人教版九年级上册数学圆的有关性质 四课时教学设计(教案)
- 格式:doc
- 大小:521.92 KB
- 文档页数:20
人教版九年级上册24.1圆的有关性质课程设计一、课程目标通过本次课程的学习,学生将能够掌握以下知识和能力:1.理解圆的定义,并能够用正确的术语描述圆的各种性质。
2.能够计算圆的直径、半径、周长和面积,掌握圆相关公式,运用公式解决实际问题。
3.能够运用圆的性质解决实际问题,例如预测和解决国际象棋中马脚位的问题。
二、教学内容与安排1. 圆的定义与性质(1)圆的定义我们先从圆的定义入手,通过引导学生探究圆的一些基本概念,让学生初步了解圆并感受到圆的美妙。
引导学生讨论圆的定义,通过班讨进行交流,达成一致意见,最终教师给出准确的定义。
(2)圆的性质要想深入了解圆,必须掌握其各种性质。
帮助学生了解圆的性质,掌握正确的标记演示方法,增强对圆的认识。
1.圆的半径、直径和周长的概念2.圆心角与弧度的关系3.弧长、面积的计算通过展示动态模型,让学生 observe 圆的各种性质,帮助学生理解这些性质,并用实例进行具体化。
2. 解决实际问题(以国际象棋中马脚位的问题为例)(1)国际象棋中的马脚位引出国际象棋中的马脚位问题,简述问题的背景。
(2)用圆解决问题将问题转化为圆上点的位置,运用圆的性质推导点的可行范围,通过模型中的演示,给出答案和说明,并介绍此类问题的一般处理方法,并强调其应用前景。
3. 总结与小结问卷调查学生的收获,引导学生总结本节课的重要内容。
通过班讨和师生互动,巩固本节课的知识点,帮助学生掌握圆的重要性质。
并对课程的重点和难点进行整理和总结,加深学生的记忆。
三、教学方法本课程的教学方法包括:1.互动教学法:通过课堂互动、班讨、小组合作等形式,激发学生的学习兴趣,提高学习效果。
2.模拟演示法:通过模拟具体的情景,帮助学生理解抽象的数学概念和原理,提升学生的解决问题能力。
3.自主探究法:鼓励学生自己去发现、思考问题,并寻找解决问题的方法,提高学习主动性和自主探究能力。
四、课时安排本课程为单节课,每节课时约为45分钟。
24.1圆的有关性质(第四课时)一、内容和内容解析1.内容圆周角概念,圆周角定理及其推论.2.内容解析与圆心角一样,圆周角也是研究圆时重点研究的一类角.顶点在圆上并且两边都与圆相交的角叫做圆周角.圆周角定理(即一条弧所对的圆周角等于它所对的圆心角的一半)揭示了一条弧所对的圆周角与圆心角之间的数量关系.从而把圆周角与相对应的弧、弦联系起来.圆周角定理及其推论为与圆有关的角的计算,证明角相等,弧、弦相等等数学问题提供了十分便捷的方法和思路,即是圆心角、弦、弧之间关系的继续,又是后续研究圆与其他平面图形的桥梁和纽带.圆周角定理得证明,采用完全归纳法,通过分类讨论,把一般问题转化为特殊情况来证明,渗透了分类讨论和化一般为特殊的化归思想.基于以上分析,确定本节课的教学重点是:圆周角定理.二、目标和目标解析1.目标(1)了解圆周角的概念,会证明圆周角定理及其推论.(2)结合圆周角定理的探索与证明的过程,进一步体会分类讨论、化归的思想方法.2.目标解析达成目标(1)的标志是:能在具体的图形中正确识别一条弧所对的圆周角;知道一条弧所对的圆周角等于这条弧所对的圆心角的一半,知道同弧或等弧所对的圆周角相等,能够正确识别直径所对的圆周角,并会结合具体问题构造直径所对的圆周角;能够应用定理和推论解决简单问题.达成目标(2)的标志是:能通过画图、观察、度量、归纳等方式发现一条弧所对圆周角与圆心角之间的关系;能根据圆心与圆周角的位置关系对同弧所对的圆周角进行分类,理解证明圆周角定理需要分三种情况的必要性;理解证明圆周角定理时,可以把圆心在圆周角的内部和外部两种情况转化成特殊情况,从而证明定理.三、教学问题诊断分析圆心与圆周角具有三种不同的位置关系:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部.所以,圆周角定理的证明要采用完全归纳法,分情况证明.学习本节课内容时,学生已经具备一定的逻辑推理能力,但对于一个几何命题要分情况证明的经验还很缺乏.因此,教学的关键是:①在学生明确圆周角的概念后,让学生动手画圆周角,一方面让学生深入了解圆周角,另一方面,让学生在动手操作中体会圆心与圆周角具有三种不同的位置关系,为后面证明中的分类讨论做好铺垫.