北师大版初三数学圆(三)
- 格式:doc
- 大小:115.50 KB
- 文档页数:6
圆章节复习课前测试【题目】课前测试如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.【答案】;存在,DE=;y=(0<x<).【解析】(1)如图(1),∵OD⊥BC,∴BD=BC=,∴OD==;(2)如图(2),存在,DE是不变的.连接AB,则AB==2,∵D和E分别是线段BC和AC的中点,∴DE=AB=;(3)如图(3),连接OC,∵BD=x,∴OD=,∵∠1=∠2,∠3=∠4,∴∠2+∠3=45°,过D作DF⊥OE.∴DF==,由(2)已知DE=,∴在Rt△DEF中,EF==,∴OE=OF+EF=+=∴y=DF•OE=••=(0<x<).总结:本题考查的是垂径定理、勾股定理、三角形的性质,综合性较强,难度中等.【难度】4【题目】课前测试如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.【答案】OD=3;AE是⊙O的切线;【解析】(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC﹣AE=7.5﹣3=4.5,∴S阴影=S△BDO+S△OEC﹣S扇形FOD﹣S扇形EOG=×2×3+×3×4.5﹣=3+﹣=.总结:此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.【难度】4知识定位适用范围:北师大版,初三年级,成绩中等以及中等以下知识点概述:圆是九年级下册的内容,是初中几何三大模块(三角形、四边形、圆)之一,也是中考几何必考内容,包含与园有关的圆性质、与圆有关的位置关系及与圆有关的计算三部分,相比三角形与四边形,圆部分的知识点更多,需要记忆的概念和公式也就更多,另外它还要跟三角形和四边形结合,综合考查几何知识,难度骤然提升,解题思维更要灵活。
九年级数学第三章圆教案§3.1 车轮为什么做成圆形学习目标:经历形成圆的概念的过程,经历探索点与圆位置关系的过程;理解圆的概念,理解点与圆的位置关系.学习重点:圆及其有关概念,点与圆的位置关系.学习难点:用集合的观念描述圆.学习方法:指导探索法.学习过程:一、例题讲解:【例1】如图,Rt△ABC的两条直角边BC=3,AC=4,斜边AB上的高为CD,若以C为圆心,分别以r1=2cm,r2=2.4cm,r3=3cm为半径作圆,试判断D点与这三个圆的位置关系.【例2】如何在操场上画出一个很大的圆?说一说你的方法.【例3】已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别为OA、OB的中点.求证:MC=NC.【例4】设⊙O的半径为2,点P到圆心的距离OP=m,且m使关于x的方程2x2-22x+m-1=0有实数根,试确定点P的位置.【例5】城市规划建设中,某超市需要拆迁.爆破时,导火索的燃烧速度与每秒0.9厘米,点导火索的人需要跑到离爆破点120米以外的安全区域,这个导火索的长度为18厘米,那么点导火索的人每秒跑6.5米是否安全?【例6】由于过渡采伐森林和破坏植被,使我国某些地区多次受到沙尘暴的侵袭.近来A市气象局测得沙尘暴中心在A市正东方向400km的B处,正在向西北方向移动(如图3-1-5),距沙尘暴中心300km的范围内将受到影响,问A市是否会受到这次沙尘暴的影响?二、随堂练习1.已知圆的半径等于5cm,根据下列点P到圆心的距离:(1)4cm;(2)5cm;(3)6cm,判定点P与圆的位置关系,并说明理由.2.点A在以O为圆心,3cm为半径的⊙O内,则点A到圆心O的距离d的范围是.三、课后练习1.P为⊙O内与O不重合的一点,则下列说法正确的是()A.点P到⊙O上任一点的距离都小于⊙O的半径B.⊙O上有两点到点P的距离等于⊙O的半径C.⊙O上有两点到点P的距离最小D .⊙O 上有两点到点P 的距离最大2.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( ) A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不确定3.两个圆心为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A .甲圆内B .乙圆外C .甲圆外,乙圆内D .甲圆内,乙圆外4.以已知点O 为圆心作圆,可以作( ) A .1个B .2个C .3个D .