包括边界)的整数点个数是5个,即k 5=,∴抛物线2y (x 2)2=---向上平移5个单位后可得:2y (x 2)3=--+,即2y x 4x 1=-+-, ∴形成的图象是A 选项.故选A .【点睛】本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k 的值,利用二次函数图象的平移规律进行解答.6.B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤.∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b ,乙所用铁丝的长度为:2a+2b ,丙所用铁丝的长度为:2a+2b ,故三种方案所用铁丝一样长.故选D .考点:生活中的平移现象8.C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×323 故选C .点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键. 9.A【解析】【分析】原式利用除法法则变形,约分即可得到结果.【详解】原式=211x x +-()()•(x ﹣1)=21x +. 故选A .【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.10.C【解析】【分析】先判断出PQ ⊥CF ,再求出3AF=2,CF=2AF=4,利用△ACF 的面积的两种算法即可求出PG ,然后计算出PQ即可.【详解】解:如图,连接PF,QF,PC,QC∵P、Q两点分别为△ACF、△CEF的内心,∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,∴∠PFC=12∠AFC=30°,∠QFC=12∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等边三角形,∴PQ=2PG;易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,∴3AF=2,CF=2AF=4,∴S△ACF=12AF×AC=12×2×33过点P作PM⊥AF,PN⊥AC,PQ交CF于G,∵点P是△ACF的内心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=12AF×PM+12AC×PN+12CF×PG=12×2×PG+12×3PG+12×4×PG=(3)PG =(3PG3∴2333+31,∴313-2.故选C.【点睛】本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.11.D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;B.,故原选项错误;C.,故原选项错误;D. ,故该选项正确.故选D.12.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
内蒙古通辽市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图32.二次函数2y x =的对称轴是( ) A .直线y 1=B .直线x 1=C .y 轴D .x 轴3.如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB ,∠AOC=84°,则∠E 等于( )A .42°B .28°C .21°D .20°4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( ) A .平均数B .中位数C .众数D .方差5.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A .5元,2元B .2元,5元C .4.5元,1.5元D .5.5元,2.5元6.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x 2+2x ﹣8=0是倍根方程; ②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3; ③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数y=4x的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④7.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高 A .—7℃B .7℃C .—1℃D .1℃8.如果2(2)2a a -=-,那么( ) A .2x <B .2x ≤C .2x >D .2x ≥9.观察下列图形,则第n 个图形中三角形的个数是( )A .2n+2B .4n+4C .4n ﹣4D .4n10.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-11.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A .B .C .D .12.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( ) A .k≠2B .k >2C .0<k <2D .0≤k <2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06,由此可知:________(填甲或乙)机床性能好. 14.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________.15.如果23a b =,那么22242a b a ab--的结果是______.16.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____. 17.在平面直角坐标系xOy 中,点A 、B 为反比例函数4y x= (x >0)的图象上两点,A 点的横坐标与B 点的纵坐标均为1,将4y x=(x >0)的图象绕原点O 顺时针旋转90°,A 点的对应点为A′,B 点的对应点为B′.此时点B′的坐标是_____. 18.函数中,自变量x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)计算:(π﹣1)0+|﹣1|﹣24÷6+(﹣1)﹣1.20.(6分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 21.(6分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元. (1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶)201522.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n 的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?24.(10分)计算:|3-2|+2﹣1﹣cos61°﹣(1﹣2)1.25.(10分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP 且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.26.(12分)图1 和图2 中,优弧»AB纸片所在⊙O 的半径为2,AB=23,点P为优弧»AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点 A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在»NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.27.(12分)如图,一次函数y=kx+b的图象与反比例函数ayx=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数ayx=的图象于点N,若NM=NP,求n的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.2.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).3.B【解析】【分析】利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=13∠AOC进行计算即可.【详解】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD , ∴∠C=∠1, ∴∠C=2∠E ,∴∠AOC=∠C+∠E=3∠E , ∴∠E=13∠AOC=13×84°=28°. 故选:B . 