②学生合作交流,通过度量事先画的一条弧所对的圆周角与圆心角的度数,探究并猜想他们之间的数量关系,然后教师在利用计算机软件来验证,让学生进一步明确他们之间的关系,从而得到命题:一条弧所对的圆周角等于它所对的圆心角的一半.③从特殊的位置关系——圆心在圆周角一边上的情形入手,先证明猜想,再将其他两种情形转化为圆心在圆周角一边上的情形.基于以上分析,本节课的教学难点是:分情况证明圆周角定理.四、教学过程设计1.了解圆周角的概念问题1 如图1,∠ACB的顶点和边有哪些特点?师生活动:学生观察图形,教师引导学生结合图形认识到:∠ACB的顶点在OΘ上,角的两边分别交OΘ于点A,B两点.教师进而指出:顶点在圆上,并且两边都和圆相交的角叫做圆周角.圆周角与圆心角都是圆有关的角.设计意图:结合图形,获得圆周角定义,理解圆周角的概念.练习教科书第88页练习第一题.师生活动:学生思考并回答问题.设计意图:同时呈现有关圆周角的正例和反例,有利于学生对圆周角概念的本质属性与非本质属性进行比较,巩固对概念的理解.2.探索圆周角定理问题2在图2中,∠ACB是圆周角,作出弧AB所对的圆心角∠AOB.分别测量∠ACB和∠AOB的度数.他们之间有什么关系?师生活动:学生画图,连接OA,OB得到圆心角∠AOB.跳时指出∠ACB和∠AOB都对着弧AB提出以下问题.教师追问1:图2中,∠ACB和∠AOB有怎样的关系?1.即师生活动:学生通过观察,度量,猜想AOB∠=ACB∠2一条弧所对的圆周角等于它所对的圆心角的一半.教师追问2:在OΘ上任取一条弧,做出这条弧所对的圆周角和圆心角,测量它们的度数,你能得出同样的结论吗?师生活动:除学生动手画图度量,并验证猜想外,教师也可以利用《几何画板》软件的动态功能和度量功能进行演示,从更广泛的角度验证猜想:①拖动圆周角的顶点在优弧AB上运动;②改变弧的大小;③改变圆的大小后分别进行①和②的掩演示.引导学生发现,在演示过程中,∠ACB和∠AOB 度数的比值保持不变.设计意图:引导学生经历观察猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质:一条弧所对的圆周角等于它所对的圆心角的一半.教师使用《几何画板》做进一步演示与验证,在动态环境中研究圆周角与圆心角的关系,即在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解一条弧所对的圆周角与圆心角的数量关系.3.证明圆周角定理问题3 如何证明一条弧所对的圆周角等于它所对的圆心角的一半?教师追问1:在圆上任取弧BC,画出圆心角∠BAC和圆周角∠BOC,圆心与圆周角有几种位置关系?师生活动:学生动手画图、交流、思考,得到圆心与圆周角的三种位置关系(图3):①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.设计意图:把直观操作与逻辑推理有机结合,使得推理论证成为学生观察、实验、探究得出结论的自然延续.同时进一步明确证明的必要性和证明的方法.教师追问2:第①种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生结合三种位置的图形,认识到第①种情况属于特殊情况,另外两种情况比第①种情况复杂.研究数学问题一般从特殊情况开始,再考虑其他情况能否转化成特殊情况.师生结合图3(1),分析第①种情况,得到BOC A C A BOC C A OC OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21 教师指出:符号”B A “⇒表示由条件A 推出B ,可以用”“⇒方式给出推理过程.设计意图:从特殊情况入手,证明猜想G 便于学生的学习又为其他两种情况的证明提供了转化的方向.教师追问3: 在第②③种情况下,如何证明一条弧所对的圆周角等于它所对的圆心角的一半?师生活动:学生思考,尝试解决.如果学生有困难,教师可提示学生:将第②③种情况转化成第①种情况.根据学生的情况,师生共同研究完成第②种情况的证明.证明:如图4,连接AO 并延长交ΘO 于点D.BOD BAD B BAD BOD B BAD OB OA ∠=∠⇒⎭⎬⎫∠+∠=∠∠=∠⇒=21. 同理,COD CAD ∠=∠21. BOC COD BOD CAD BAD BAC ∠=∠+∠=∠+∠=∠∴212121.学生独立完成第③种情况的证明.从而得到定理:一条弧所对的圆周角等于它所对的圆心角的一半.