无数个5.以已知点O 为圆心,已知线段a 为半径作圆,可以作( )A .1个B .2个C .3个D .无数个6.已知⊙O 的半径为3.6cm ,线段OA=725cm ,则点A 与⊙O 的位置关系是( )A .A 点在圆外B .A 点在⊙O 上C .A 点在⊙O 内D . 不能确定7.⊙O 的半径为5,圆心O 的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .点P 在⊙O 上或⊙O 外8.在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以C 为圆心,4cm 长为半径作圆,则A 、B 、C 、D 四点中在圆内的有( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠ACB=90°,AC=2cm ,BC=4cm ,CM 为中线,以C 为圆心,5cm 为半径作圆,则A 、B 、C 、M 四点在圆外的有 ,在圆上的有 ,在圆内的有 .10.一点和⊙O 上的最近点距离为4cm ,最远距离为9cm ,则这圆的半径是 cm . 11.圆上各点到圆心的距离都等于 ,到圆心的距离等于半径的点都在 .12.在Rt △ABC 中,∠C=90°,AB=15cm ,BC=10cm ,以A 为圆心,12cm 为半径作圆,则点C 与⊙A 的位置关系是 .13.⊙O 的半径是3cm ,P 是⊙O 内一点,PO=1cm ,则点P 到⊙O 上各点的最小距离是 . 14.作图说明:到已知点A 的距离大于或等于1cm ,且小于或等于2cm 的所有点组成的图形.15.菱形的四边中点是否在同一个圆上?如果在同一圆上,请找出它的圆心和半径.16.在Rt △ABC 中,BC=3cm ,AC=4cm ,AB=5cm ,D 、E 分别是AB 和AC 的中点.以B 为圆心,以BC 为半径作⊙B ,点A 、C 、D 、E 分别与⊙B 有怎样的位置关系?17.已知:如图,矩形ABCD 中,AB=3cm ,AD=4cm .若以A 为圆心作圆,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,求⊙A 的半径r 的取值范围.18.如图,公路MN 和公路PQ 在P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m .假设拖拉机行驶时,周围100m 以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由;如果受影响,已知拖拉机的速度为18km/时,那么学样受影响的时间为多少秒?19.在等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 的中点,以BC 为直径作⊙D ,问:(1)顶角A 等于多少度时,点A 在⊙D 上?(2)顶角A 等于多少度时,点A 在⊙D 内部?(3)顶角A 等于多少度时,点A 在⊙D 外部?20.如图,点C 在以AB 为直径的半圆上,∠BAC=20°,∠BOC 等于( ) A .20°B .30°C .40°D .50°21.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=9,AB=12,M为AB的中点,以CD为直径画圆P,判断点M与⊙P的位置关系.22.生活中许多物品的形状都是圆柱形的.如水桶、热水瓶、罐头、茶杯、工厂里用的油桶、贮气罐以及地下各种管道等等.你知道这是为什么吗?尽你所知,请说出一些道理.§3.2 圆的对称性(第一课时)学习目标:经历探索圆的对称性及相关性质的过程.理解圆的对称性及相关知识.理解并掌握垂径定理.学习重点:垂径定理及其应用.学习难点:垂径定理及其应用.学习方法:指导探索与自主探索相结合。
北师大版初中数学九下第三章圆教案圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合,是初中九年级的数学学习重点内容,下面店铺为你整理了北师大版初中数学九下第三章圆教案,希望对你有帮助。
北师大版数学九下圆教案:圆的有关性质教学过程:一、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。
并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?二、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。