【点睛】本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质. 4.D 【解析】 【详解】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符; B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符; C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;D .原来数据的方差=222(12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222(12)3(22)(32)5-+⨯-+-=25, 故方差发生了变化. 故选D . 5.A 【解析】 【分析】可设1本笔记本的单价为x 元,1支笔的单价为y 元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可. 【详解】设1本笔记本的单价为x 元,1支笔的单价为y 元,依题意有:322013x y x y +=-⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 故1本笔记本的单价为5元,1支笔的单价为2元. 故选A . 【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组. 6.C 【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设2x =21x ,得到1x •2x =221x =2,得到当1x =1时,2x =2,当1x =-1时,2x =-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y=4x的图象上,得到mn=4,然后解方程m 2x +5x+n=0即可得到正确的结论;详解:①由2x -2x-8=0,得:(x-4)(x+2)=0, 解得1x =4,2x =-2, ∵1x ≠22x ,或2x ≠21x , ∴方程2x -2x-8=0不是倍根方程;故①错误;②关于x 的方程2x +ax+2=0是倍根方程, ∴设2x =21x , ∴1x •2x =221x =2, ∴1x =±1, 当1x =1时,2x =2, 当1x =-1时,2x =-2, ∴1x +2x =-a=±3, ∴a=±3,故②正确; ③关于x 的方程a 2x -6ax+c=0(a≠0)是倍根方程, ∴2x =21x ,∵抛物线y=a 2x -6ax+c 的对称轴是直线x=3, ∴抛物线y=a 2x -6ax+c 与x 轴的交点的坐标是(2,0)和(4,0), 故③正确; ④∵点(m ,n )在反比例函数y=4x的图象上, ∴mn=4, 解m 2x +5x+n=0得 1x =2m -,2x =8m-, ∴2x =41x , ∴关于x 的方程m 2x +5x+n=0不是倍根方程; 故选C .点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键. 7.B 【解析】 【分析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可. 【详解】3-(-4)=3+4=7℃. 故选B . 8.B 【解析】试题分析:根据二次根式的性质2(0) 0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0)0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩可求解.9.D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.考点:规律型:图形的变化类.10.B【解析】【分析】连接OA、OB,利用正方形的性质得出OA=ABcos45°=22,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.【详解】解:连接OA、OB,∵四边形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×222,所以阴影部分的面积=S⊙O-S正方形ABCD=π×(22)2-4×4=8π-1.故选B.【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.11.C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系12.D【解析】【详解】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,20kk-<⎧⎨≥⎩,解得0<k<2,综上所述,0≤k<2。
内蒙古通辽市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.42.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增大4.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.425.一个圆的内接正六边形的边长为2,则该圆的内接正方形的边长为()A.2B.22C.23D.46.在一个直角三角形中,有一个锐角等于45°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°7.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.8.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数a1yx-=图象上的三点,则下列结论正确的是()A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x19.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.10.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是311.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.12.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若代数式1x-在实数范围内有意义,则x的取值范围是_______.14.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡.若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.15.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C 的度数为整数,则∠C的度数为_____.16.若式子21x +在实数范围内有意义,则x 的取值范围是_______. 17.计算2(252)-的结果等于__________.18.函数y =22xx -+中,自变量x 的取值范围是_________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a 、b.队别 平均分 中位数 方差 合格率 优秀率 七年级 6.7 m 3.41 90% n 八年级7.17.51.6980%10%(1)请依据图表中的数据,求a 、b 的值; (2)直接写出表中的m 、n 的值;(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由. 20.(6分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x x x x-+-÷(1﹣1x ) 21.(6分)如图,点A 是直线AM 与⊙O 的交点,点B 在⊙O 上,BD ⊥AM ,垂足为D ,BD 与⊙O 交于点C ,OC 平分∠AOB ,∠B =60°.求证:AM 是⊙O 的切线;若⊙O 的半径为4,求图中阴影部分的面积(结果保留π和根号).22.(8分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.24.(10分)先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.25.(10分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆;2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.26.(12分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.27.(12分)如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数ymx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.2.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.3.B 【解析】 【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数. 