分式方程题型分类练习
- 格式:docx
- 大小:90.77 KB
- 文档页数:6
专题16 分式方程的解法专项训练1.解方程:2122x x x =+--.【分析】两边同时乘以()2x -,将分式方程化为整式方程,解整式方程,然后检验,即可求出分式方程的解.【详解】解∶ 方程两边同时乘以()2x -,得:22x x =+-,解得2x =,检验∶当2x =时,20x -=,∴原方程无解.2.解方程:2123111x x x x-=+--.【分析】先去分母,把方程化为整式方程,再解整式方程并检验即可.【详解】解:2123111x x x x-=+--,去分母得:()1231x x x --=-+,整理得:22x =-,解得:=1x -,检验:把=1x -代入()()11x x +-可得()()110x x +-=,∴=1x -是增根,原方程无解.3.解分式方程13122--=--:x x x x【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】13122x x x x--=--去分母得:()123x x x---=-移项,合并同类项得:31x =-∴13x =-.经检验, 13x =-是原分式方程的解,故原方程的解是:13x =-4.解方程:11322x x x-+=---.【分析】方程两边同时乘以()2x -,化为整式方程,解方程即可求解.【详解】解:方程两边同时乘以()2x -,得()()1132x x --=--解得:2x =,当2x =时,20x -=∴2x =是原方程的增根,原方程无解.5.解分式方程26124x x x -=--【答案】1x =【详解】解:去分母得:()()()2622x x x x +-=+-,去括号得:22264x x x +-=-,解得1x =,检验:当1x =时,240x -¹∴原方程的根是1x =.6.解方程:241111x x x +=---.【答案】3x =-【详解】解:方程两边同乘()()11x x +-,得:()()()24111x x x =-+-+-,去括号,可得:224211x x x =----+,移项、合并同类项,可得;26x -=,系数化为1,可得:3x =-,检验:当3x =-时,()()110x x +-¹,∴原分式方程的解为3x =-.7.解方程:3x x -253169x x x --=-+【答案】3x =-【详解】解:2531369x x x x x --=--+,()253133x x x x --=--,方程两边都乘2(3)x -,得()()23353x x x x ---=-,解得:3x =-,检验:当3x =-时,()230x -¹,所以3x =-是原方程的解,即原方程的解是3x =-.8.解方程:43(1)1x x x x +=--【分析】方程两边同乘最简公分母(1)x x -化为整式方程,然后求解,再进行检验.【详解】解:方程两边同乘最简公分母(1)x x -,得43+=x x ,解得2x =,检验:当2x =时,(1)2(21)20x x -=´-=¹,2x \=是原方程的根,故原分式方程的解为2x =.9.解方程:22122x x x-=--.【分析】两边都乘以2x -,化为整式方程求解,求出x 的值后再检验即可.【详解】解:22122x x x-=--,两边都乘以2x -,得:222x x +=-解得4x =-,检验:当4x =-时,最简公分母20x -¹,∴4x =-是原分式方程的解.10.解分式方程:315155x x x+=--.【分析】观察可得最简公分母是5x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:由原方程可得:315155x x x -=--,方程两边同乘以5x -,得:3155x x -=-,解得:5x =,经检验:5x =是原方程的增根,所以原方程无解.11.解方程:235011x x x --=--.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:235011x x x --=--去分母得:()()3150x x +--=,整理得:280x +=,解得:4x =-,经检验4x =-是分式方程的解.12.解方程:2121x x x+=+.【分析】根据解分式方程的解法步骤求解,最后检验即可.【详解】解:去分母,得()()22121x x x x ++=+去括号,得222122x x x x++=+移项、合并同类项,得1x -=-化系数为1,得1x =检验:当1x =时,()10x x +¹∴原分式方程的解为1x =.13.解分式方程:21142x x x =---【分析】先两边同时乘以各分母的最小公分母转化为整式方程,再解这个整式方程即可.【详解】解:两边同乘以24x -得21(2)(4)x x x =+--,22124x x x =+-+解方程得3:2x =-,经检验,32x =-是原方程的解\原分式方程的解为32x =-.14.解分式方程:14322x x x--=--【分析】先去分母变分式方程为整式方程,然后解整式方程,最后对方程的解进行检验即可.【详解】解:14322x x x--=--,去分母得:()1432x x +-=-,去括号得:1436x x +-=-,移项得:3641x x -=-+-,合并同类项得:23x -=-,化x 系数化为1得:32x =,检验:把32x =代入2x -得:312022-=-¹,∴ 32x =是原方程的解.15.解方程:121133x x x =-++.【分析】先去分母,将分式方程转化成整式方程求解,再检验即可.【详解】解:方程两边同时乘以()31x +,得()3231x x =-+,解得:6x =-,检验:把6x =-代入()31x +得()361150-+=-¹,∴原方程的解为:6x =-.16.解方程:(1)313221x x +=--;(2)22111y y y -=--.【分析】(1)方程两边同时乘以()21x -,化为整式方程,求出方程的根并检验即可得出答案;(2)去分母()()11y y +-化为整式方程,求出方程的根并检验即可得出答案.【详解】(1)解:()313211x x -=--,()3261x -=-,67x =,76x =,检验:当76x = 时,()210x -¹,∴原分式方程的解是:76x =;(2)解:()()21111y y y y -=-+-,()()()1211y y y y +-=+-,2221y y y +-=-,1y =,检验:当1y =时,()()110y y +-=,∴原分式方程无解.17.解方程.(1)143x x =+;(2)31244x x x-=---.【分析】(1)按照解分式方程的步骤,进行计算即可解答;(2)按照解分式方程的步骤,进行计算即可解答.【详解】(1)解:143x x =+,34x x +=,解得:1x =,检验:当1x =时,(3)0x x +¹,1x \=是原方程的根;(2)解:31244x x x-=---,312(4)x x -=---,解得:4x =,检验:当4x =时,40x -=,4x \=是原方程的增根,\原方程无解.18.解分式方程:(1)143x x =+.(2)31222x x x +=+--.