设计意图:将一般情况化为特殊情况,体现了化归的数学思想.学生通过证明三种情况,感受分类证明的必要性,有利于逻辑推理能力的提升.4.探究特殊情况,获得推论问题4我们知道,一条弧,可以对着不同的圆周角,这些圆周角之间有什么关系?也就是说,同弧或等弧所对的圆周角之间有什么关系?师生活动:学生画出弧BC所对的几个圆周角和圆心角(图5),先观察、猜想,根据定理得到结论:一条弧所对的圆周角相等.再思考同弧或等弧的情况.如果学生遇到困难,教师可根据情况提示学生:考虑圆周角与圆心角之间的关系、弧与圆心角之间的关系,通过弧相等得到结论.设计意图:让学生经历观察、猜想、证明得出推论的探索过程,得到圆周角定理的推论,进一步认识与圆有关的角和弧之间的关系.问题 5 半圆或直径所对的圆周角有什么特殊性?师生活动:学生画出弧AB所对的几个圆周角和圆心角(图6),通过观察、猜想,根据定理得到结论:半圆(或直径)所对的圆周角是直角.教师进一步引导学生得出:90°的圆周角所对的弦是直径.设计意图:由一般到特殊进一步认识定理,加深对定理的理解,获得推论.5.应用圆周角定理与推论例如图7,OΘ的直径AB的长为10cm.弦AC长为6cm,∠ACB的平分线交OΘ于点D, 求BC,AD,BD的长.师生活动:师生共同分析已知条件、所求和解题思路.如图8,欲求BC的长,由BC所在的△ABC中AB 为OΘ的直径,可知∠ACB=90°.又AB和AC已知,在Rt△ABC中,由勾股定理可求BC的长.由CD平分∠ACB得∠ACD=∠BCD,连接OD,可得∠AOD=∠BOD=90°,进而由勾股定理可求AD,BD的长.学生解答,一名学生板书,教师组织学生交流.设计意图:应用圆周角定理及其推论解决问题,巩固所学的内容.6.小结教师与学生一起回顾本节课的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)我们是如何证明圆周角定理的?在证明过程中用到了哪些思想方法?设计意图:通过小结使学生归纳梳理总结本节的知识、技能、方法,将本节课所学的知识与以前所学的知识进行紧密联系,有利于学生认知数学思想、教学方法,积累数学活动的经验.7.布置作业教科书第88页练习题第2,3,4题.。
人教版九年级上册24.1圆的有关性质教学设计一、教学目标1.知识目标•学生能够了解圆的概念和圆的性质;•学生能够掌握圆的周长公式和面积公式;•学生能够应用圆的公式解决复杂问题。
2.能力目标•学生能够通过观察和实验探究圆的性质;•学生能够通过运用已知的圆的性质解决问题;•学生能够通过实例分析运用已知的公式计算圆的周长和面积。
3.情感目标•学生能够通过个人探究和小组合作发现圆的美妙之处;•学生能够认识到圆在生活中的重要性和应用价值;•学生能够在学习中积极参与、相互协作、主动探究。
二、教学过程1.引入(10分钟)板书“圆”字,并通过图片或影片介绍圆的特点,引领学生探究圆的性质。
2.探究圆的性质(20分钟)教师指导学生通过实验探究圆的性质,包括圆心角、弧、切线、半径和直径等。
学生一方面通过真实的实验探究,另一方面通过计算和分析,发现并总结圆的性质,并形成自己的认识。
3.应用圆的公式计算周长和面积(30分钟)•线上讲解圆的周长和面积公式,并在黑板上画图进行讲解;•通过实例分析的方法,教师引导学生运用已知的公式计算圆的周长和面积;•学生通过课堂演练及小组合作,加深对公式的理解和应用。
4.运用圆的性质解决复杂问题(20分钟)教师通过举一些实际问题,引导学生运用已知的圆的性质解决问题,比如一个球形水池的表面积、一个轮胎的周长等,激励学生深入探究圆的应用价值。
5.展示学习成果(10分钟)教师安排学生进行小组内讨论,并用PPT或黑板进行汇报。
同时,教师针对部分优秀的作业进行分享。
三、教学方法及评价1.教学方法本次教学采用探究式教学和讨论式教学方法,通过实验和解决问题深入学习圆的性质和公式的运用。
此外,学生通过小组合作探究圆的美妙之处,提高协作与分享能力。
2.评价学生的学习成果以课堂演练和作业为主要依据,并对学生的思维能力、应用能力、表达能力和合作能力等进行综合评价。
同时,还可通过学生通过PPT或黑板进行汇报,发现和肯定学生的个性特点和创新思维。
圆的有关性质人教版数学九年级上册教案圆是一种平面图形, 到必须点的距离为常数的集合称为圆. 圆有多数个点. 圆可以表示为集合, 其中是圆心, 是半径. 圆是一种圆锥曲线, 由平行于圆锥底面的平面截圆锥得到。