【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然2000002250005151a a ++<;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变. 故选B . 【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响. 4.B 【解析】 【分析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数. 【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为38402+=39, 故选:B . 【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数. 5.B 【解析】 【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解. 【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.6.C【解析】【分析】根据直角三角形两锐角互余即可解决问题.【详解】解:∵直角三角形两锐角互余,∴另一个锐角的度数=90°﹣45°=45°,故选C.【点睛】本题考查直角三角形的性质,记住直角三角形两锐角互余是解题的关键.7.A【解析】【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.8.B【解析】【分析】根据a1yx-=的图象上的三点,把三点代入可以得到x1=﹣12a-,x1=14a-,x3=15a-,在根据a的大小即可解题【详解】解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数a1yx-=图象上的三点,∴x1=﹣12a-,x1=14a-,x3=15a-,∵a<1,∴a﹣1<0,∴x1>x3>x1.故选B.【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断9.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.10.C【解析】【分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.11.A【解析】试题解析:∵一根圆柱形的空心钢管任意放置,∴不管钢管怎么放置,它的三视图始终是,,,主视图是它们中一个,∴主视图不可能是.故选A. 12.C 【解析】2281517+=, 则该直角三角形能容纳的圆形(内切圆)半径8151732r +-== (步),即直径为6步, 故选C二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1x ≥ 【解析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可. 1x - ∴x-1≥2, 解得x≥1. 故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2. 14.1 【解析】 【分析】根据已知他身上带的钱恰好能买5张3D 立体贺卡或20张普通贺卡得:1张3D 立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡,根据3张3D 立体贺卡y +张普通贺卡5=张3D 立体贺卡,可得结论. 【详解】解:设1张3D 立体贺卡x 元,剩下的钱恰好还能买y 张普通贺卡. 则1张普通贺卡为:5x 1x 204=元,。
内蒙古通辽市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x (x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .122.分式方程()22111x x x -++=1的解为( )A .x=1B .x=0C .x=﹣23D .x=﹣13.在平面直角坐标系xOy 中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A .y 1B .y 2C .y 3D .y 44.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1.其中正确的个数为A .1B .2C .3D .45.6的绝对值是( )A.6 B.﹣6 C.16D.16-6.-3的相反数是()A.13B.3 C.13-D.-37.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON 上滑动,下列结论:①若C,O两点关于AB对称,则OA=23;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①②B.①②③C.①③④D.①②④8.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x 的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.9.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A .1个B .2个C .3个D .4个10.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( ) A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-811.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A .4233π- B .2233π- C .433π- D .233π- 12.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Y ABCD 中,AB=8,P 、Q 为对角线AC 的三等分点,延长DP 交AB 于点M ,延长MQ 交CD 于点N ,则CN=__________.14.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为_____.15.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 . 16.⊙O 的半径为10cm ,AB,CD 是⊙O 的两条弦,且AB ∥CD ,AB=16cm,CD=12cm .则AB 与CD 之间的距离是 cm .17.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A 的直线l 垂直于线段AB ,点P 是直线l 上一动点,过点P 作PC ⊥x 轴,垂足为C ,把△ACP 沿AP 翻折180︒,使点C 落在点D 处,若以A ,D ,P 为顶点的三角形与△ABP 相似,则所有满足此条件的点P 的坐标为___________________________.18.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则BP 的长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,AB=AC ,∠ABC=72°.(1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.20.(6分)在Rt ABC ∆中,90ACB ∠=o ,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=o①如图1,DCB ∠= o②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60o ,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<o o ,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明) 21.(6分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1. (2)先化简,再求值:(x ﹣1)÷(21x +﹣1),其中x 为方程x 2+3x+2=0的根. 22.(8分)如图,抛物线y=ax 2+2x+c 与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,3). (1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形为直角三角形?若存在,试求出点Q 的坐标;若不存在,请说明理由.23.(8分)如图1,在四边形ABCD 中,AD ∥BC ,AB=CD=13,AD=11,BC=21,E 是BC 的中点,P 是AB 上的任意一点,连接PE ,将PE 绕点P 逆时针旋转90°得到PQ .