分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。
注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O2、进一步观察,体会圆的形成,结合园的定义,分析得出:① 圆上各点到定点(圆心)的距离等于定长(半径)② 到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。
由此得出圆的定义:圆是到定点的距离等于定长的点的集合。
例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。
3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。
圆的内部是到圆心的距离小于半径的点的集合。
同样有:圆的外部是到圆心的距离大于半径的点的集合。
4、初步掌握圆与一个集合之间的关系:⑴已知图形,找点的集合例如,如图,以O为圆心,半径为2cm的圆,则是以点O为圆心,2cm长为半径的点的集合;以O为圆心,半径为2cm的圆的内部是到圆心O的距离小于2cm的所有点的集合;以O为圆心,半径为2cm的圆的外部是到圆心O的距离大于2cm的点的集合。
⑵已知点的集合,找图形例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。
教学设计圆一、教材分析圆是(北师版)《数学》九年级下册第三章第一节内容,本章主要研究圆的性质及与圆有的关的应用;本节课要求经历形成圆的概念的过程,经历探索点与圆位置关系的过程,理解圆的概念,理解点与圆的位置关系。
一堂数学课,既要让学生获得具体的数学知识,又要让学生在获得知识的过程中,提高数学思维能力,掌握一些数学的分析方法,从而形成一定的数学素养.经历形成圆的概念的过程有两个目标,一是得到圆的概念,这是基础目标;二是经历由生活现象揭示其数学本质的过程,培养抽象思维,这是能力目标.经历探索点与圆位置关系的过程,初步体会定性分析与定量分析之间的关系.二、教学目标1.经历圆的形成过程,理解圆的相关概念及它们之间的关系;2.经历定性描述点与圆的位置关系,定量刻画点与圆的位置关系的过程,发展学生几何直观和逻辑推理能力;3.运用点与圆的位置关系的性质解决问题,发展学生数学建模能力。
三、教学重、难点教学重点:理解圆的概念,理解点与圆的位置关系。
教学难点:用集合的观点研究圆的概念。
四、教学过程环节一、回顾旧知,引出概念问题:(1)小明等四位同学正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?相信这个问题难不倒大家,这个游戏不公平,他们应该以目标物为圆心站成一个圆形,说起圆,大家并不陌生,对于圆的知识你知道哪些?(2)请同学们仔细回忆初中几何学习的历程,想一想我们已经学习了哪些平面几何对象,又是如何研究的.【学生回忆,教师有条理地板书(如图1)】(3)之前我们研究的都是直线形图形,遵循了从简单到复杂、从一般到特殊的研究思路,从今天起,我们将开启曲线图形的学习之旅,从最简单的曲线图形——圆展开研究. 请同学们展望一下:在本章中将要研究哪些内容以及如何研究呢?根据几何研究的基本套路,学生猜测将研究圆的定义、性质、判定,圆的有关计算,以及圆与其他图形.【设计意图】上述过程借助学生的最近发展区,创设情境引入概念;从已有知识出发,通过回忆旧知,寻找新知的生长点;通过对旧知研究内容的梳理,为新知建构找到方向.其中第(3)小问从生活素材中抽象并判断圆,引发认知冲突,从而明确本课的学习任务,让学生感受到进一步研究的必要性.环节二、动手操作,生成概念探究活动1:探究活动一,请用圆规在草稿纸上,画一个圆.画圆时,需要注意什么?“固定点”“固定长”通过刚才的画图,你能用自己的语言描述出圆的定义吗?(学生抽象、概括及用语言表达,教师给出圆的符号表示)【设计意图】学生经历了画圆的过程,切身体会到了圆是怎么产生的.这种通过直观感知,用运动的观点(可类比“角”的生成)进行抽象概括的方法,自然能建构起圆的描述性定义.同时,在师生的补充中不断完善概念,强调“在平面内”及“圆”指的是“圆周”,并根据圆的定义,纠正了学生的认知偏差.追问:通过画圆的过程思考一下,要想确定一个圆,需要知道哪些条件.【设计意图】此处的追问为了顺势引出同心圆、等圆的概念,教给学生发现新结论的研究方法.探究活动2:阅读理解(识圆一,了解圆的有关概念)。