【分析】(1)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:143x x =+,方程两边都乘()3x x +,得34x x +=,整理,得33x =,解得:1x =,当1x =时,()30x x +¹,所以原方程的解是1x =.(2)解:31222x x x +=+--,方程两边都乘2x -,得()3122x x =++-,整理,得36x =,解得:2x =,当2x =时,20x -=,故2x =是原方程增根,原方程无解.19.解方程:(1)5113x x =+-(2)21233x x x-+=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:5113x x =+-,方程的两边同乘()()13x x +-得,()531x x -=+,解得,4x =,检验,把4x =代入最简公分母()()130x x +-¹,所以4x =是原方程的解;(2)解:21233x x x-+=--,方程的两边同乘()3x -得,()2231x x -+-=-,解得,3x =,检验,把3x =代入最简公分母30x -=,所以3x =是原方程的增根,∴原方程无解.20.解方程:(1)232x x =+;(2)11322x x x-=---.【分析】(1)方程两边都乘()2x x +得出()223x x +=,求出方程的解,再进行检验即可;(2)方程两边都乘2x -得出()()1132x x =----,求出方程的解,再进行检验即可.【详解】(1)解:方程两边都乘()2x x +,得()223x x +=,解得:4x =,检验:当4x =时,()246240x x +=´=¹,\4x =是原方程的解,\原方程的解是4x =;(2)解:方程两边都乘2x -,得()()1132x x =----,解得:2x =,检验:当2x =时,20x -=,\2x =是增根,\原方程无解.21.解方程(1)322112x x x =---(2)214111x x x +-=--【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)去分母得到:423x x =-+,解得:13x =-,经检验13x =-是分式方程的解;(2)去分母得:222141x x x ++-=-,解得:1x =,经检验1x =是增根,分式方程无解.22.解方程(1)132x x =-(2)21233y y y-=---【分析】(1)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程,然后检验即可.【详解】(1)解:132x x=-去分母得:()32x x =-,去括号得:36x x =-,移项得:36x x -=-,合并同类项得:26x -=-,系数化为1得:3x =,检验,当3x =时,()20x x -¹,∴原方程的解为3x =;(2)解:21233y y y-=---去分母得:()2231y y -=-+,去括号得:2261y y -=-+,移项得:2612y y -=-++,合并同类项得:3y -=-,系数化为1得:3y =,检验,当3y =时,30y -=,∴3y =是原方程的增根,∴原方程无解.23.解方程(1)3222x x =+-(2)29472393x x x x +-=+--【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:去分母得:()()3222x x -=+,去括号得:3624x x -=+,移项合并同类项得:10x =,经检验10x =是原方程的解;(2)解:去分母得:()()29347233x x x +=-+´-,去括号得:291221618+=-+-x x x ,移项合并同类项得:1648-=-x ,将未知数系数化为1得:3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.24.解方程:(1)33122x x x -+=--;(2)23321x x =--.【分析】(1)根据去分母,移项,合并同类项,系数化为1求出方程的解,并检验即可;(2)根据去分母,去括号,移项,合并同类项,系数化为1求出方程的解,并检验即可.【详解】(1)解:方程两边都乘以2x -,得323x x +-=-,移项,合并,得22x =系数化为1,得1x =,检验:当1x =时,210x -=-¹,∴原分式方程的解为1x =;(2)解:方程两边都乘以()()321x x --,得()()33221x x -=-,去括号,得3942x x -=-移项,合并,得7x -=系数化为1,得7x =-,检验:当7x =-时,()()3210x x --¹,∴原分式方程的解为7x =-.25.解方程:(1)312x x x -=-.(2)2114232349x x x x -=+--.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:312x x x-=-,去分母得:()()2322x x x x --=-,解得:6x =,检验:()()26620x x -=´-¹,∴方程的解为6x =;(2)2114232349x x x x -=+--,去分母得:()23234x x x --+=,解得:32x =-,检验:223494902x æö-=´--=ç÷èø,是增根,∴方程无解.26.解分式方程:(1)23211x x x +=+-;(2)21233x x x-=---.【分析】(1)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:由23211x x x +=+-则去分母得:()()()()2131211x x x x x -++=+-,去括号得:22223322x x x x -++=-,移项合并同类项得:5x =-,经检验:5x =-是原分式方程的解;(2)解:由21233x x x-=---,则去分母得:()()()()233233x x x x x --=----,去括号得:2265321218x x x x x -+=-+-+,移项合并同类项得:3x =,因为330-=,经检验:3x =是增根,原分式方程无解.27.解分式方程:(1)3513x x =++;(2)214111x x x +-=--.【分析】(1)先去分母,解得到的整式方程,再检验,即可得到答案;(2)先去分母,解得到的整式方程,再检验,即可得到答案.【详解】(1)3513x x =++解:两边同乘以()()13x x ++得,()()3351x x +=+,解得,2x =,当2x =时,()()130x x ++¹,∴2x =是分式方程的解;(2)214111x x x +-=--解:两边同乘以()()11x x +-得,()()()21411x x x +-=+-,解得,1x =,当1x =时,()()110x x +-=,经检验1x =是增根,∴原分式方程无解.28.解方程:(1)121x x x+-=(2)21111x x x -=++【分析】(1)方程两边都乘x 得出()12x x -+=,求出方程的解,再进行检验即可;(2)方程两边都乘1x +得出()211x x -+=,求出方程的解,再进行检验即可.