核磁共振图谱解析
- 格式:ppt
- 大小:3.88 MB
- 文档页数:44
核磁共振氢谱剖析图谱的步调之阳早格格创做核磁共振氢谱核磁共振技能死少较早,20世纪70年代往日,主假如核磁共振氢谱的钻研战应用.70年代以去,随着傅里叶变更波谱仪的诞死,13C—NMR的钻研赶快启展.由于1H—NMR的敏捷度下,而且聚集的钻研资料歉富,果此正在结构剖析圆里1H—NMR的要害性仍强于13C—NMR.剖析图谱的步调 1.先瞅察图谱是可切合央供;①四甲基硅烷的旗号是可仄常;②杂音大不大;③基线是可仄;④积分直线中不吸支旗号的场合是可仄坦.如果有问题,剖析时要引起注意,最佳沉新尝试图谱. 2.区别杂量峰、溶剂峰、转动边峰(spinning side bands)、13C卫星峰(13C satellite peaks)(1)杂量峰:杂量含量相对付样品比率很小,果此杂量峰的峰里积很小,且杂量峰与样品峰之间不简朴整数比的闭系,简单辨别.(2)溶剂峰:氘代试剂不可能达到100%的共位素杂度(大部分试剂的氘代率为99-99.8%),果此谱图中往往浮现相映的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处.(3)转动边峰:正在尝试样品时,样品管正在1H-NMR仪中赶快转动,当仪器安排已达到良佳处事状态时,会出现转动边戴,即以强谱线为核心,浮现出一对付对付称的强峰,称为转动边峰.(4)13C卫星峰:13C具备磁距,不妨与1H奇合爆收裂分,称之为13C卫星峰,但是由13C的天然歉度只为1.1%,惟有氢的强峰才搞瞅察到,普遍不会对付氢的谱图制成搞扰. 3.根据积分直线,瞅察各旗号的相对付下度,估计样品化合物分子式中的氢本子数目.可利用稳当的甲基旗号或者孤坐的次甲基旗号为尺度估计各旗号峰的量子数目. 4.先剖析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤坐的甲基量子旗号,而后再剖析奇合的甲基量子旗号. 5.剖析羧基、醛基、分子内氢键等矮磁场的量子旗号. 6.剖析芳香核上的量子旗号.7.比较滴加沉火前后测定的图谱,瞅察有无旗号峰消得的局里,相识分子结构中所连活泼氢官能团.8.根据图谱提供旗号峰数目、化教位移战奇合常数,剖析一级典型图谱.9.剖析下档典型图谱峰旗号,如黄酮类化合物B环仅4,-位与代时,浮现AA,BB,系统峰旗号,二氢黄酮则浮现ABX系统峰旗号.10. 如果一维1H-NMR易以剖析分子结构,可思量尝试二维核磁共振谱协共剖析结构.11. 拉拢大概的结构式,根据图谱的剖析,拉拢几种大概的结构式.12. 对付推出的结构举止指认,即每个官能团上的氢正在图谱中皆应有相映的归属旗号.四. 核磁共振碳谱(13C—(1)溶剂峰:虽然碳谱不受溶剂中氢的搞扰,但是为兼瞅氢谱的测定及磁场需要,仍常采与氘代试剂动做溶剂,氘代试剂中的碳本子均有相映的峰.(2)杂量峰:杂量含量相对付于样品少得多,其峰里主动小,与样品化合物中的碳浮现的峰不可比率.(3)尝试条件的做用:尝试条件会对付所测谱图有较大做用.如脉冲倾斜角较大而脉冲隔断不敷万古,往往引导季碳不出峰;扫描宽度不敷大时,扫描宽度以中的谱线会合叠到图谱中去;等等,均制成剖析图谱的艰易.根据分子式估计的不鼓战度,推测图谱烯碳的情况.若谱线数目等于分子式中碳本子数目,证明分子结构无对付称性;若谱线数目小于分子式中碳本子数目,证明分子结构有一定的对付称性.别的,化合物中碳本子数目较多时,有些核的化教环境相似,大概δ值爆收沉叠局里,应给予注意.δ值的分区碳本子大概可分为三个区(1)下δ值区δ>165ppm,属于羰基战叠烯区:①分子结构中,如存留叠峰,除叠烯中有下δ值旗号峰中,叠烯二端碳正在单键天区还应有旗号峰,二种峰共时存留才证明叠烯存留;②δ>200 ppm的旗号,只可属于醛、酮类化合物;③160-180ppm的旗号峰,则归属于酸、酯、酸酐等类化合物的羰基.(2)中δ值区δ90-160ppm(普遍情况δ为100-150ppm)烯、芳环、除叠烯中央碳本子中的其余SP2杂化碳本子、碳氮三键碳本子皆正在那个天区出峰.(3)矮δ值区δ<100ppm,主要脂肪链碳本子区:①不与氧、氮、氟等杂本子贯串的鼓战的δ值小于55ppm;②炔碳本子δ值正在 70-100ppm,那是不鼓战碳本子的惯例.由矮核磁共振或者APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技能可决定碳本子的级数,由此可估计化合物中与碳本子贯串的氢本子数.若此数目小于分子式中的氢本子数,二者之好值为化合物中活泼氢的本子数.先推导出结构单元,并进一步拉拢成若搞大概的结构式.将核磁共振碳谱中各旗号峰正在推出的大概结构式上举止指认,找出各碳谱旗号相映的归属,进而正在被推导的大概结构式中找出最合理的结构式,即精确的结构式.。
