调制与解调
- 格式:doc
- 大小:72.00 KB
- 文档页数:3
调制与解调的名词解释调制和解调是在通信中常用的两种信号处理技术。
调制是指在通信过程中,通过改变一个信号(称为基带信号)的某些特性,将其转换为适用于传输和传递的信号(称为载波信号),以便能够有效地在媒介(例如空气中的无线电波或光纤中的光信号)中传输。
调制主要用于将信息通过传输介质传播给接收端。
调制技术的目的是在不增加功率和频带宽度的情况下,提高信息传输的可靠性、效率和距离。
解调是指在接收端将调制后的信号恢复成起始的基带信号的过程。
解调技术是调制技术的逆向过程,目的是恢复出原始的信息,以便于后续的信号处理和解读。
解调器通常会处理噪声、干扰和失真等问题,以保持准确性和可靠性。
调制和解调是通信系统中必不可少的两个环节,主要作用是实现可靠的信息传输和接收。
常见的调制和解调技术包括:幅度调制(AM)、频率调制(FM)、相位调制(PM)、振幅移键调制(ASK)、频移键调制(FSK)、相移键调制(PSK)等。
幅度调制(AM)是调制信号的幅度和幅度波动与基带信号的振幅及变化相关的一种调制技术。
在AM调制中,基带信号的振幅对应调制波的振幅,它的变化则反映了基带信号的变化。
解调器将AM信号转换为原始的基带信号,在接收端进行解码。
频率调制(FM)是调制信号的频率和频率波动与基带信号的振幅及变化相关的一种调制技术。
在FM调制中,基带信号的振幅对应调制波的振幅,但是基带信号的变化对应调制波的频率的变化,即频率和振幅成正比。
解调器将FM信号转换为原始的基带信号,在接收端进行解码。
相位调制(PM)是调制信号的相位和相位波动与基带信号的振幅及变化相关的一种调制技术。
在PM调制中,基带信号的振幅对应调制波的振幅,但是基带信号的变化对应调制波的相位的变化,即相位和振幅成正比。
解调器将PM信号转换为原始的基带信号,在接收端进行解码。
振幅移键调制(ASK)是将数字信号转换为模拟信号的一种调制技术。
ASK调制器根据待传输的数字信号(比特流)的高低电平来决定于载波的信号在该时间段内为高电平还是低电平。
SSB(单边带)调制与解调的原理是基于AM(调幅)的进一步改进。
在AM中,载波信号与音频信号相混频,然后产生的信号通过一个低通滤波器进行过滤,得到的就是AM 信号。
然而,在SSB中,我们移除了下边带(LSB)和载波,只发送上边带(USB)。
这使得带宽减半,效率提高到近100%。
SSB调制原理:
1.基带信号m(t)和高频载波相乘实现DSB信号的调制。
2.DSB信号经过一个滤波器生成SSB。
3.为了实现这一过程,带通滤波器被添加到系统中移除额外的边带。
SSB解调原理:
1.SSB信号经过信道传输之后,再和载波相乘。
2.经过低通滤波器后恢复出原始基带信号。
3.在接收系统中,接收机有自己的载波信号(来自本地振荡器),用以还原单边带信号到原始调幅信号。
SSB的优势:
1.带宽减少了一半,使得在同一频带中可以放置双倍的频道数量(或电台)。
2.除非正在发送信息,否则没有传输载波,这有利于隐蔽信号并提高效率。
典型的AM系统传输存在两个相同边带的问题,为了防止解调时失真,其调制效率上限为33%。
而SSB系统中没有这个问题,其效率近100%。
总的来说,SSB调制与解调原理是基于AM的进一步优化,通过移除一个边带和载波,使得带宽减少了一半,同时提高了传输效率。
第一章 调制解调的基本原理第一节 调制的基本原理“调制”就是使信号f(t)控制载波的某一个或某些参数(如振幅、频率、相位等),是这些参数按照信号f(t)的规律变化的过程。
载波可以是正弦波或脉冲序列。
以正弦型信号作载波的调制叫做连续波调制。
调制后的载波就载有调制信号所包含的信息,称为已调波。
对于连续波调制,已调信号可以表示为())(cos )()t (t ot t A ϑωϕ+=它有振幅频率和相位三个参数构成。
改变三个参数中的任何一个都可以携带同样的信息。