【详解】(1)解:121x x x+-=,去分母得:()12x x -+=,解得:12x =-,检验:当12x =-时,0x ¹,∴12x =-是原方程的解;(2)21111x x x -=++,去分母得:()211x x -+=,解得:2x =,检验:当2x =时,10x +¹,∴2x =是原方程的解.29.解方程:(1)3211x x =+-;(2)29472393x x x x +-=+--.【分析】(1)先去分母变为整式方程,然后再解整式方程,得出x 的值,最后进行检验;(2)先去分母,再去括号,然后移项合并同类项,将未知数系数化为1,最后进行检验即可.【详解】(1)解:3211x x =+-,3322x x -=+,5x =,检验:把5x =代入()()11x x -+得:()()5151200-+=¹,∴5x =是原方程的解.(2)解:29472393x x x x +-=+--,()()29347233x x x +=-+´-,291221618+=-+-x x x ,1648-=-x ,3x =,检验:把3x =代入()33x -得:()3330´-=,∴3x =是原方程的增根,∴原方程无解.30.解分式方程:(1)100307x x =+;(2)21212339x x x -=+--.【分析】(1)两边同时乘以(7)x x +去分母,然后再整理成一元一次方程进行计算即可;(2)两边同时乘以()(33)x x +-去分母,然后再整理成一元一次方程进行计算即可.【详解】(1)方程两边都乘以(7)x x +,得100(7)30x x +=.解这个一元一次方程,得10x =-.检验:当10x =-,(7)0x x +¹.所以,10x =-是原分式方程的根.(2)方程两边都乘以()(33)x x +-,得32(3)12x x -++=.解这个一元一次方程,得3x =.检验:当3x =时,(3)(3)0x x +-=.因此,3x =是原分式方程的增根,所以,原分式方程无解.31.阅读与思考阅读下面的材料,解答后面的问题.解方程:1401x x x x --=-.解:设1x y x -=,则原方程可化为40y y -=,方程两边同时乘y 得240y -=,解得2y =±,经检验:2y =±都是方程40y y -=的解,\当2y =时,12x x-=,解得=1x -,当=2y -时,12x x-=-,解得13x =,经检验:=1x -或13x =都是原分式方程的解,\原分式方程的解为=1x -或13x =.上述这种解分式方程的方法称为“换元法”.问题:(1)若在方程中1021x x x x --=-,设1x y x -=,则原方程可化为________________.(2)模仿上述换元法解方程:1279021x x x ---=+-.【分析】(1)设1x y x-=,则111,221x x y x x y -==-,据此求解即可;(2)先把方程变形为19(2)021x x x x -+-=+-,再用换元法求解即可.【详解】(1)解:设1x y x -=,原方程可化为1102y y -=,故答案为:1102y y -=(2)解:∵12712719(2)9(9)212121x x x x x x x x x x ---+--=-+=-+-+-+-,∴原方程为19(2)021x x x x -+-=+-。
分式方程的重要题型第一种题型工程问题:1.某市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作15天,共完成总工程的。
①.求乙队单独完成这项工程需要多少天?②.为了加快工程进度,甲乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?2.某工厂计划在规定的时间内生产24000个零件,若每天此原计划多生产30个零件,则在规定的时间内可以多生产300个零件。
①.求原计划每天生产的零件个数和规定的天数。
②.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进了5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数。
3.某一公路道路维修工程,准备从甲乙两个工程队中选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合作此项维修工程,6天可以完成,共需工程费用385200元,若由一队单独完成此项维修工程,甲队比乙队少用5天,甲队每天的工程费用比乙队多4000元,从节省资金的角度考虑,应选择哪个工程队单独完成此项维修工程?4.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年后,城区绿化总面积新增360万平方米,自2013年年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务。
①.问实际每年绿化面积是多少万平方米?②.为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过两年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?5.某校为美化校园,计划对面积为1800㎡的区域进行绿化。
安排甲乙两个工程队完成,已知甲队每天完成绿化的面积是乙队每天完成绿化面积的两倍,并且在单独完成面积为400㎡的区域绿化时,甲队比乙队少用4天。
分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
高中数学分式方程练习题一、分式方程的基本概念1. 判断下列方程是否为分式方程:(1) $\frac{2}{x} + 3 = 5$(2) $4x 7 = \frac{1}{x+2}$(3) $x^2 5x + 6 = 0$(4) $\frac{1}{x1} \frac{1}{x+1} = \frac{2}{x^21}$2. 将下列方程化成分式方程:(1) $3x 4 = \frac{5}{2x}$(2) $2(x3) = \frac{1}{x+1} + \frac{3}{x1}$二、分式方程的解法1. 解下列分式方程:(1) $\frac{1}{x+2} + \frac{1}{x2} = \frac{4}{x^24}$(2) $\frac{2}{x1} \frac{3}{x+2} = \frac{1}{x^2+x2}$(3) $\frac{3}{x+3} + \frac{4}{x1} =\frac{7x}{x^2+2x3}$2. 解下列分式方程组:(1) $\begin{cases} \frac{1}{x} + \frac{1}{y} = 1 \\ \frac{1}{xy} = \frac{2}{x+y} \end{cases}$(2) $\begin{cases} \frac{2}{x} + \frac{3}{y} = 7 \\ \frac{1}{x} \frac{1}{y} = 2 \end{cases}$三、分式方程的应用1. 甲、乙两人共同完成一项工作,甲单独完成需要5天,乙单独完成需要8天。
求甲、乙合作完成这项工作需要多少天?2. 一辆汽车从A地出发,以60km/h的速度行驶,另一辆汽车从B 地出发,以80km/h的速度行驶。
