磁场的基本物理量资料
- 格式:ppt
- 大小:540.00 KB
- 文档页数:28
41 磁 学基本内容一、稳恒磁场 磁感应强度1. 稳恒磁场电流、运动电荷、永久磁体在周围空间激发磁场。
稳恒磁场是指不随时间变化的磁场。
稳恒电流激发的磁场是一种稳恒磁场。
2. 物质磁性的电本质无论是永磁体还是导线中的电流,它们的磁效应的根源都是电荷的运动。
因此,磁场是运动电荷的场。
3. 磁感应强度磁感应强度B是描述磁场的基本物理量,它的作用与E 在描述电场时的作用相当。
磁场对处于其中的载流导线、运动电荷、载流线圈、永久磁体有力及力矩的作用。
可以根据这些作用确定一点处磁场的强弱和方向——磁感应强度B。
带电q 的正点电荷在磁场中以速度v运动,若在某点不受磁力,则该点磁感应强度B 的方向必与电荷通过该点的速度v平行。
当该电荷以垂直于磁感应强度B 通过该点时受磁力⊥F ,则该点磁感应强度大小qvF B ⊥=,且⊥F ,v ,B两两互相垂直并构成右手系。
二、毕奥—萨伐尔定律 运动电荷的磁场1. 磁场的叠加原理空间一点的磁感强度等于各电流单独存在时在该点产生磁感应强度的矢量和:∑=ii B B 可推广为 ⎰=B d B42B d是电流强度有限而长度无限小的电流元l d I 或电流强度无限小而空间大小不是无限小的元电流的磁场。
上式中矢量号一般不能略去,只有当各电流产生磁场方向相同时,才能去掉矢量号。
2. 毕奥—萨伐尔定律电流元l d I 在空间一点产生的磁场B d为: 304rr l d I B d πμ⨯= 大小: 02I sin(I ,r)dB 4r dl dl μπ∠=方向:B d 垂直于电流元l d I 与r 所形成的平面,且B d与l d I 、r构成右手螺旋。
3. 电流与运动电荷的关系导体中电荷定向运动形成电流,设导体截面积为S ,单位体积载流子数为n 。
每个载流子带电q ,定向运动速率为v ,则nqvS I =。
电量为q 的带电体作半径为R 、周期为T 的匀速圆周运动相当于半径为R 、电流强度T q I /=的圆电流,具有磁矩TqR I R p m 22ππ==。
磁感应强度与磁场的关系磁感应强度(B)是描述磁场强度的物理量,是衡量磁场对物体施加力或对电流产生力矩的指标。
磁感应强度与磁场的关系是一个重要的研究课题,在理论物理和实际应用中都有广泛的应用。
本文将就磁感应强度与磁场的关系进行深入探讨。
一、磁感应强度的定义和基本性质磁感应强度(B)是指在磁场中一个空间点受到的磁力的物理量。
它的单位是特斯拉(T)。
根据安培定律,磁感应强度与电流的关系可由以下公式描述:B = μ₀ * (I / 2πr)其中,B为磁感应强度,μ₀为真空的磁导率,I为电流,r为距离电流的距离。
磁感应强度的性质包括大小、方向和空间分布等。
在电流产生磁场时,磁感应强度的大小与电流成正比,与距离的平方成反比。
在距离电流足够远的时候,磁感应强度与距离无关。
其方向由右手定则确定,垂直于电流方向和距离电流的方向,指向磁场线的方向。
二、磁感应强度是磁场的物理量,两者密切相关。
磁感应强度在磁场中的分布形式与磁场的形状和磁源的特性有关。
磁场的强度和方向都可以通过磁感应强度来确定。
在磁感应强度与磁场的关系中,磁感应强度是描述磁场强度的基本物理量。
通过测量空间中不同点的磁感应强度,我们可以绘制出磁力线,描绘出磁场的分布。
磁感应强度的大小取决于磁场强度的大小,从而给出了磁场在空间中的强弱关系。
磁感应强度与磁场的关系还表现在磁场之间的相互作用上。