(1)如图2,过A 点,D 点作BC 的垂线,垂足分别为M ,N ,求sinB 的值;(2)若P 是AB 的中点,求点E 所经过的路径弧EQ 的长(结果保留π);(3)若点Q 落在AB 或AD 边所在直线上,请直接写出BP 的长.24.(10分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.25.(10分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=15.26.(12分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.27.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据勾股定理得到2234+,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴22+,34∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.2.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.3.A【解析】【分析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.4.B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
内蒙古通辽市2019-2020学年中考第四次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P.若点P 的横坐标为1-,则一次函数()y a b x b =-+的图象大致是( )A .B .C .D .2.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点D D .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D3.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v vvD .11a b a b=v v v v4.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 15.下列四个几何体中,左视图为圆的是( )A .B .C .D .6.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.不等式3x <2(x+2)的解是( ) A .x >2B .x <2C .x >4D .x <48.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .459.一、单选题二次函数的图象如图所示,对称轴为x=1,给出下列结论:①abc<0;②b 2>4ac ;③4a+2b+c<0;④2a+b=0..其中正确的结论有:A .4个B .3个C .2个D .1个10.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<011.研究表明某流感病毒细胞的直径约为0.00000156m ,用科学记数法表示这个数是( ) A .0.156×10-5B .0.156×105C .1.56×10-6D .1.56×10612.解分式方程2236111x x x +=+-- ,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x ﹣1)(x+1)B .方程两边都乘以(x ﹣1)(x+1),得整式方程2(x ﹣1)+3(x+1)=6C .解这个整式方程,得x =1D .原方程的解为x =1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)14.二次根式1a + 中的字母a 的取值范围是_____. 15.在实数﹣2、0、﹣1、2、2-中,最小的是_______.16.已知抛物线y=x 2﹣x+3与y 轴相交于点M ,其顶点为N ,平移该抛物线,使点M 平移后的对应点M′与点N 重合,则平移后的抛物线的解析式为_____.17.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06,由此可知:________(填甲或乙)机床性能好. 18.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若CG GB 1k =,则ADAB= (用含k 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)观察下列多面体,并把下表补充完整. 名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 10 12 棱数b9 12面数c 5 8 观察上表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.20.(6分)如图,一次函数y1=kx+b(k≠0)和反比例函数y2=mx(m≠0)的图象交于点A(-1,6),B(a,-2).求一次函数与反比例函数的解析式;根据图象直接写出y1>y2时,x的取值范围.21.(6分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x (元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22.(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.23.(8分)先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣1+4. 24.(10分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y 1(米)、y 2(米),两人离家后步行的时间为x (分),y 1与x 的函数图象如图所示,根据图象解决下列问题:(1)小新的速度为_____米/分,a=_____;并在图中画出y 2与x 的函数图象 (2)求小新路过小华家后,y 1与x 之间的函数关系式. (3)直接写出两人离小华家的距离相等时x 的值.25.(10分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?26.(12分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)27.(12分)解不等式组3122324xx x⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据二次函数的图象可以判断a、b、a b-的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,a0<,b0<,当x1=-时,y a b0=-<,()y a b x b∴=-+的图象经过二、三、四象限,观察可得D选项的图象符合,故选D.【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.2.D【解析】【分析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB 于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.3.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.4.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【详解】解:∵反比例函数y=﹣1x中k=﹣1<0,∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大,∵y1<0<y2<y3,∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限,∴x2<x3<x1.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限是解答此题的关键.5.A【解析】【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图.6.C【解析】【分析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.7.D【解析】不等式先展开再移项即可解答. 【详解】解:不等式3x <2(x+2), 展开得:3x <2x+4, 移项得:3x-2x <4, 解之得:x <4. 故答案选D. 【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤. 8.B 【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B. 