因此连续波的调制可分为调幅、调相、和调频。
调制在通信过程中起着极其重要的作用:无线电通信是通过空间辐射方式传输信号的,调制过程可以将信号的频谱搬移到容易以电磁波形势辐射的较高范围;此外,调制过程可以将不同的信号通过频谱搬移托付至不同频率的载波上,实现多路复用,不至于互相干扰。
按照被调制信号参数的不同,调制的方式也不同。
如果被控制的参数是高频振荡的幅度,则称这种调制方式为幅度调制,简称调幅;如果被控制的参数是高频振荡的频率或相位,则称这种调制方式为频率调制或相位调制,简称调频或调相(调频与调相又统称调角)。
振幅调制是一种实用很广的连续波调制方式。
幅度调制的特点是载波的频率始终保持不变,它的振幅却是变化的。
其幅度变化曲线与要传递的低频信号是相似的。
它的振幅变化曲线称之为包络线,代表了要传递的信息。
第二节解调的基本原理解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。
调制过程是一个频谱搬移的过程,它将低频信号的频谱搬移到载频位置。
如果要接收端回复信号,就要从已调信号的频谱中,将位于载频的信号频谱再搬回来。
解调分为相干解调和非相干解调。
相干解调是指为了不失真地恢复信号,要求本地载波和接收信号的载波必须保持同频同相。
非相干解调主要指利用包络检波器电路来解调的。
包络检波电路实际上是一个输出端并接一个电容的整流电路。
二极管的单向导电性和电容器的充放电特性和低通滤波器滤去高频分量,得到与包络线形状相同的音频信号,见图1.2.3 。
光纤通信技术的信号调制与解调方法光纤通信技术是一种利用光纤传输光信号进行通信的技术。
光纤通信作为一项重要的传输方式,在现代通信领域发挥着重要的作用。
而光纤通信技术的信号调制与解调方法是光纤通信中至关重要的环节,它直接影响着信号的传输质量和通信性能。
一、信号调制方法信号调制是将信息信号转换成适合在光纤中传输的光信号的过程。
常见的信号调制方法有以下几种:1. 直接调制法直接调制法是指直接将信息信号直接调制到激光光源上进行传输。
这种方法简单直接,但是由于激光器的频率相位噪声以及调制电路的带宽限制等因素,会导致传输中的信号失真和噪声增加,影响传输质量。
2. 调频调制法调频调制法是指将信息信号转化为频率变化的光信号进行传输。
它利用频率变化来表示不同的信息,通过改变频率的方式来调制光信号。
调频调制法可以有效地抑制噪声干扰,提高传输质量。
3. 调幅调制法调幅调制法是指通过改变光信号的幅度来表示信息的一种调制方法。
它根据信息信号的幅度大小来改变光信号的幅度大小,进而进行信号传输。
调幅调制法简单易用,适合于长距离的信号传输。
二、信号解调方法信号解调是指将经过光纤传输的光信号重新还原成原始的信息信号的过程。
常见的信号解调方法有以下几种:1. 直接检测法直接检测法是指直接将光信号转化为电信号进行解调的方法。
它简单方便,但是由于光信号的衰减以及光线的噪声干扰等因素,容易造成信号失真和噪声增加。
2. 相干解调法相干解调法是指利用干涉原理将光信号转化为电信号进行解调的方法。
相干解调法利用相干检测原理,可以有效地抑制信号噪声,提高信号解调的精度和灵敏度。
3. 光纤光栅解调法光纤光栅解调法是一种基于光纤光栅的结构来对光信号进行解调的方法。
光纤光栅解调法在光信号的解调过程中具有高分辨率和高信号探测灵敏度的优点,适用于高速传输和长距离传输等场景。
总结:光纤通信技术的信号调制与解调方法直接影响着光信号在光纤中的传输质量和通信性能。
信号调制方法包括直接调制法、调频调制法和调幅调制法,而信号解调方法则包括直接检测法、相干解调法和光纤光栅解调法。
调制解调的方法
调制解调是信息技术中的一种基本方法,用来将数字信号转化为模拟信号或者将模拟信号转化为数字信号,以便进行传输或存储。
通常有以下几种方法:
1.调幅解调(AM):将模拟信号和载频信号进行调制,得到调幅信号后再进行解调,得到原始模拟信号。