两车相向而行,经过3小时后相遇。
求A、B两地之间的距离。
3. 某商品的原价为x元,商店进行打折促销,折后价格为0.8x 元。
若顾客购买5件商品,实际支付金额为原价的7折。
列分式方程解应用题的常见类型分析列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的根;第二,检验得到的根是不是使实际问题有意义。
一、路程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度×时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
相等关系:二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率×工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?相等关系:三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。
例3 某超市销售一种钢笔,每枝售价为12元。
后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。
这种钢笔原来每枝进价是多少元?本题中的主要等量关系:练习:1.某地为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?2.甲乙两车在A、B两城间连续往返行驶,甲车从A城出发,乙车从B城出发,且比甲车早出发1小时,两车在途中分别距离200千米和240千米的C处第一次相遇。
专题09分式方程(2大考点+4种题型)思维导图核心考点与题型分类聚焦考点一:分式方程及其解法考点二:分式方程应用题题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题题型四:分式方程的实际应用考点一:分式方程及其解法1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.考点二:分式方程应用题列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.题型一:分式方程的解法题型二:根据分式方程解的情况求值题型三:分式方程无解问题值.题型四:分式方程的实际应用【例4】.(2022下·上海·八年级上海市田林第三中学校考期中)5G的速度很快,比4G速度每秒多95MB,一部1000MB的电影,5G比4G要快190秒,求5G的速度.【变式1】.(2022下·上海闵行·八年级上海市民办文绮中学校考阶段练习)若A、B两地相距30千米,甲、乙两人分别从A、B两地相向而行,且甲比乙早出发2小时.如果乙比甲每小时多行2千米,那么两人恰好在AB中点相遇.求甲、乙两人的速度各是每小时多少千米?【变式2】.(2022下·上海普陀·八年级校考期中)一项工程,如果甲、乙两队单独完成,甲队比乙队多用5天,如果甲、乙两队合作,6天可以完成.求两队单独完成此项工程各需多少天?【变式3】.(2023下·上海静安·八年级统考期末)某公司先从甲地用9000元购买了一批商品,后发现乙地同一商品每件比甲地便宜,因此又用12000元从乙地补购了一批同样的商品.公司按每件200元售完这两批商品后,共赚了11000元.(1)设该公司从甲地购进x件商品,请用含字母x的代数式表示从乙地购进的商品件数是______;(2)如果乙地同一商品每件比甲地便宜30元,求该公司分别从甲乙两地购进这种商品各多少件.A.1-B.3C.1-或3D.无法确定22.(2023下·上海黄浦·八年级校考阶段练习)甲乙两人各加工30个零件,甲比乙少用1小时完成任务;乙改进操作方法,使生产效率提高了一倍,结果乙完成30个零件的时间比甲完成24个零件所用的时间少1小时.问甲乙两人原来每小时各加工多少个零件.23.(2022下·上海·八年级期末)学校到学习基地的公路距离为15千米,一部分人骑自行车先走,40分钟后,其余的人乘坐汽车出发,结果他们同时到达,如果汽车的平均速度与自行车的平均速度的比是3:1,问:汽车与自行车的平均速度分别是多少?24.为庆祝“六一”活动,镇活动中心需要600个环保纸袋,原计划由初二(1)班全体同学制作完成、在实际制作时,又有初二(2)班10名同学自愿加入参与制作,这样,实际参加制作的同学人均制作的数量比原计划少5个,那么初二(1)班共有多少名同学?25.(2021下·上海·八年级上海市西南模范中学校考期中)学校开展“书香校园”活动,购买了一批图书.已知购买科普类图书花费了10000元,购买文学类图书花费了9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普类图书的数量比购买文学类图书数量少100本,科普类图书平均每本的价格是多少元?26.(2022下·上海宝山·八年级校考阶段练习)如图反映了甲、乙两名自行车爱好者同时骑车从A 地到B 地进行训练时行驶路程y (千米)和行驶时间x (小时)之间关系的部分图像,根据图像提供的信息,解答下列问题:(1)求乙的行驶路程y 和行驶时间x ()13x ≤≤之间的函数解析式;(2)如果甲的速度一直保持不变,乙在骑行3小时之后又以第1小时的速度骑行,结果两人同时到达B 地,求A 、B 两地之间的距离.。
分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
分式方程练习题及答案1. 问题描述分式方程是一种含有分数的方程,方程中包含有未知数,并且未知数是作为分式的存在。
解分式方程通常需要使用到一些分式方程的性质以及灵活运用运算法则。
本文将提供一些分式方程的练习题,并附上答案及解析,希望能帮助读者更好地掌握分式方程的解题方法。
2. 练习题题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$题目 3解方程:$$\\frac{x}{4} - \\frac{x+1}{3} = \\frac{x-2}{6}$$题目 4解方程:$$\\frac{1}{2x-1} + \\frac{1}{3} = \\frac{4x+1}{6x-3}$$ 题目 5解方程:$$\\frac{1}{x} + \\frac{1}{x-2} = \\frac{3}{x-1}$$3. 答案与解析题目 1解方程:$$\\frac{x}{2} + \\frac{x}{3} = 4$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{3x}{6} + \\frac{2x}{6} = 4$$。
将分数相加,得到$$\\frac{5x}{6} = 4$$接下来,我们可以将方程两边都乘以6,消去分母的值,得到5x=24。
最后,将方程两边都除以5,得到解$$x = \\frac{24}{5}$$。
所以,方程的解为$$x = \\frac{24}{5}$$。