考点:概率. 9.B 【解析】试题解析:①∵二次函数的图象的开口向下, ∴a<0,∵二次函数的图象y 轴的交点在y 轴的正半轴上, ∴c>0,∵二次函数图象的对称轴是直线x=1,12ba,∴-= ∴2a+b=0,b>0 ∴abc<0,故正确;②∵抛物线与x 轴有两个交点, 240b ac ∴->, 24b ac ∴>, 故正确;③∵二次函数图象的对称轴是直线x=1, ∴抛物线上x=0时的点与当x=2时的点对称, 即当x=2时,y>0 ∴4a+2b+c>0,④∵二次函数图象的对称轴是直线x=1,12ba,∴-=∴2a+b=0, 故正确.综上所述,正确的结论有3个. 故选B. 10.B 【解析】 【分析】根据抛物线的开口方向确定a ,根据抛物线与y 轴的交点确定c ,根据对称轴确定b ,根据抛物线与x 轴的交点确定b 2-4ac ,根据x=1时,y >0,确定a+b+c 的符号. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线交于y 轴的正半轴, ∴c >0,∴ac >0,A 错误; ∵-2ba>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点, ∴b 2-4ac >0,C 错误; 当x=1时,y >0, ∴a+b+c >0,D 错误; 故选B . 【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定. 11.C 【解析】 解:,故选C.12.D 【解析】先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得1x =,但是将1x =代入原方程中,可发现31x -和261x -的分母都为零,即无意义,所以1x ≠,即方程无解【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x 值都需要进行检验二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲【解析】由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,则S2甲<S2乙,即两人的成绩更加稳定的是甲.故答案为甲.14.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a 的不等式,继而求得a 的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.15.﹣1.【解析】【分析】【详解】解:在实数﹣1、0、﹣1、1、1,故答案为﹣1.【点睛】本题考查实数大小比较.16.y=(x ﹣1)2+52【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.【详解】解:y=x2-x+3=(x-12)2+114,∴N点坐标为:(12,114),令x=0,则y=3,∴M点的坐标是(0,3).∵平移该抛物线,使点M平移后的对应点M′与点N重合,∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可,∴平移后的解析式为:y=(x-1)2+52.故答案是:y=(x-1)2+52.【点睛】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.17.甲.【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故答案为甲.考点:1.方差;2.算术平均数.18.2。
2019年通辽市中考数学试卷(解析版)一、选择题(每小题3分,共30分)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)的平方根是()A.±4B.4C.±2D.+23.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.7.3×103C.7.3×107D.0.73×1084.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣16.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或807.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc <0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是℃.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6月6日6月7日6月8日6月9日次品数量(个)102a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAC,则AB的长为.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.15.(3分)腰长为5,高为4的等腰三角形的底边长为.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣119.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)78146请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F 点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.24.(9分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.25.(9分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.26.(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.答案与解析一、选择题(每小题3分,共30分)1.【解答】解:﹣的相反数是:.故选:D.2.【解答】解:=4,±=±2,故选:C.3.【解答】解:其中7300万用科学记数法表示为7.3×107.故选:C.4.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.5.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.6.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.7.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==π.故选:C.8.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;真命题有2个,故选:B.9.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.10.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.【解答】解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.12.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.13.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:.14.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=2.5,即阴影梯形的上底就是3﹣2.5=0.5(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+0.5)×3÷2=3.75(cm2).故答案为:3.75cm2.15.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.16.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.17.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.19.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.20.【解答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×1.7=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.21.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.22.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×÷4=126,∵126>124,∴不够用.故答案为:15.23.【解答】解:(1)直线AF是⊙O的切线,理由是:连接AC,∵AB为⊙O直径,∴∠ACB=90°,∴AC⊥BC,∵CF=CD,∴∠CAF=∠EAC,∵AC=CE,∴∠E=∠EAC,∵∠B=∠E,∴∠B=∠F AC,∵∠B+∠BAC=90°,∴∠F AC+∠BAC=90°,∴OA⊥AF,又∵点A在⊙O上,∴直线AF是⊙O的切线;(2)过点C作CM⊥AE,∵tan∠CAE=,∴=,∵AC=10,∴设CM=3x,则AM=4x,在Rt△ACM中,根据勾股定理,CM2+AM2=AC2,∴(3x)2+(4x)2=100,解得x=2,∴AM=8,∵AC=CE,∴AE=2AE=2×8=16.24.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.25.【解答】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.26.【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(x C﹣x A)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).。