2.调频解调(FM):将模拟信号和载频信号进行调制,得到调频信号后再进行解调,得到原始模拟信号。
3.调相解调(PM):将模拟信号和载频信号进行调制,得到调相信号后再进行解调,得到原始模拟信号。
4.数字调制解调:将数字信号进行调制,得到数字调制信号后再进行解调,得到原始数字信号。
其中,数字调制解调涉及到了多种调制方式,如ASK、FSK、PSK、QAM等。
这些调制方式不同,但其基本原理都是通过改变载波的某些特性来携带数字信号,然后通过解调器将数字信号还原出来。
光的调制解调是指通过改变光信号的某些特性来传输信息,并在接收端解调恢复原始信息的过程。
光的调制可以通过改变光的强度、频率、相位或极化状态来实现。
常用的光的调制技术包括强度调制、频率调制、相位调制和极化调制。
强度调制是最常见的光调制技术,它通过改变光的强度来传输信息。
光的强度可以通过改变光源的电流、电压或光源与调制器之间的距离来调制。
频率调制是利用改变光信号的频率来传输信息。
常见的频率调制技术包括频率偏移调制和频率调制。
相位调制是通过改变光信号的相位来传输信息。
常见的相位调制技术包括相位偏移调制和相位调制。
极化调制是通过改变光信号的极化状态来传输信息。
极化调制可以通过改变光信号的偏振角度、偏振方向或偏振态来实现。
在接收端,解调器会解析接收到的光信号,并恢复原始信息。
解调的方法通常与调制的方法相对应。
例如,在强度调制中,接收端可以通过测量光的强度来解调信息;在频率调制中,接收端可以通过测量光
信号的频率来解调信息。
光的调制解调在光通信、光纤传感、光存储等领域有着广泛的应用。
它具有高带宽、低损耗、抗干扰性强等优点,因此被广泛应用于高速、远距离的数据传输和通信系统中。
调制与解调
在通信系统中,调制与解调是实现信号传递必不可少的重要手段。
所谓调制就是用一个信号去控制另一个信号的某个参量,产生已调制信号。
解调则是调制的相反过程,而从已调制信号中恢复出原信号。
信号从发送端到接受端,为了实现有效可靠和远距离传输信号,都要用到调制与解调技术。
我们知道,所有要传送的信号都只占据有限的频带,且都位于低频或较低的频段内。
而作为传输的通道(架空明线,电缆、光缆和自由空间)都有其最合适于传输信号的频率范围,它们与信号的频带相比,一般都位于高频或很高的频率范围上,且实际信道有用的带宽范围通常要远宽于信号的带宽。
利用调制技术能很好的解决这两方面的不匹配问题。
傅氏变换中的调制定理是实现频谱搬移的理论基础,形成了正弦波幅度调制,即一个信号的幅度参量受另一个信号控制的一种调制方式。
只要正弦信号(载波)的频率在适合信道传输的频率范围内就在信道内很好的传输。
将频谱相同或不相同的多个信号调制在不同的频率载波上,只要适当安排多个载波频率,就可以使各个调制信号的频谱互不重叠,这样在接收端就可以用不同的带通滤波器把它们区分开来,从而实现在一个信道上互不干扰地传送多个信号,这就是多路复用的概念与方法。
用正弦信号作为载波的一类调制称为正弦波调制,它包含正弦波幅度调制(AM),正弦波频率调制(FM)和相位调制(PM)用非正弦波周期信号作为载波的另一类调制称为脉冲调制,用信号去控制周期脉冲序列的幅度称为脉冲幅度调制(PAM),此外,还有脉冲宽度调制(PWM)和脉冲位置调制(PPM)等。
调制与解调在通信中的作用,不仅在于解决了信号和信道之间频带的匹配问题以及提高信道的利用率,而且还有抗信道中干扰的作用,从而改善了信号传输质量的问题。
1.正弦幅度调制与解调
图6-2 各点频谱图
频谱V(ω)如图13-2 所示。
显然,若用一个截止频率为ωc(ωm<ωc<ωo)的理想低通滤波器,在接收端可以完全恢复原信号X(t)。
应该指出,在实际的调制系统中,往往满足ωo>>ωm,故接收端并不需要采用理想的低通滤波器,用一般的低通滤波器即可满足工程上的要求。
通常把图1 这样的调制与解调称为同步调制和解调,或称相干调制和解调。
它要求接收端的载波信号与发送端完全同频同相,这样在一定程度上增加接收机的复杂性。