题目 2解方程:$$\\frac{2}{x} + \\frac{3}{x+1} = \\frac{5}{x^2 + x}$$解析:首先,我们可以将方程中的分数进行通分,得到$$\\frac{2(x+1)}{x(x+1)} + \\frac{3x}{x(x+1)} = \\frac{5}{x^2 + x}$$将分数相加并合并同类项,得到$$\\frac{2(x+1) + 3x}{x(x+1)} = \\frac{5}{x^2 + x}$$。
专题5.31分式方程的应用(题型分类专题)(例题讲解)列分式方程解应用题中考中是必考内容之一,下面结合近几年中考题型举例进行巩固:类型一、直接列分式方程求解1.(2022·辽宁丹东·统考中考真题)为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?【答案】每个篮球的原价是120元.【分析】设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x元,则每个篮球的实际价格是(x﹣20)元,根据题意,得12000x=1000020x-.解得x=120.经检验x=120是原方程的解.答:每个篮球的原价是120元.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.举一反三:【变式1】(2022·贵州铜仁·统考中考真题)科学规范戴口罩是阻断新冠病毒传播的有效措施之一,某口罩生产厂家接到一公司的订单,生产一段时间后,还剩280万个口罩未生产,厂家因更换设备,生产效率比更换设备前提高了40%.结果刚好提前2天完成订单任务.求该厂家更换设备前和更换设备后每天各生产多少万个口罩?【答案】该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【分析】设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,利用工作时间=工作总量÷工作效率,结合提前2天完成订单任务,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设该厂家更换设备前每天生产口罩x万只,则该厂家更换设备后每天生产口罩(1+40%)x万只,依题意得:2802(140%2)80x x-=+,解得:x=40,经检验,x=40是原方程的解,且符合题意.答:该厂家更换设备前每天生产口罩40万只,更换设备后每天生产口罩56万只.【点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【变式2】(2022·贵州贵阳·统考中考真题)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,列出分式方程,解方程即可求解.解:设每辆小货车货运量x 吨,则每辆大货车货运量()4x +吨,根据题意,得,80604x x=+,解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点拨】本题考查了分式方程的应用,根据题意列出方程是解题的关键.类型二、分式方程✮✮不等式(组)2.(2021·山东济南·统考中考真题)端午节吃粽子是中华民族的传统习俗.某超市节前购进了甲、乙两种畅销口味的粽子.已知购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个,甲种粽子的单价是乙种粽子单价的2倍.(1)求甲、乙两种粽子的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种粽子共200个,若总金额不超过1150元,问最多购进多少个甲种粽子?【答案】(1)乙种粽子的单价为4元,则甲种粽子的单价为8元;(2)最多购进87个甲种粽子【分析】(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,然后根据“购进甲种粽子的金额是1200元,购进乙种粽子的金额是800元,购进甲种粽子的数量比乙种粽子的数量少50个”可列方程求解;(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,然后根据(1)及题意可列不等式进行求解.解:(1)设乙种粽子的单价为x 元,则甲种粽子的单价为2x 元,由题意得:1200800502x x+=,解得:4x =,经检验4x =是原方程的解,答:乙种粽子的单价为4元,则甲种粽子的单价为8元.(2)设购进m 个甲种粽子,则购进乙种粽子为(200-m )个,由(1)及题意得:()842001150m m +-≤,解得:87.5m ≤,∵m 为正整数,∴m 的最大值为87;答:最多购进87个甲种粽子.【点拨】本题主要考查分式及一元一次不等式的应用,熟练掌握分式方程的解法及一元一次不等式的解法是解题的关键.举一反三:【变式1】(2022·辽宁营口·一模)某单位计划选购甲,乙两种物品,已知甲物品单价比乙物品单价高20元,用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍.(1)求甲,乙两种物品的单价分别是多少元?(2)如果该单位计划购买甲,乙两种物品共80件,且总费用不超过4060元,求最多能购买甲物品多少件?【答案】(1)甲物品的单价是60元,乙物品的单价是40元(2)43件【分析】(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,利用数量=总价÷单价,结合用240元单独购买甲物品的数量是用80元单独购买乙物品数量的2倍,可得出关于x 的分式方程,解之经检验后,可得出乙物品的单价,再将其代入()20x +中,可求出甲物品的单价;(2)设购买m 件甲物品,则购买()80m -件乙物品,利用总价=单价×数量,结合总价不超过4060元,可得出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.解:(1)设乙物品的单价是x 元,则甲物品的单价是()20x +元,根据题意得:24080220x x=⨯+,解得:40x =,经检验,40x =是所列方程的解,且符合题意,∴20402060x +=+=.答:甲物品的单价是60元,乙物品的单价是40元.(2)设购买m 件甲物品,则购买()80m -件乙物品,根据题意得:()6040804060m m +-≤,解得:43m ≤,又∵m 为正整数,∴m 的最大值为43.答:最多能购买甲物品43件.【点拨】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是正确分析题目中的等量关系.【变式2】(2023·山东济南·一模)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用900元购进乒乓球若干盒,第二次又用900元购进该款乒乓球,但这次每盒的进价是第一次进价的1.2倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?(2)若要求这两次购进的乒乓球按同一价格全部销售完后获利不低于510元,则每盒乒乓球的售价至少是多少元?【答案】(1)5元(2)7元【分析】(1)设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,根据购进数量比第一次少了30盒列方程即可;(2)设每盒乒乓球的售价为y 元,根据全部销售完后获利不低于510元列出不等式即可.