以下是我整理的圆的有关性质人教版数学九年级上册教案,欢送大家借鉴与参考!24.1圆的有关性质:教案教学内容圆的有关概念.教学目标1.学问与技能:了解圆的有关概念,理解垂径定理并敏捷运用垂径定理及圆的概念解决一些实际问题.2.过程与方法从感受圆在生活中大量存在到圆及圆的形成过程,讲授圆的有关概念.教学重难点驾驭弦、直径、弧、等弧等概念教学过程一、老师导学(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举诞生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?教师点评(口答):(1)如车轮、杯口、时针等.(2)圆规;固定一个定点,固定一个长度,用细绳绕定点拉紧运动就形成一个圆.二、合作与探究从以上圆的形成过程,我们可以得出:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“☉O”,读作“圆O”.学生四人一组探讨下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?教师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是全部到定点O的距离等于定长r的点组成的图形.同时,我们又把:①连接圆上随意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图线段AB;③圆上随意两点间的局部叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆弧AC或“弧AC”.大于半圆的弧(如下图弧ACB)叫做优弧,小于半圆的弧(如下图,弧AB或弧BC叫做劣弧)④圆的随意一条直径的两个端点把圆分成两条弧,每一条弧都相等;⑤等圆、等弧:能够重合的两个圆叫等圆;在同圆或等圆中,能够完全重合的弧叫等弧.【例】如下图,在☉O中,AB、CD为直径,判定AD 与BC的位置关系.解:AD∥BC.∵AB、CD为☉O的直径,∴OA=OD=OC=OB.又∠AOD=∠BOC,∴△AOD≌△BOC.∴AD=BC,∠A=∠B.∴AD∥BC;即AD与BC的位置关系为平行.三、稳固练习教材P81练习1、2四、实力展示如图,确定CD是☉O的直径,∠EOD=78°,AE交☉O 于点B,且AB=OC,求∠A的度数.分析:连接BO;由AB=OC;可得AB=OB;从而得出∠A=∠BOA,又∠E=∠OBE;最终利用角之间的关系求出∠A的度数.学生自主解答.五、总结提升本节课应驾驭圆的有关概念,会利用半径、直径之间的关系解题.《24.1.1圆》练习题学问点1圆的有关概念1.以下条件中,能确定唯一一个圆的是( )A.以点O为圆心B.以2 cm长为半径C.以点O为圆心,5 cm长为半径D.经过点A2.以下命题中正确的有( )①弦是圆上随意两点之间的局部;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个24.1.4圆同步测试1.量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处启程沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是______度.2.战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载,这句话里的“中”字的意思可以理解为.3.在同一平面内,1个圆把平面分成2个局部,2个圆把平面最多分成4个局部,3个圆把平面最多分成8个局部,4个圆把平面最多分成14个局部,那么10个圆把平面最多分成个局部.4.如图,AB是⊙O的直径,C是BA延长线上一点,点D在☉O上,且CD=OA,CD的延长线交⊙O于点E.假设∠C=20°,那么∠BOE的度数是.圆的有关性质人教版数学九年级上册教案。
人教版(广西版)九年级数学上册教学设计24.1 圆的有关性质一. 教材分析人教版(广西版)九年级数学上册24.1节“圆的有关性质”是学生在学习了平面几何基本概念和图形的基础上,进一步探究圆的性质。
本节内容主要包括圆的定义、圆心角、弧、弦、半径等概念,以及它们之间的关系。