内蒙古通辽市中考数学试卷TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2019年内蒙古通辽市中考数学试卷一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)的平方根是()A.±4B.4C.±2D.+23.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.×103C.×107D.×1084.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣16.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或807.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是℃.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6月6日6月7日6月8日6月9日次品数量(个)102a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.15.(3分)腰长为5,高为4的等腰三角形的底边长为.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣)0+2sin60°﹣(﹣)﹣119.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层(参考数据:≈,≈)21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)78146请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC 至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.24.(9分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.25.(9分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.26.(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△若存在,求出点D的坐标;若不存在,请说明理由.DCM(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.2019年内蒙古通辽市中考数学试卷参考答案与试题解析一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:D.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)的平方根是()A.±4B.4C.±2D.+2【分析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.【解答】解:=4,±=±2,故选:C.【点评】本题考查了平方根,先求算术平方根,再求平方根.3.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.×103C.×107D.×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:其中7300万用科学记数法表示为×107.故选:C.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.【点评】此题主要考查了由几何体判断三视图,考查了空间想象能力,解答此题的关键是要明确:由几何体想象三视图的形状,应分别根据几何体的前面、上面和左侧面的形状想象主视图、俯视图和左视图.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣1【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.6.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或80【分析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.7.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π【分析】连接OC,如图,利用等边三角形的性质得∠AOC=120°,S△AOB=S△AOC,然后根据扇形的面积公式,利用图中阴影部分的面积=S扇形AOC进行计算.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==π.故选:C.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形的性质.8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个【分析】分别利用全等三角形的性质、平移的性质、随机事件等知识分别判断后即可确定正确的选项.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;真命题有2个,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解全等三角形的性质、平移的性质、随机事件等知识,难度不大.9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.【分析】关于x、y的二元一次方程组的解满足x<y确定k的取值范围,然后根据一次函数和反比例函数的性质确定图象即可.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.【点评】本题考查了反比例函数的图象及一次函数与二元一次方程组的知识,解题的关键是根据题意确定k的取值范围.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是27 ℃.【分析】先找出这7天的最高气温,然后根据中位数的概念求解.【解答】解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6月6日6月7日6月8日6月9日次品数量(个)102a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.【分析】求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.【点评】本题考查了方差,熟练运用方差公式是解题的关键.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:.【点评】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=,即阴影梯形的上底就是3﹣=(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+)×3÷2=(cm2).故答案为:.【点评】本题考查的是相似三角形的性质,相似三角形的对应边成比例.15.(3分)腰长为5,高为4的等腰三角形的底边长为6或2或4.【分析】根据不同边上的高为4分类讨论即可得到本题的答案.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.【点评】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.【分析】由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=2,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.【点评】本题考查了概率,熟练掌握解分式方程是解题的关键.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是﹣1 .【分析】过点M作MH⊥CD,由勾股定理可求MC的长,由题意可得点A'在以M为圆心,AM为半径的圆上,则当点A'在线段MC上时,A'C长度有最小值.