(1)解:设第一次每盒乒乓球的进价是x 元,则第二次每盒乒乓球的进价是1.2x 元,由题意得:900900301.2x x=+解得:x =5,经检验:x =5是原分式方程的解,,且符合题意,答:第一次每盒乒乓球的进价是5元;(2)解:设每盒乒乓球的售价为y 元,第一次每盒乒乓球的进价为5元,则第二次每盒乒乓球的进价为5 1.26⨯=(元),由题意得:()()9009005651056y y ⨯-+-≥,解得:7y ≥.答:每盒乒乓球的售价至少是7元.【点拨】本题考查了分式方程和一元一次不等式的应用,解题关键是准确理解题意,根据题目中的数量关系列出方程和不等式.类型三、分式方程✮✮一次函数增减性3.(2022·山东东营·统考中考真题)为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?【答案】(1)甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【分析】(1)设乙种水果的进价是x 元/千克,根据“甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克”列出分式方程,解方程检验后可得出答案;(2)设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,根据利润=(售价-进价)×数量列出y 关于a 的一次函数解析式,求出a 的取值范围,然后利用一次函数的性质解答.(1)解:设乙种水果的进价是x 元/千克,由题意得:()1000120010120%x x=+-,解得:5x =,经检验,5x =是分式方程的解且符合题意,则()120%0.854x -=⨯=,答:甲种水果的进价是4元/千克,乙种水果的进价是5元/千克;(2)解:设水果店购进甲种水果a 千克,获得的利润为y 元,则购进乙种水果(150-a )千克,由题意得:()()()6485150450y a a a =-+--=-+,∵-1<0,∴y 随a 的增大而减小,∵甲种水果的重量不低于乙种水果重量的2倍,∴()2150a a -≥,解得:100a ≥,∴当100a =时,y 取最大值,此时100450350y =-+=,15050a -=,答:水果店购进甲种水果100千克,乙种水果50千克时获得最大利润,最大利润是350元.【点拨】本题考查了分式方程的应用,一次函数与一元一次不等式的应用,正确理解题意,找出合适的等量关系列出方程和解析式是解题的关键.举一反三:【变式1】(2020·新疆·统考中考真题)某超市销售A 、B 两款保温杯,已知B 款保温杯的销售单价比A 款保温杯多10元,用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯的销售单价各是多少元?(2)由于需求量大,A 、B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A 款保温杯的数量不少于B 款保温杯数量的两倍.若A 款保温杯的销售单价不变,B 款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【答案】(1)A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元(2)进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元【分析】(1)设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,根据用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同列分式方程解答即可;(2)设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,根据题意求出0<y ≤40,设总销售利润为W 元,列出一次函数,根据一次函数的性质求解即可.(1)解:设A 款保温杯的销售单价是x 元,B 款保温杯的销售单价是(x +10)元,48036010x x=+,解答x =30,经检验,x =30是原方程的解,∴x +10=40,答:A 款保温杯的销售单价是30元,B 款保温杯的销售单价是40元;(2)B 款保温杯销售单价为40×(1-10%)=36元,设购进B 款保温杯数量为y 个,则A 款保温杯数量为(120-y )个,120-y ≥2y ,解得y ≤40,∴0<y ≤40,设总销售利润为W 元,W =(30-20)(120-y )+(36-20)y =6y +1200,∵W 随y 的增大而增大,∴当y =40时,利润W 最大,最大为6×40+1200=1440元,进货方式为购进B 款保温杯数量为40个,A 款保温杯数量为80个,最大利润是1440元.【点拨】此题考查了分式方程的实际应用,一次函数的实际应用,正确理解题意是解题的关键.【变式2】(2022·广东深圳·统考中考真题)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少【答案】(1)甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元(2)最低费用为1100元【分析】(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.列出方程即可解答;(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,列出w 关于a 的函数,利用一次函数的增减性进行解答即可.解:(1)设甲类型的笔记本电脑单价为x 元,则乙类型的笔记本电脑为()10x +元.由题意得:1101201x x =+解得:11x =经检验11x =是原方程的解,且符合题意.∴乙类型的笔记本电脑单价为:11112+=(元).答:甲类型的笔记本电脑单价为11元,乙类型的笔记本电脑单价为12元.(2)设甲类型笔记本电脑购买了a 件,最低费用为w ,则乙类型笔记本电脑购买了()100a -件.由题意得:1003a a -≤.∴25a ≥.()1112100111200121200w a a a a a =+-=+-=-+.∵100-<,∴当a 越大时w 越小.∴当100a =时,w 最小,最小值为110012001100-⨯+=(元).答:最低费用为1100元.【点拨】此题考查了分式方程的应用,以及一次函数的应用,掌握分式方程的应用,以及一次函数的应用是解题的关键.类型四、分式方程✮✮不等式(组)✮✮一次函数增减性➽➼方案问题4.(2022·黑龙江牡丹江·统考中考真题)某工厂准备生产A 和B 两种防疫用品,已知A 种防疫用品每箱成本比B 种防疫用品每箱成本多500元.经计算,用6000元生产A 种防疫用品的箱数与用4500元生产B 种防疫用品的箱数相等.请解答下列问题:(1)求A ,B 两种防疫用品每箱的成本;(2)该工厂计划用不超过90000元同时生产A 和B 两种防疫用品共50箱,且B 种防疫用品不超过25箱,该工厂有几种生产方案?(3)为扩大生产,厂家欲拿出与(2)中最低成本相同的费用全部用于购进甲和乙两种设备(两种都买).