圆知识点小结:(三)
(一)、温故而知新
1、在同圆或等圆中,如果在两条弦、两条弧、两个圆心角中有_____组量相等,那么它们所对应的其余各组量都分别相等。
2、垂径定理:垂直于弦的直径_____________这条弦,并且平分弦所对的两条_______。
3、垂径定理的逆定理:平分弦(不是_______)的直径__________这条弦,并且平分弦所对的两条___ ;
4、圆周角与圆心角的关系:一条弧所对的__________等于这条弧所对的__________的一半。
___________________所对圆周角相等。
在同圆或等圆中,相等的圆周角所对的______相等。
直径所对的圆周角是________,____________的圆周角所对弦是直径。
5、圆的切线
⑴判定:经过直径________,并且与这条直径_____________的直线是圆的切线。
⑵性质:圆的切线垂直于___________的直径。
6、三角形的外心
________________________确定一个圆。
经过三角形的三个顶点的圆叫做三角形的_____________,它的圆心叫做三角形的外心;三角形的外心是三角形的_____________________________的交点。
7、三角形的内心
与三角形的三边都_______的圆叫做三角形的________圆,它的圆心叫做三角形的内心;三角形的内心是三角形的三条________________________的交点。
(二)、点和圆有关的位置关系
8、点和圆的位置关系:有三种。
设圆的半径为r,_________________的距离为d,则:
⑴、点在圆内⇔_______________;
⑵、点在圆上⇔_______________;
⑶、点在圆外⇔_____________________。
9、直线和圆的位置关系:有三种。
设圆的半径为r,_______________________的距离为d,则:
⑴、直线和圆没有公共点⇔直线和圆_______________⇔d_____r;
⑵、直线和圆有惟一公共点⇔直线和圆_______________⇔d_____r;
10、圆和圆的位置关系:
☆若两圆半径不等,有五种位置关系。
设两圆的半径分别为R,r(R>r),____________为d。
⑴、两圆没有公共点且每一圆上的点在另一圆外⇔两圆_______________⇔ d _________________;
⑵、两圆有惟一公共点且每一圆上的点在另一圆外⇔两圆_______________⇔d________________;
⑶、两圆有两个公共点⇔两圆_______________⇔___________________________;
⑷、两圆有惟一公共点且其中一圆上的点除公共点外都在另一圆内⇔两圆___________⇔d__________;
⑸、两圆没有公共点且其中一圆上的点都在另一圆内⇔两圆____________⇔__________________.
特例:d=0时,两圆的圆心重合,此时称两圆____________
注:_________和___________统称为相离,_________和___________统称为相切。
☆若两圆半径相等,有三种位置关系,分别为:_______________、______________、____________。
(三)、与圆有关的计算:
11、⑴弧长公式:l=______________(已知弧所对的圆心角度数为nº,所在圆的半径为R)
⑵、设扇形的圆心角度数为nº,所在圆的半径为R,弧长为l,则扇形的周长为C=____________;
面积S=_______________=_______________
⑶、设圆锥的底面半径为r,高为h,母线长为l。
则l2=r2+h2;圆锥侧面积S侧=_________________;
全面积S全=_________________________
⑷、设圆柱的底面半径为r,高为h,母线长为l。
则l=h;圆柱侧面积S侧=_________________;
全面积S全=_________________________
(四)、补充知识
12、⑴圆内接四边形____________________________;
⑵相切两圆的连心线经过_________________;
⑶相交两圆的连心线___________________________;