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1【点评】本题考查了翻折变换,菱形的性质,勾股定理,确定A'C长度有最小值时,点A'的位置是本题的关键.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣)0+2sin60°﹣(﹣)﹣1【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.【分析】根据分式的除法和加法可以化简题目中的式子,然后由不等式组,可以求得x的取值范围,再从中选取一个使得原分式有意义的整数x代入化简后的式子即可解答本题.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解答本题的关键是明确分式化简求值的方法.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层(参考数据:≈,≈)【分析】设太阳光线GB交AC于点F,过F作FH⊥BD于H,解Rt△BFH,求出BH≈17,那么FC=HD=BD﹣BH≈13,由≈,可得此刻楼BD的影子会遮挡到楼AC的第5层.【解答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.【点评】本题考查了解直角三角形的应用,平行投影,难度一般,解答本题的关键是利用直角三角形的性质和三角函数解答.21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.【分析】(1)直接根据概率公式计算即可.(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)781415 6请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.【分析】(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分数,又知九年级最喜欢排球的人数为10人,所以求出九年级最喜欢运动的人数,再由七、八、九年级的学生中,分别抽取相同数量的学生,得出本次调查共抽取的学生数;(2)先根据(1)得七年级最喜欢跳绳的人数,从而能求出八、九年级最喜欢跳绳的人数,然后求出最喜欢跳绳的学生数,补全统计表和统计图即可;(3)根据题意列式计算即可得到结论.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×÷4=126,∵126>124,∴不够用.故答案为:15.【点评】本题考查了条形统计图、扇形统计图、统计表以及用样本估计总体的知识,此题综合性较强,难度适中.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC 至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.【分析】(1)连接AC,根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质得到∠CAN =∠EAC,∠E=∠EAC,得到∠B=∠FAC,等量代换得到∠FAC+∠BAC=90°,求得OA⊥AF,于是得到结论;(2)过点C作CM⊥AE,根据三角函数的定义得到=,设CM=3x,则AM=4x,根据勾股定理即可得到结论.【解答】解:(1)直线AF是⊙O的切线,理由是:连接AC,∵AB为⊙O直径,∴∠ACB=90°,∴AC⊥BC,∵CF=CD,∴∠CAF=∠EAC,∵AC=CE,∴∠E=∠EAC,∵∠B=∠E,∴∠B=∠FAC,∵∠B+∠BAC=90°,∴∠FAC+∠BAC=90°,∴OA⊥AF,又∵点A在⊙O上,∴直线AF是⊙O的切线;(2)过点C作CM⊥AE,。
通辽中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方是4B. 2的立方是8C. 3的平方是9D. 3的立方是27答案:A2. 如果一个数乘以3等于9,那么这个数是多少?A. 2B. 3C. 4D. 5答案:B3. 一个长方形的长是5厘米,宽是3厘米,那么它的面积是多少平方厘米?A. 10B. 15C. 20D. 25答案:B4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 一个圆的半径是2厘米,那么它的周长是多少厘米?A. 4πB. 6πC. 8πD. 10π答案:C6. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A7. 以下哪个选项是不等式?A. 2x + 3 = 7B. 3x - 5 > 2C. 4x + 6 ≤ 10D. 5x - 7 < 3答案:B8. 一个三角形的内角和是多少度?A. 90B. 180C. 270D. 360答案:B9. 一个数的绝对值是5,那么这个数可以是?A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的平方根是3,那么这个数是多少?A. 6B. 9C. 12D. 15答案:B二、填空题(每题3分,共30分)11. 一个数的平方是16,这个数是______。
答案:±412. 一个数的立方是-8,这个数是______。
答案:-213. 一个数除以3的结果是2,这个数是______。
答案:614. 一个数的倒数是1/4,这个数是______。
答案:415. 一个数的绝对值是3,这个数可以是______。
答案:±316. 一个三角形的两边长分别是3厘米和4厘米,如果这个三角形是直角三角形,那么第三边的长度是______厘米。
答案:517. 一个圆的直径是6厘米,那么它的半径是______厘米。
答案:318. 一个数的平方根是2,这个数是______。
2019年内蒙古通辽市中考数学试卷一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)﹣的相反数是()A.2019B.﹣C.﹣2019D.2.(3分)的平方根是()A.±4B.4C.±2D.+23.(3分)2018年12月,在国家发展改革委发布《关于全力做好2019年春运工作的意见》中预测,2019年春运全国民航旅客发送量将达到7300万人次,比上一年增长12%,其中7300万用科学记数法表示为()A.73×106B.7.3×103C.7.3×107D.0.73×108 4.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.5.(3分)如图,直线y=kx+b(k≠0)经过点(﹣1,3),则不等式kx+b≥3的解集为()A.x>﹣1B.x<﹣1C.x≥3D.x≥﹣1 6.(3分)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48B.24C.24或40D.48或80 7.(3分)如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于()A.B.πC.πD.2π8.(3分)现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等;③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直;其中真命题的个数有()A.1个B.2个C.3个D.4个9.(3分)关于x、y的二元一次方程组的解满足x<y,则直线y=kx﹣k﹣1与双曲线y=在同一平面直角坐标系中大致图象是()A.B.C.D.10.(3分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.(3分)如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是℃.12.(3分)某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6月6日6月7日6月8日6月9日次品数量(个)102a若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于.13.(3分)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.14.(3分)已知三个边长分别为2cm,3cm,5cm的正方形如图排列,则图中阴影部分的面积为.15.(3分)腰长为5,高为4的等腰三角形的底边长为.16.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程﹣1=无解的概率为.17.(3分)如图,在边长为3的菱形ABCD中,∠A=60°,M是AD边上的一点,且AM=AD,N是AB边上的一动点,将△AMN 沿MN所在直线翻折得到△A′MN,连接A′C.则A′C长度的最小值是.三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(5分)计算:﹣14﹣|﹣1|+(﹣1.414)0+2sin60°﹣(﹣)﹣119.(6分)先化简,再求值.÷+,请从不等式组的整数解中选择一个你喜欢的求值.20.