若甲种设备每台2500元,乙种设备每台3500元,则有几种购买方案?最多可购买甲,乙两种设备共多少台?(请直接写出答案即可)【答案】(1)A 种防疫用品2000元/箱,B 种防疫用品1500元/箱(2)共有6种方案(3)4种,33台【分析】(1)设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,根据题意列出分式方程解得即可;(2)设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,根据题意列得不等式解得即可;(3)先根据(2)求得最低成本,设购进甲和乙两种设备分别为a ,b 台,根据题意列得方程,解得正整数解即可.(1)解:设B 种防疫用品成本x 元/箱,A 种防疫用品成本()500x +元/箱,由题意,得45006000500x x =+,解得x =1500,检验:当x =1500时,()5000x x +≠,所以x =1500是原分式方程的解,50015005002000x +=+=(元/箱),答:A 种防疫用品2000元/箱,B 种防疫用品1500元/箱;(2)解:设B 种防疫用品生产m 箱,A 种防疫用品生产()50m -箱,()150020005090000m m +-≤,解得20m ≥,∵B 种防疫用品不超过25箱,∴2025m ≤≤,∵m 为正整数,∴m =20,21,22,23,24,25,共有6种方案;(3)解:设生产A 和B 两种防疫用品费用为w ,w =1500m +2000(50-m )=-500m +100000,∵k <0,∴w 随m 的增大而减小,∴当m =25时,w 取得最小值,此时w =87500,设购进甲和乙两种设备分别为a ,b 台,∴2500a +3500b =87500,∴17575b a -=,∵两种设备都买,∴a ,b 都为正整数,∴285a b =⎧⎨=⎩,2110a b =⎧⎨=⎩,1415a b =⎧⎨=⎩,720a b =⎧⎨=⎩,∴一共4种方案,最多可购买甲乙两种设备共28+5=33台.【点拨】本题考查了分式方程、一元一次不等式组、二元一次方程的实际应用,根据题意列出等式或不等式是解题的关键.举一反三:【变式1】(2022·贵州黔东南·统考中考真题)某快递公司为了加强疫情防控需求,提高工作效率,计划购买A 、B 两种型号的机器人来搬运货物,已知每台A 型机器人比每台B 型机器人每天少搬运10吨,且A 型机器人每天搬运540吨货物与B 型机器人每天搬运600吨货物所需台数相同.(1)求每台A 型机器人和每台B 型机器人每天分别搬运货物多少吨?(2)每台A 型机器人售价1.2万元,每台B 型机器人售价2万元,该公司计划采购A 、B 两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A 型机器人m 台,购买总金额为w 万元,请写出w 与m 的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?【答案】(1)每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)①0.860w m =-+;②当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【分析】(1)设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,然后根据题意可列分式方程进行求解;(2)①由题意可得购买B 型机器人的台数为()30m -台,然后由根据题意可列出函数关系式;②由题意易得()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,然后可得1517m ≤≤,进而根据一次函数的性质可进行求解.(1)解:设每台A 型机器人每天搬运货物x 吨,则每台B 型机器人每天搬运货物为(x +10)吨,由题意得:54060010x x =+,解得:90x =;经检验:90x =是原方程的解;答:每台A 型机器人每天搬运货物90吨,每台B 型机器人每天搬运货物为100吨.(2)解:①由题意可得:购买B 型机器人的台数为()30m -台,∴()1.22300.860w m m m =+-=-+;②由题意得:()901003028300.86048m m m ⎧+-≥⎨-+≤⎩,解得:1517m ≤≤,∵-0.8<0,∴w 随m 的增大而减小,∴当m =17时,w 有最小值,即为0.8176046.4w =-⨯+=,答:当购买A 型机器人17台,B 型机器人13台时,购买总金额最少,最少金额为46.4万元.【点拨】本题主要考查分式方程的应用、一元一次不等式组的应用及一次函数的应用,熟练掌握分式方程的应用、一元一次不等式组的应用及一次函数的应用是解题的关键.【变式2】(2022·湖南怀化·统考中考真题)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可;(2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论;(3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =,经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩;(3)解:320270> ,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈,答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点拨】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.。
分式方程应用题的常见类型题型1 工程问题1、政府计划对运动公园进行改造,这项工程先由甲工程队施工10天,完成了公园工程的1/4,为了加快工程进度,乙工程队也加入了施工,甲乙两工程队合作完成了剩下的工程,求乙工程队单独完成这项工程需要几天?解:设乙工程队单独完成需要x 天1114110420x x +=-= 经检验20x =是原方程的根所以乙工程队单独完成这项工程需要20天。
