分析化学-电位分析法
- 格式:ppt
- 大小:1.34 MB
- 文档页数:88
电位分析法1 前言从热力学角度讲,电化学是研究化学能于电能之间相互转变及其所遵循基本规律或规则的一门学科;从动力学角度而言,电化学是研究电解质离子在溶液中运动及电解质溶液与电极表面发生反应所遵循的基本规律。
而电分析化学则是利用物质(电解质)的物理性质及电化学性质来测定物质组成和含量的一种分析方法。
电位分析是利用电极电位和溶液中某种离子的活度(或浓度)之间的关系来测定被测物质的活度(或浓度)的一种电化学分析法,它是以测量电池电动势为基础。
其化学电池的组成是以待测试液为电解质溶液,并于其中插入两支电极,一支是电极电位与被测试液的活度(或浓度)有定量关系的指示电极;另一支是电位稳定不变的参比电极。
通过测量电池的电动势来确定被测物含量。
电位分析法根据其原理的不同可分为直接电位法和电位滴定法两大类。
直接电位法是通过测量电池电动势来确定指示电极的电位,然后根据Nernst方程,由所测得的电极电位值计算出被测物质的含量。
电位滴定法是通过测量滴定过程中指示电极的电位变化来确定滴定终点,再按滴定所消耗的标准溶液的体积和浓度来计算待测物质含量。
该法实际上是一种容量分析法。
20世纪60年代末由于膜电极技术的出现,相继成功研制了多种具有良好选择性的指示电极,即离子选择性电极(ISEs)。
离子选择性电极的出现和应用,促进了电位分析法的发展,并使其应用有了新的突破。
电位分析法具有如下特点:选择性高,在多数情况下,存在离子干扰很小,对组成复杂性的试样往往不需要经过分离处理可直接测定,且灵敏度高。
直接电位法的相对检出限量一般为10-5~10-8mol/dm3,特别适用于微量成分的测定;而电位滴定法则适用于常量分析,仪器设备简单、操作方便,易于实现分析的自动化,试液用量小,并可做无损分析和原位测量。
因此,电位分析法的应用范围很广,尤其是离子选择性电极,现已广泛应用于环保、医药、食品、卫生、地质探矿、冶金、海洋探测等各个领域,并已成为重要的测试手段。
被测物质的最低量可以达到 10 mol/L 数量级。
第一章 电位分析法第 一节 基本原理1、电化学分析概述根据物质在溶液中的电化学性质及其变化来进行分析的方法。
它是 以电导、电位、电流和电量等电参量与被测物之间的关系做为计量的基 础。
依据物质电化学性质来测定物质组成及含量的分析方法称为电化学 分析或电分析化学。
它通常是使待分析的试样溶液构成一化学电池(原电池或电解池), 然后根据所组成电池的某些电物理量(如两电极间的电位差,通过电解 池的电流或电量,电解质溶液的电阻等)与其化学量之间的内在联系来 进行测定。
电化学分析法的特点:(1)灵敏度、准确度高,选择性好-12(2)电化学仪器装置较为简单,操作方便直接得到电信号,易传递,尤其适合于化工生产中的自动控制和在线分析。
(3)应用广泛传统电化学分析:无机离子的分析; 测定有机化合物也日益广泛; 有机电化学分析;药物分析;电化学分析在药物分析中也有较多应用。
活体分析。
根据所量的电参量的不同,电分析化学方法可分为三类:第一类:在某些特定条件下,通过待试液的浓度与化学电池中某些电参量的关系进行定量分析,如电导、电位、库仑极谱及伏 安分析第二类:通过某一电参量的变化来指示终点的电容量分析好电位滴定第三类:通过电极反应把被测物质,转变为金属或其它形式的搓化物,用重量法测定基会量。
2、电化学电池2.1原电池能自发的将本身的化学能变成电能,这种化学电池称为原电池。
以铜锌原电池为例锌电极、负极(阳极):Z n→Z n2++2e氧化反应铜电极、正极(阴极):C u2++2e→C u还原反应2.2电解池实现某种电化学反应的能量由外电源供给则这种化学电池称为电解池仍以铜电极和锌电极为例。
锌电极、负极(阴极):Z n2++2e→Z n还原反应铜电极、正极(阳极):C u→C u2++2e氧化反应应注意:阳极、阴极是对实际发生的反应而言,阳极发生氧化反应,阴极发生还原反应;正极、负极是对电荷的流向而言,电子流出为负极,电子流入为正极。