二、选择题:
13、若两圆相切,且两圆的半径分别是2,3,则这两个圆的圆心距是()
A、5
B、1
C、1或5
D、1或4
14、⊙O1和⊙O2的半径分别为1和4,圆心距O1O2=5,那么两圆的位置关系是()
A、外离
B、内含
C、外切
D、外离或内含
15、如果半径分别为1cm和2cm的两圆外切,那么与这两个圆都相切,且半径为3cm的圆的个数有()
A、2个
B、3个
C、4个
D、5个
16、若两圆半径分别为R 和r (R >r ),圆心距为d ,且R 2+d 2-r 2=2Rd ,则两圆的位置关系是( )
A 、内切
B 、外切
C 、内切或外切
D 、相交
17、如图,⊙O 的直径为10厘米,弦AB 的长为6cm ,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( )
A 、3≤OM ≤5
B 、4≤OM ≤5
C 、3<OM <5
D 、 4<OM <5
18、已知:⊙O 1和⊙O 2的半径是方程x 2-5x +6=0 的两个根,且两圆的圆心距等于5则⊙O 1和⊙O 2的位置关系是( )
A 、相交
B 、外离
C 、外切
D 、内切
19、如图,△ABC 为等腰直角三角形,∠A =90°,AB =AC
A 与BC 相切,则图中阴影部分的面积为( ) A 、1-2π
B 、1-3π
C 、1-4π
D 、1-5
π
20、如图,点B 在圆锥母线VA 上,且VB =
1
3
VA ,过点B 作平行于底面的平面截得一个小圆锥,若小圆锥的侧面积为S 1,原圆锥的侧面积为S ,则下列判断中正确的是( ) A 、S 1=
13S B 、S 1=14S C 、S 1=16S D 、S 1=1
9
S
三、填空题
21、若半径分别为6和4的两圆相切,则两圆的圆心距d 的值是 _______________ 。
22、⊙O 1和⊙O 2 的半径分别为20和15,它们相交于A ,B 两点,线段AB =24,则两圆的圆心距O 1O 2=____。
23、⑴⊙O 1和⊙O 2相切,⊙O 1的半径为4cm ,圆心距为6cm ,则⊙O 2的半径为__________; ⑵⊙O 1和⊙O 2相切,⊙O 1的半径为6cm ,圆心距为4cm ,则⊙O 2的半径为__________
24、⊙O 1、⊙O 2和⊙O 3是三个半径为1的等圆,且圆心在同一直线上,若⊙O 2分别与⊙O 1,⊙O 3相交,⊙O 1与⊙O 3不相交,则⊙O 1与⊙O 3圆心距 d 的取值范围是_____。
25、在△ABC ,∠C =90°,AC =3,BC =4,点O 是△ABC 的外心,现在以O 为圆心,分别以2、2.5、
26、如图在⊙O中,直径AB⊥弦CD,垂足为P,∠BAD=30°,则∠AOC的度数是________度.
27、在Rt△ABC,斜边AB=13cm,BC=12cm,以AB的中点O为圆心,
2.5cm为半径画圆,则直线BC和⊙O的位置关系是________________.
28、把一个半径为12厘米的圆片,剪去一个圆心角为120°的扇形后,用剩下的部分做成一个圆锥侧面,那么这个圆锥的侧面积是___________.
29、已知圆锥的母线与高的夹角为30°,母线长为4cm,则它的侧面积为 ________ cm2(结果保留π)。
30、一个扇形的弧长为4π,用它做一个圆锥的侧面,则该圆锥的底面半径为。
四、解答题:
31、已知:如图,⊙O1和⊙O2相交于点A、B,过点A的直线分别交两圆于点C,D点M是CD的中点直线,BM分别交两圆于点E、F;⑴求证:CE//DF;⑵求证:ME=MF;
32、△ABC的三边长分别为6、8、10,并且以A、B、C三点为圆心作两两相切的圆,求这三个圆的半径
33、如图所示,⊙O1和⊙O2相切于P点,过P的直线交⊙O1于A,交⊙O2于B,求证:O1A∥O2B;
34、如图,A为⊙O上一点,以A为圆心的⊙A交⊙O于B、C两点,⊙O的弦AD交公共弦BC于E点。
(1)求证:AD平分∠BDC;(2)求证:AC2=AE·AD;
35、如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP;(1)求证:ED是⊙O的切线;(2)当OC=2,ED=2时,求∠E的正切值tan E和图中阴影部分的面积.
*36.两圆相交于A、B,过点A的直线交一个圆于点C,交另一个圆于点D,过CD的中点P和点B作直线交一个圆于点E,交另一个圆于点F,求证:PE=PF.。