根据洛伦兹力的原理,当一个带电粒子运动时,如果有磁场存在,磁感应强度将对带电粒子施加力。
这个力的大小与磁感应强度和带电粒子的速度有关。
这个力对运动轨迹的影响和磁感应强度的大小和方向相关。
三、磁感应强度与电磁感应的关系磁感应强度与电磁感应之间存在密切的关系。
根据法拉第电磁感应定律,当磁场的磁感应强度发生变化时,将在电磁感应环路中产生感应电动势。
这个感应电动势的大小与磁感应强度的变化率成正比。
利用磁感应强度与电磁感应的关系,可以实现电磁感应现象的应用。
在发电机、变压器等电气设备中,通过磁感应强度的变化产生感应电动势,从而将机械能或电能转换为电能。
第1篇一、引言磁场是自然界中一种重要的物理现象,它广泛存在于日常生活、科学研究和技术应用中。
磁场强度作为描述磁场性质的基本物理量,在物理学、工程学等领域有着广泛的应用。
本文将详细探讨磁场强度的定义、单位、量纲及其在物理学中的应用。
二、磁场强度的定义磁场强度,又称磁感应强度,用符号B表示,是描述磁场对运动电荷或磁体作用力的物理量。
在磁场中,磁场强度B等于单位正电荷所受到的洛伦兹力F与电荷速度v的比值,即:\[ B = \frac{F}{qv} \]其中,F表示洛伦兹力,q表示电荷量,v表示电荷速度。
三、磁场强度的单位磁场强度的单位有特斯拉(T)和高斯(G)两种。
特斯拉是国际单位制中的单位,1特斯拉等于1牛顿/安培·米(1T=1N/A·m)。
高斯是CGS制中的单位,1高斯等于1高斯=10^{-8}特斯拉(1G=10^{-8}T)。
四、磁场强度的量纲量纲是物理量的性质,表示物理量之间的内在联系。
磁场强度的量纲可以通过其定义公式推导得出。
根据磁场强度的定义公式:\[ B = \frac{F}{qv} \]我们可以分析出以下量纲:1. 力F的量纲为MLT^{-2}(质量×长度×时间^{-2});2. 电荷量q的量纲为Q(电荷);3. 速度v的量纲为LT^{-1}(长度×时间^{-1})。
将这三个量纲代入磁场强度的定义公式,可以得到磁场强度B的量纲:\[ [B] = \frac{[F]}{[qv]} = \frac{MLT^{-2}}{QT^{-1}} = ML^{-1}T^{-1}Q^{-1} \]因此,磁场强度的量纲为ML^{-1}T^{-1}Q^{-1}。
五、磁场强度在物理学中的应用1. 磁场强度在电磁学中的应用磁场强度是电磁学中的重要物理量,与电场强度、电荷量、电流等物理量密切相关。
在电磁学中,磁场强度主要用于描述磁场对运动电荷或磁体作用力的大小和方向。
磁场和磁感应强度磁场是一种特殊的物理现象,它由带有磁性的物质产生,并围绕着该物质形成一个区域,该区域内存在磁力作用。
与磁场密切相关的概念是磁感应强度,它是用来描述磁场强度的物理量。
本文将介绍关于磁场和磁感应强度的基本原理,并探讨它们对于我们日常生活和科学研究的重要性。
一、磁场的基本概念磁场是由带有磁性的物质产生的,它是一种没有物质的媒介,不同于声波、光波等需要媒介传播的物理量。
磁场是一种无形的力场,可以影响周围的物质和电荷运动。
磁场的强弱可以用磁感应强度来衡量。
二、磁感应强度的定义和计量单位磁感应强度是用来描述磁场强度的物理量,通常用字母B表示。
磁感应强度的计量单位是特斯拉(Tesla),简写为T。
在国际标准单位制中,1特斯拉定义为对一段导线单位长度上通过的电流为1安培时,引起的距离导线1米处的直线传导的磁感应强度等于2π×10^-7 T。
三、磁场对物质的影响磁场可以对带有磁性的物质产生吸引或排斥的力,这种现象被称为磁作用。