2、某工程队修建一条1 200 m 的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?解:(1)设这个工程队原计划每天修建道路x 米,得1 200x = 1 200(1+50%)x +4,解得x =100.经检验,x =100是原方程的解.答:这个工程队原计划每天修建100 m .(2)设实际平均每天修建道路的工效比原计划增加y%,可得1 200100= 1 200100+100y%,解得y =20.经检验,y=20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.3、一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1 x+11.5x=112,解得x=20,经检验,x=20是方程的解且符合题意.1.5x=30.答:甲公司单独完成此项工程需20天,乙公司需30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意,得12(y+y-1 500)=102 000,解得y=5 000.甲公司单独完成此项工程所需的施工费为20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为30×(5 000-1 500)=105 000(元).∴甲公司的施工费较少.类型2 行程问题1、甲、乙两同学与学校的距离均为3 000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度.(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意,得60012x+3 000-6002x=3 000x -2, 解得x =300.经检验,x =300是方程的解.答:乙骑自行车的速度为300米/分钟.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.2、从贵阳到广州,乘特快列车的行程约为1 800 km ,高铁开通后,高铁列车的行程约为860 km ,运行时间比特快列车所用的时间减少了16 h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.解:设特快列车的平均速度为x km/h,根据题意可列出方程为1 800 x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的解.答:特快列车的平均速度为91 km/h.类型3销售问题1、某学校后勤人员到一家文具店给九年级的同学购买考试用的文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?解:设九年级学生有x人,根据题意,得1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验,x=352是方程的解.答:这个学校九年级学生有352人.2、华昌中学开学初在金利源商场购进A、B两种品牌足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A 品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得2 500x =2 000x +30×2,解得x =50.经检验,x =50是原方程的解.则x +30=80.答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购进A 品牌足球(50-a)个,根据题意,得50×(1+8%)(50-a)+80×0.9a ≤3 260,解得a ≤3119.∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.3、(常德中考)某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 985元,则第二批衬衫每件至少要售多少元?解:(1)设第二次购进衬衫x 件,则第一次购进衬衫2x 件,根据题意,得4 5002x -2 100x =10,解得x =15.经检验,x =15是此方程的解,则2x =30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)设第二批衬衫每件售价为y 元,根据题意,得30×(200-4 50030)+15(y -2 10015)≥1 985,解得y ≥17213.答:第二批衬衫每件至少要售17213元.。
分式练习
题型一、分式化简
1.
m n m n m n m n n m ---+-+22
2.112---a a a
3.
)1(232)1(21)1(252+-++--++a a a a a a
4.a b ab b b a a ----222;
5.
2
121111x x x ++++-;
6.1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a .
7.2322123)5()3(z xy z y x ---⋅
题型二、解分式方程
(1)
x x 311=-;
231+=x x
(2)
0132=--x x
(3)
11
4112=---+x x x
(4)
x x x x -+=++4535
(5)1713
7
22
22--+=--+x x x x x x
(6)
22
322=--+x x x
012112=---x x
(7)
3
423-=--x x x
题型三、求正解负解无解
1. 当k 为何值时,关于x 的方程
1)
2)(1(23++-=++x x k x x 的解为非负数.
2. 若分式方程
122-=-+x a x 的解是正数,求a 的取值范围.
变式 1.若关于x 的分式方程
的解为正数,那么字母a 的取值范围是 .
变式2.已知关于
3.若关于x 分式方程
432212-=++-x x k x 有增根,求k 的值。
4.若1044m x x x
--=--无解,则m 的值是 ( ) A. —2 B. 2 C. 3 D. —3
5.若关于x 的方程
1151221--=+-+-x k x x k x x 有增根1=x ,求k 的值。
求待定参数
的取值范围。
的解是正数,求的方程
m x m x x x 323-=--
6.已知:
1
21)12)(1(45---=---x B x A x x x ,试求A 、B 的值.
7.若1
11312-++=--x N x M x x ,试求N M ,的值.
题型四、分式方程的应用
1.轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为________________.
2..甲、乙两地相距a 千米,船在静水中的速度为1v 千米/时,水流的速度为2v 千米/时,船往返一次所需的时间为( )
3.甲、乙两地相距150千米,一轮船从甲地逆流航行至乙地,然后又从乙地返回甲地,已知水流的速度为3千米/时,回来时所用的时间是去时的
34
,求轮船在静水中的速度.
4.一项工程,甲独做需x 小时完成,甲每小时完成工作的_______,如果甲、乙合作,需8小时完成,则乙每小时完成工作的_______.
5. 一件工程,甲、乙、丙三人合作a 天可完成,甲、乙合做b 天可完成,则丙一人独做,需( )天才能完成全部任务.
A .a b -
B .b a -
C .11a b -
D .111a b
-
6..一件工件,甲单独做a 天完成,乙单独做b 天完成,两个合做完成共需的天数为( )
A .a b +
B .
11a b
+ C .1a b + D .ab a b +
7、一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.
(1)求乙工程队单独完成这项工作需要多少天?
(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x 天完成,乙做另一部分用了y 天完成,其中x 、y 均为正整数,且x <46,y <52,求甲、乙两队各做了多少天?。