通过本节的学习,学生能够掌握圆的基本性质,为后续学习圆的周长、面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何图形的性质有一定的了解。
但是,对于圆的性质,学生可能还比较陌生,需要通过实例和操作来进一步理解和掌握。
此外,学生的空间想象能力和逻辑思维能力有待提高,因此在教学过程中,教师需要注重引导和启发,让学生通过观察、操作、思考来主动探索和发现圆的性质。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心角、弧、弦、半径等概念,了解它们之间的关系。
2.过程与方法:通过观察、操作、思考,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.圆的定义及其与其他几何图形的区别。
2.圆心角、弧、弦、半径等概念的理解和它们之间的关系。
五. 教学方法1.引导发现法:教师通过提问、启发,引导学生主动探索和发现圆的性质。
2.实例分析法:教师通过展示实例,让学生观察和分析,加深对圆的性质的理解。
3.小组合作学习:学生分组讨论,共同完成任务,培养团队合作意识和自主学习能力。
六. 教学准备1.教学课件:制作课件,展示圆的性质的相关图形和实例。
2.学习材料:准备相关的学习材料,如圆规、直尺、圆等模型。
3.教学环境:确保教学环境宽敞明亮,方便学生观察和操作。
七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如地球、篮球等,引导学生思考圆的特征,引出圆的定义。
2.呈现(10分钟)教师通过课件展示圆心角、弧、弦、半径等概念,并用实例进行分析,让学生观察和思考它们之间的关系。
《圆的性质》教案一、教学目标1.知识与技能:掌握圆的基本性质,包括圆心角、弧、弦之间的关系,垂径定理及其推论,圆周角定理及其推论等。
2.过程与方法:通过观察、猜想、验证、推理等活动,培养学生的探究能力和逻辑思维能力。
3.情感态度与价值观:让学生感受数学的美,体验数学的价值,培养学生的合作精神和创新意识。
二、教学重难点1.教学重点:掌握圆的基本性质及其应用。
2.教学难点:垂径定理及其推论,圆周角定理及其推论的理解和应用。
三、教学方法采用启发式教学法、讨论式教学法和探究式教学法相结合的教学方法。
通过实例、问题、图片等直观材料,引导学生观察、猜想、验证、推理,从而得出结论。
同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。
四、教具准备多媒体课件、圆规、直尺等。
五、教学过程(一)导入新课通过回顾圆的概念和性质,引出本节课的主题——圆的性质。
同时,展示一些与圆有关的图片或动画,激发学生的学习兴趣和探究欲望。
(二)学习新课1.圆心角、弧、弦之间的关系(1)通过观察、猜想、验证等活动,让学生自主探究圆心角、弧、弦之间的关系。
(2)通过实例进行讲解,让学生更好地理解圆心角、弧、弦之间的关系。
(3)通过练习进行巩固和提高。
2.垂径定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究垂径定理及其推论。
(2)通过实例进行讲解,让学生更好地理解垂径定理及其推论。
(3)通过练习进行巩固和提高。
3.圆周角定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究圆周角定理及其推论。
(2)通过实例进行讲解,让学生更好地理解圆周角定理及其推论。
(3)通过练习进行巩固和提高。
同时,强调圆周角定理的应用价值,例如在解决实际问题中的应用。
(三)巩固练习通过设计一些具有代表性的练习题,让学生进一步巩固和提高对圆的性质的理解和应用能力。
同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。
(四)课堂小结通过回顾本节课所学内容,总结圆的性质及其应用,强调重点和难点。
课题:圆的有关性质
教学目标:
1.通过观察实验操作,感受圆的定义,结合图形认
识弧,半圆,弦,直径,等圆,等弧,优弧,劣
弧等有关概念;
2.在具体情景中,通过探究、交流、反思等活动获
得圆的有关定义,体验探求规律的思想方法
学情分析:
圆是继三角形、四边形等基本图形后的又一个重要内容,圆的有关概念为今后学习圆的知识奠定了基础