当一个磁体靠近另一个磁体时,它们之间会相互作用,如果两个磁极相同,则会互相排斥;如果两个磁极不同,则会互相吸引。
除了对带有磁性的物质有作用外,磁场还对电荷和运动的电荷有影响。
根据洛伦兹力的原理,当电荷在磁场中运动时,会受到力的作用,这个力被称为洛伦兹力。
洛伦兹力的大小与电荷的速度、磁感应强度以及电荷所受力的方向有关。
四、磁场的应用磁场在我们的日常生活和科学研究中有着广泛的应用。
以下是一些常见的应用:1. 电动机和发电机:电动机利用磁场和电流的相互作用,将电能转化为机械能,实现设备的运转。
而发电机是电动机的逆过程,通过机械能转化为电能。
2. 磁共振成像:磁共振成像(MRI)是一种利用磁场和高频脉冲信号来观察人体内部组织结构的医学诊断技术。
它能够提供高分辨率的影像,对于诊断疾病有着重要的作用。
3. 磁记录:磁记录技术广泛应用于磁带、硬盘等存储介质中,通过有效地在介质上记录和读取磁信号,实现信息的存储和传输。
磁学中的基本物理量公式:HL=IN (全电流定律)H磁化强度;L磁路长度;I电流;N匝数μ=B/H B磁感应强度;H磁化强度(也叫磁场强度)Ф=B*S=L*I S横截面积;L电感量;I电流U=dФ/dt=L*di/dt Ф磁通量;t时间;L电感量;一、电流引出的物理量电子在导体中的定向移动,称为电流磁场是电流产生的,电流总是被磁场包围有了电流,如果周围有某种导磁材料存在,则电流产生的磁场就会对导磁材料产生一个影响力,即在材料中产生一个力。
这个力就是磁场强度(也叫磁化强度),用H表示导磁材料受到H的作用,会在内部产生磁力线(形象化表示),就是B,叫做磁感应强度相同的外加磁化强度对不同的导磁材料产生作用时,产生的B是不一样的,这就引出表征不同材料特性的物理量,磁导率μ,它表征了一种材料的导磁能力,导磁能力越强,在相同的磁化强度下,磁力线产生的越多,真空磁导率μ0=4∏×10-7H/m空气磁导率与导磁材料磁导率有很大差别,即它们之间的导磁能力不一样,也就是它们对磁的阻碍能力不一样,也即磁阻不一样磁通跟电流有相同的特性,总是喜欢走比较容易走的路,这就是磁芯会把电流产生的磁通限制在磁芯内的原因,当然肯定会有漏磁通从这点可以看出,磁导率越大,漏磁通会越小。
磁导率与单匝感量之间的关系:AL=Ф/i=B*S/I=μS/L L平均磁路长度B实际可以看做一个密度值,即磁力线的密度,因此它又叫磁通密度,相当于电学中的电流密度,磁力线的总量可以用B在面积上的积分来计算即:Ф= s Bds=BS这个磁力线的总量就是磁通量Ф它的变化速度决定了线圈产生反电势的大小电感量:单位电流产生的总磁通链,用L表示ψ=NФ=Li L=ψ/i另外,电感计算一般通过单匝感量乘以匝数的平方,L=AL*N2此公式的来源:单匝感量通过测试得出,或已知磁导率计算得出,N*N来自于单匝自感加上匝与匝之间的互感。
提示:1.电感阻止电流变化的特性实际就是阻止电感磁芯中磁通变化的特性楞次定律:感生电流总是试图维持原磁通不变2.电感储能能力We=(1/2)Li2二、实际应用中的物理量B S饱和磁通密度,磁芯达到饱和后,继续增加电流,磁通也不会再增加,此时磁芯感量为0B r剩磁,铁磁物质磁化到饱和后,有将磁场强度下降到零时,铁磁物质中残留的磁感应强度,称为剩余磁感应强度HC矫顽力,磁芯在磁化之后,即使外部磁化强度消失,磁芯内部仍会有剩磁,要把剩磁完全消掉需要施加一个反向的磁化强度,这个反向的磁化强度就是矫顽力,矫顽力的存在是磁芯产生损耗的原因之一磁致伸缩系数,表示磁致伸缩效应大小的系数,定义为物体有无磁场时的长度之差与无磁场时的长度的比值。