核磁共振氢谱解析图谱的步调核磁共振氢谱核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。
70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。
由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。
解析图谱的步调 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。
如果有问题,解析时要引起注意,最好重新测试图谱。
2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。
(2)溶剂峰:氘代试剂不成能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。
(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。
(4)13C卫星峰:13C具有磁距,可以与1H偶合发生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才干观察到,一般不会对氢的谱图造成干扰。
3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。
可利用可靠的甲基信号或孤立的次甲基信号为尺度计算各信号峰的质子数目。
4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。
5.解析羧基、醛基、分子内氢键等低磁场的质子信号。
6.解析芳香核上的质子信号。
7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。
核磁共振氢谱图谱解析1. 引言核磁共振氢谱是一种利用核磁共振技术研究物质中氢原子的化学环境和结构的方法。
氢是最常见的元素之一,广泛存在于化学化工、生物医药等领域。
通过核磁共振氢谱图谱的解析,可以了解样品的分子结构、官能团和化学环境等信息,对于化学合成、物质性质研究、质量控制等具有重要意义。
本文将介绍核磁共振氢谱图谱的基本原理、谱峰解析步骤和谱峰解析的应用实例,帮助读者更好地理解和应用核磁共振氢谱图谱解析技术。
2. 核磁共振氢谱基本原理核磁共振(Nuclear Magnetic Resonance, NMR)基于原子核的磁性和电磁波的相互作用,通过施加磁场和射频脉冲来激发样品中的氢原子核,根据吸收或发射电磁波的频率差异来获得谱图信息。
核磁共振氢谱图谱的横坐标表示化学位移或称为化学位移标尺(Chemical Shift, δ),单位为ppm(parts per million)。
纵坐标表示吸收强度或强度积分。
3. 核磁共振氢谱图谱解析步骤3.1 样品准备样品是进行核磁共振氢谱图谱解析的基础,需要制备纯度高、浓度适宜的样品。
样品制备时要注意避免杂质的干扰,需选用适合的溶剂,并校正溶剂的化学位移标尺。
3.2 光谱仪参数设置在进行核磁共振实验前,需要根据样品的特点和要研究的问题来调整光谱仪的参数。
如调节磁场强度、扫描速度、脉冲宽度和接收增益等。
3.3 谱峰解析核磁共振谱峰的位置、形状和峰面积等参数与样品的结构和环境密切相关,通过分析谱峰的特征来推断样品的化学结构。
谱峰解析通常包括以下几个方面的内容:3.3.1 化学位移解析化学位移是谱图上谱峰的位置信息,表示了不同原子在化学环境中所受到的磁场强度的差异。
通过与参考物质的化学位移进行比较,可以推断样品中含有的官能团和化学结构。
3.3.2 耦合常数解析耦合常数是指谱图上峰之间的距离信息,用于描述不同耦合离子对之间的相互作用。