班级学生学习基础良好,应该能完成本节课学习任务。
重点、难点:
•圆的有关概念是学习重点;圆的两种概念是学习难点.
教学过程:
一、导入
我国古代,半坡人就已经会造圆形的房顶了.大约
在同一时代,美索不达米亚人做出了世界上第一个轮
子——圆的木轮.很早之前,人们将圆的木轮固定在木
架上,这样就成了最初的车子. 2 000 多年前,墨子给
出圆的定义“一中同长也”,意思是说,圆有一个圆心,
圆心到圆周的长都相等.这个定义比古希腊数学家欧几
里得给圆下的定义要早很多年
二、新授
动态:在一个平面内,线段OA 绕它固定的一个端
点O旋转一周,另一个端点A所形成的图形叫做圆.静态:圆心为O、半径为r的圆可以看成是所有到
定点O的距离等于定长r的点的集合
弧、劣弧与优弧的概念
弦的概念
三、反馈
判断下列说法的正误:
(1)弦是直径
(2)半圆是弧
(3)过圆心的线段是直径
四、作业
完成课本相关习题。
圆教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.过程和方法1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.4.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度价值观引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图[活动1 ]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.问题1如图:同学甲站在圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(和)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(和)和同学乙的视角相同吗?()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.教师关注:1.问题的提出是否引起了学生的兴趣;2.学生是否理解了示意图;3.学生是否理解了圆周角的定义;4.学生是否清楚了要研究的数学问题.[活动2]问题1同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?问题2同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.在活动中,教师应关注:1.学生是否积极参与活动;2.学生是否度量准确,观察、发现的结论是否正确.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数;3.改变圆的半径大小.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题1在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师关注:数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法,学会发现问题、提出问种情况?(课件:折痕与圆周角的关系)问题2当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?问题3另外两种情况如何证明,可否转化成第一种情况呢?1.学生是否会与人合作,并能与他人交流思维的过程和结果;2.学生能否发现圆心与圆周角的三种位置关系.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.教师关注:1.学生能否用准确的数学符号语言表述已知和求证,并准确地画出图形来;2.学生能否证明出结论.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师关注:1.学生是否会想到添加辅助线,将另外两种情况进行转化;题、分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题.2.学生添加辅助线的合理性;3.学生是否会利用问题2的结论进行证明.教师讲评学生的证明,板书圆周角定理.[活动4]问题1半圆(或直径)所对的圆周角是多少度?(课件:圆周角定理推论)问题290°的圆周角所对的弦是什么?