分析化学电位分析法分析化学电位分析法是一种基于电位的分析方法,通过测量化学反应中的电位差异,从而快速准确地分析物体的成分、浓度以及其他相关信息。
本文将介绍分析化学电位分析法的原理、应用以及优势。
一、原理分析化学电位分析法是建立在电化学原理的基础上的。
当一个物质在溶液中发生化学反应时,通常会伴随着电子的转移。
这些电子转移会导致电位的变化,因此我们可以通过测量这种电位变化来分析化学反应的过程和特性。
二、应用1. 离子浓度分析:分析化学电位分析法可以快速准确地测量溶液中的离子浓度。
以 pH 测定为例,我们可以通过测量溶液的电位来推导出溶液的酸碱性质,并计算出溶液中的氢离子浓度。
这对于环境监测、水质检测等领域具有重要意义。
2. 金属腐蚀分析:金属在腐蚀过程中也会伴随着电位变化。
通过测量金属电位的变化,我们可以了解金属腐蚀的程度、速率以及影响因素。
这有助于制定合适的防腐措施,延长金属材料的使用寿命。
3. 化学反应研究:在化学反应中,往往会伴随着各种电位变化。
利用分析化学电位分析法,我们可以实时监测化学反应中的电位变化,揭示反应过程中的动力学和热力学信息,为反应条件的优化提供依据。
4. 生物传感器:分析化学电位分析法在生物传感器中也得到了广泛应用。
通过测量生物体内的电位变化,我们可以得到有关生物体状态、代谢活性等信息。
这对于疾病诊断、药物研发等具有重要意义。
三、优势1. 快速:分析化学电位分析法具备快速分析的优势,可以在短时间内得到准确结果。
这对于实时监测、快速检测等领域非常有用。
2. 灵敏:分析化学电位分析法对微弱的电位变化具有较高的灵敏度。
这使得它可以测量低浓度物质或微量物质,并对微小变化做出准确响应。
3. 高准确性:分析化学电位分析法在仪器设备和测量技术方面都非常精确,可以保证分析结果的准确性。
这对于科研、工业生产等领域至关重要。
4. 非破坏性:与一些传统分析方法相比,分析化学电位分析法具有非破坏性的特点。
电位分析法的应用及原理应用领域电位分析法是一种常用的分析化学方法,广泛应用于以下领域:1.电化学研究:电位分析法可以用于研究电化学反应的机理、动力学和热力学参数。
通过测量电极电位与时间、电位与电流之间的关系,可以推断反应的速率常数、表观活化能等重要参数。
2.腐蚀科学与工程:电位分析法在腐蚀研究和腐蚀控制中具有重要作用。
通过测量电极电位的变化,可以评估金属或合金的腐蚀速率,研究腐蚀机理,并设计腐蚀控制策略。
3.环境分析:电位分析法可以用于环境监测和分析,例如测定水体中的金属离子浓度、土壤中的重金属含量等。
这是因为不同物质的电位在一定条件下具有一定的规律性,可以通过测量电位来推断物质的浓度。
4.药物分析与生物传感:电位分析法在药物分析和生物传感中也有广泛应用。
例如,药物的电化学行为可以通过测量电极电位来研究,从而确定药物的电活性、储存稳定性等特性。
原理电位分析法是基于电化学反应的原理,通过测量电极电位来获取样品的相关信息。
其基本原理包括以下几点:1.电极电位与电化学反应:电极电位是由电化学反应产生的电子传递过程引起的。
电极电位可以反映电极与溶液界面上的电荷分布和电荷传递过程。
当发生电化学反应时,电极电位会发生变化。
2.参比电极:为了准确测量被测电极的电位,需要使用参比电极与被测电极构成电池。
参比电极的电位是已知的、稳定的,并且与被测电极的反应无关。
常用的参比电极包括饱和甘汞电极、银/氯化银电极等。
3.测量电位的方法:一般使用电位计来测量电极电位。
电位计通过测量电极与参比电极之间的电势差,来确定被测电极的电位。
同时,为了消除电容效应,测量时需要缓慢改变电极之间的电势差。
实验步骤电位分析法的实验步骤如下:1.准备电解池:根据实验需要选择合适的电解池和电解液。
电解池由被测电极、参比电极和电解液组成。
选择适当的电解液可以增强反应的灵敏性和选择性。
2.调整电位计:先将电位计与参比电极连接并调零,确保测量是基于参比电极。