通过分析谱峰之间的相对位置和大小关系,可以预测样品中的化学键和官能团。
CH 3C NOT HsingletdoubletseptetCH CH 3CCH 3NOT H CH CH 3CH 2CH 3multiplet CH 3CH 2C triplet quartetNOT HC H with no e-withdrawing groups on carbon -0.7 - 1.7 ppm C C C H C C H O 2.3 - 2.7 ppm 2 - 2.6 ppm C F H N C H 3.2 - 4.0 ppm C C H H 2.5 - 4.0 ppm1.6 -2.2 ppm 5 - 6.5 ppm 6.5 - 8.0 ppm O C H or or Cl or Br or IO H 1 - 7 ppm usually broad singlet C H C O H OC H O 10 - 13 ppm 9.5 - 10 ppmChemical Shifts and Splitting PatternsChemical ShiftProblem-1: C3H4O (CDCl3)13C NMRHOProblem-2: C8H12O2OO1505010Problem-3:C13H10OOProblem-4: C6H10Problem-5: C4H8OO1505010Problem-7: C4H6OO15020Problem-9: C5H10O12122213C NMROHProblem-10: C8H8O3(CDCl3)照射3.91,7.40有NOE增益13C NMROHHOOCH3Problem-12: C5H14OSi(CDCl3)229Si(CH3)3 HOC4H7OI (CDCl3)IOC 6H 12O 3(CDCl 3)O HOOC 9H 10O 2(CDCl 3)O OC 15H 20O 2(CDCl 3)22242314O OCH3C 9H 13NO (CDCl 3)OH NH22D 核磁共振谱胡立宏研究员2004-2Slide number二维FT-NMRÌ是八十年代经Ernst和Freeman 等小组的努力发展起来的NMR新技术,是NMR软件开发和应用最新技术的结果。
核磁共振图谱的解析(转)1.一般来说,分析核磁共振图谱需要按如下步骤进行:(1)看峰的位置,即化学位移。
确定该峰属于哪一个基团上的氢。
(2)看峰的大小。
可用核磁共振仪给出的积分图的台阶高度看出各峰下面所包围的面积之比,从而知道基团含氢的数目比。
例如,从图7.3-2的积分图可看出乙基苯三个基团的含氢数目为5∶2∶3。
(3)看峰的形状(包括峰的数目、宽窄情况等),以确定基团和基团之间的相互关系。
这一步较复杂,需应用n+1律、二级分裂和耦合常数等知识。
(4)如遇到二级分裂,解析时显然要比一级分析时困难得多,好在人们已经根据不同的二级分裂,将它们分成不同的自旋系统进行了相应的计算可供参阅,这里不再详述。
2.影响核磁共振谱的因数(1)旋转边峰为了提高核磁共振信号的分辨能力,样品管需要吹风推动它旋转,使样品所受到的磁场趋于均匀化。
但由于样品管旋转,核磁共振图谱上的主峰两旁便会对称地出现新峰,这就是旋转边峰。
旋转边峰离主峰的距离等于样品管的旋转速度。
旋转边峰不难判断,只要改变样品管的转速,观察其离主峰的距离是否相应改变。
如果距离随样品管转速增大而变大,便可断定是旋转边峰。
(2)13C同位素边峰若样品中同时含有13C和1H者可以发生耦合。
在图谱放大或者在非重氢溶剂的溶剂峰中可以观察到由于这种耦合产生的13C边峰。
它在共振图谱上出现的形式和旋转边峰类似,也是左右对称地出现在主峰两旁,但两者很易识别,因为同位素边峰不会因样品管转速的改变而改变其离开主峰的距离。
(3)杂质峰和溶剂峰在核磁共振图谱中,因样品含有杂质,经常可观察到杂质峰。
溶剂峰可包括结晶溶剂、样品中部分残留的合成或提取时所用的溶剂以及做核磁共振实验时所用溶剂的溶剂峰。
这两种附加峰都应根据具体情况作具体分析,然后判别之。
(4)活泼氢的影响在含氢化合物中,—OH基团中的氢是常见的一种活泼氢。
它的化学位移由于温度、浓度、氢键等因数的影响变化范围较大,从而会改变核磁共振图谱的形状。