学生独立思考,回答问题,教师讲评.问题1提出后,教师关注:学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.问题2提出后,教师关注:学生是否能由90°的圆周角推出同弧所对的圆心角度数是180°,从而得出所对的弦是直径.问题3提出后,教师关注:学生能否得出正确的结论,并能说明理由.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.问题3在半径不等的圆中,相等的两个圆周角所对的弧相等吗?∠ABC=30°∠A’B’C’=30°问题4在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?问题5如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?教师提醒学生:在使用圆周角定理时一定要注意定理的条件.问题4提出后,教师关注:学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.问题5提出后,教师关注:学生是否准确找出同弧所对的圆周角.问题6提出后,教师关注:1.学生是否能由已知条件得出直角三角形ABC、ABD;2.学生能否将要求的线段放到三角形里求解;3.学生能否利用问题4的结问题6如图,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于D,求BC、AD、BD 的长.论得出弧AD与弧BD相等,进而推出AD=BD.[活动5]问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业的目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,让学生巩固、提高、发展.作业设计必做教科书P87:4、5、6选做教科书P89:13、14、15教学反思。
人教版九年级上册《圆的有关性质》教案一、教学目标1.理解圆的相关术语,如圆心、半径、直径等;2.掌握圆的基本性质,如圆心角、半径垂直弦等;3.能够应用圆的相关性质解决问题;4.培养学生分析、解决问题的能力。
二、教学内容1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系;3.弧长、扇形的性质;4.正多边形内接于圆的性质。
三、教学重点1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系。
四、教学难点1.弧长、扇形的性质;2.正多边形内接于圆的性质。
五、教学方法1.演示法;2.实验法;3.课堂讨论法;4.问题解决法。
六、教学步骤1.引入(5分钟):通过介绍子午线和赤道的关系,向学生引出圆的定义。
同时,引导学生认识圆的相关术语,如圆心、半径、直径等。
2.示例(10分钟):通过投影仪展示一张圆的图片,向学生展示圆的形状及其相关量的表示方法。
引导学生找出其中的圆心、半径、直径等术语,并解释其中的数学意义。
3.理论(20分钟):讲解圆心角、圆弧、弦等概念及它们的关系。
通过具体示例演示如何求弦长、弧长、扇形的面积等。
4.实验(15分钟):让学生分成小组,在纸上绘制不同大小的圆,并探究圆的半径、直径、弦、圆心角、圆弧长度等相互关系。
通过实验,加深对圆的相关概念的认识。
5.讨论(15分钟):让学生就正多边形内接于圆的性质进行小组讨论。
教师引导学生思考为什么正三角形、正四边形等正多边形的顶点能够在一个圆上,如何求出正多边形的内角和,以及内接于圆的正多边形面积与圆周长的关系等问题。
6.总结(5分钟):小结本节课的知识点和要点。
引导学生再次回顾圆的定义和相关术语,圆心角、圆弧、弦等概念及它们的关系,并表扬本课表现优异的同学。
七、教学评估1.小组实验:学生用纸笔绘制圆,并找出其中的圆心、半径、直径、弦、圆心角、圆弧长度等,进行实验记录和探究。
2.课堂讨论:学生在小组内进行讨论,分享正多边形内接于圆的性质的理解和应用。