(5分)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC的第几层?(参考数据:≈1.7,≈1.4)21.(6分)有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.22.(9分)通辽市某中学为了了解学生“大课间”活动情况,在七、八、九年级的学生中,分别抽取了相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项),调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10人.七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)78146请根据以上统计表(图)解答下列问题:(1)本次调查共抽取了多少人?(2)补全统计表和统计图.(3)该校有学生1800人,学校想对“最喜欢踢毽子”的学生每4人提供一个毽子,学校现有124个毽子,能否够用?请说明理由.23.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.24.(9分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.25.(9分)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.26.(12分)已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M (1,9),经过抛物线上的两点A(﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.答案一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.【解答】解:﹣的相反数是:.故选:D.2.【解答】解:=4,±=±2,故选:C.3.【解答】解:其中7300万用科学记数法表示为7.3×107.故选:C.4.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D 不符合题意;故选:B.5.【解答】解:观察图象知:当x≥﹣1时,kx+b≥3,故选:D.6.【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.7.【解答】解:连接OC,如图,∵△ABC为等边三角形,∴∠AOC=120°,S△AOB=S△AOC,∴图中阴影部分的面积=S扇形AOC==π.故选:C.8.【解答】解:①斜边中线和一个锐角分别对应相等的两个直角三角形全等,正确,是真命题;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等或在同一直线上,错误,是假命题;③通常温度降到0℃以下,纯净的水会结冰是必然事件,故错误,是假命题;④一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,故错误,是假命题;⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题;真命题有2个,故选:B.9.【解答】解:二元一次方程组中第二个方程减去第一个方程得:x﹣y=﹣5k,∵关于x、y的二元一次方程组的解满足x<y,∴x﹣y<0,∴﹣5k<0,即:k>0,∴y=kx﹣k﹣1经过一三四象限,双曲线y=的两个分支位于一三象限,B选项符合,故选:B.10.【解答】解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.【解答】解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:24,25,26,27,28,28,29,故中位数为27℃,故答案为27.12.【解答】解:∵出现次品数量的唯一众数为1,∴a=1,∴,∴S2==,故答案为.13.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠BAE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴64+AB2=4AB2,∴AB=故答案为:.14.【解答】解:对角线所分得的三个三角形相似,根据相似的性质可知=,解得x=2.5,即阴影梯形的上底就是3﹣2.5=0.5(cm).再根据相似的性质可知=,解得:y=1,所以梯形的下底就是3﹣1=2(cm),所以阴影梯形的面积是(2+0.5)×3÷2=3.75(cm2).故答案为:3.75cm2.15.【解答】解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC=5,CD=4时,则AD=3,∴BD=2,∴BC==2,∴此时底边长为2;③如图3:当AB=AC=5,CD=4时,则AD==3,∴BD=8,∴BC=4,∴此时底边长为4.故答案为:6或2或4.16.【解答】解:由分式方程,得m=x(x+2)﹣(x﹣1)(x+2)x=1或﹣2时,分式方程无解,x=1时,m=3,x=﹣2时,m=0,所以在1,2,3,4,5取一个数字m使分式方程无解的概率为.17.【解答】解:过点M作MH⊥CD交CD延长线于点H,连接CM,∵AM=AD,AD=CD=3∴AM=1,MD=2∵CD∥AB,∴∠HDM=∠A=60°∴HD=MD=1,HM=HD=∴CH=4∴MC==∵将△AMN沿MN所在直线翻折得到△A′MN,∴AM=A'M=1,∴点A'在以M为圆心,AM为半径的圆上,∴当点A'在线段MC上时,A'C长度有最小值∴A'C长度的最小值=MC﹣MA'=﹣1故答案为:﹣1三、解答题(本题包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.【解答】解:原式=﹣1﹣(﹣1)+1+2×+2=﹣1﹣+1+1++2=3.19.【解答】解:÷+====,由不等式组,得﹣3<x≤2,∴当x=2时,原式=.20.【解答】解:设太阳光线GB交AC于点F,过F作FH⊥BD于H,由题意知,AC=BD=3×10=30m,FH=CD=30m,∠BFH=∠α=30°,在Rt△BFH中,tan∠BFH===,∴BH=30×=10≈10×1.7=17,∴FC=HD=BD﹣BH≈30﹣17=13,∵≈4.3,所以在四层的上面,即第五层,答:此刻楼BD的影子会遮挡到楼AC的第5层.21.【解答】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为:;(2)游戏不公平,理由如下:列表得:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即(A,C)(C,A)∴P(两张牌面图形既是轴对称图形又是中心对称图形)==≠,∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.22.【解答】解:(1)从九年级最喜欢运动的项目统计图中得知,九年级最喜欢排球的人数占总数的百分比为:1﹣30%﹣16%﹣24%﹣10%=20%,又知九年级最喜欢排球的人数为10人,∴九年级最喜欢运动的人数有10÷20%=50(人),∴本次调查抽取的学生数为:50×3=150(人).(2)根据(1)得七年级最喜欢跳绳的人数有50﹣7﹣8﹣6﹣14=15人,那么八年级最喜欢跳绳的人数有15﹣5=10人,最喜欢踢毽的学生有50﹣12﹣10﹣10﹣5═13人,九年级最喜欢排球的人数占全年级的百分比==20%,补全统计表和统计图如图所示;七年级学生最喜欢的运动项目人数统计表项目排球篮球踢毽跳绳其他人数(人)7814156(3)不够用,理由:1800×÷4=126,∵126>124,∴不够用.故答案为:15.23.【解答】解:(1)直线AF是⊙O的切线,理由是:∵AB为⊙O直径,∴∠ACB=90°,∵CF=CD,∴∠CAF=∠EAC,∵AC=CE,∴∠E=∠EAC,∵∠B=∠E,∴∠B=∠FAC,∵∠B+∠BAC=90°,∴∠FAC+∠BAC=90°,∴OA⊥AF,又∵点A在⊙O上,∴直线AF是⊙O的切线;(2)过点C作CM⊥AE,∵tan∠CAE=,∴=,∵AC=10,∴设CM=3x,则AM=4x,在Rt△ACM中,根据勾股定理,CM2+AM2=AC2,∴(3x)2+(4x)2=100,解得x=2,∴AM=8,∴AE=2AM=2×8=16.24.【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.25.【解答】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.26.【解答】解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(x C﹣x A)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m ﹣4,﹣16),即为点P,即:m﹣4=s,﹣16=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).。