《垂直于弦的直径》教案11.教学设计说明:本节课努力实现学生的主体地位,使数学教学成为一种过程教学,教师要注意角色的转变,成为学生学习的组织者、参与者、合作者,教师的责任是为学生创造一种宽松和谐、适合发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围,根据学生的实际水平,选择恰当的教学起点和教学方法.整堂课以思维为主线,充分利用直观教具与学具及计算机辅助教学,让学生充分参与数学学习,融基础性、灵活性、实践性、开放性于一体,通过“实验——观察——猜想——证明——应用”,使学生在获得知识的同时提高兴趣,增强信心,提高能力.2.教学分析(1)教材分析本节是《圆》这一章的重要内容,也是本章的基础.它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性.同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力.所以它在教材中处于非常重要的位置.(2)学情分析处于这一阶段的学生,对于圆的弦、弧等已经了解,但对于它们之间的关系还不太明白,还需要在课堂上进一步引导,达到教学目标.3.教学目标:知识技能:使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题.过程方法:渗透类比、转化、数形结合、方程等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力.情感、态度与价值观:渗透数学来源于实践和事物之间相互统一、相互转化的辩证唯物主义观点,让学生体会几何图形所蕴涵的对称美.4.教学重点和难点:重点:垂径定理及其应用.难点:对垂径定理题设与结论的区分及定理的证明.5.课时设计两课时.6.教学方法引导发现法和直观演示法.让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理.7.教学过程第一环节情境引入刘师傅遇到了一件麻烦事,因为我校一处圆形下水道破裂,他准备要换新管道,但只知道污水水面宽为60cm ,水面至管道顶部距离为10cm ,你能帮助刘师傅计算一下他应该准备内径多大的管道吗?以我们目前所学知识你是否可以解决这个问题?如果不能,问题出现在哪里?要想解决这个问题,你认为应该有怎样的关系?【设计意图】让学生从实际出发,充分发现问题的存在,再带着问题去思考它们之间的关系,有助于定理的得出.第二环节 定理探究巧手剪一剪将圆沿着圆心O 对折,然后沿着圆的一半轮廓线剪下.展开后是一个完整的圆吗?这说明了什么?圆是轴对称图形它的对称轴是什么?你能找到多少条对称轴?巧手折一折1.将刚才折出的直径记为CD .2.你能折一条与直径CD 垂直的弦吗?3.将弦记为AB ,将垂足记为M ,则有AB ⊥CD 于M .4.你能发现图中有哪些等量关系?请你说说它们相等的理由.结论证明已知:CD 是⊙O 的直径,AB 是⊙O 的一条弦,且CD ⊥AB 于M ,求证:AM =BM , AC BC=, AD BD =.归纳整理垂径定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.依据垂径定理可以得到下列结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.【设计意图】这样设计培养了学生的观察能力和归纳、概括的思维能力,并使学生领略到圆的对称美,同时发展了学生的符号感,分化了难点.增加学生的兴趣,使学生通过探索发现、思维碰撞,获得对数学最深切的感受,体会成功的乐趣,发展思维能力,富有成就感.第三环节 例题精讲【例1】在⊙O 中,若CD ⊥AB 于M ,AB 为直径,则下列结论不正确的是( )A . AC AD =B . BCBD = C .AM =OM D .CM =DM 分析:画出图形,利用垂径定理来判断结论.解:C【例2】已知⊙O 的直径AB =10,弦CD ⊥AB ,垂足为M ,OM =3,则CD = . 分析:画出图形,构造直角三角形,利用勾股定理求解.解:8【例3】在⊙O 中,CD ⊥AB 于M ,AB 为直径,若CD =10,AM =1,则⊙O 的半径是 . 分析:画出图形,构造直角三角形,利用勾股定理求解.解:13【例4】已知:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点.你认为AC 和BD 有什么关系?为什么?分析:依据垂径定理模型和等式性质来证明.证明:过O 作OE ⊥AB ,垂足为E ,则AE =BE ,CE =DE .∴ AE -CE =BE -DE即 AC =BD .【设计意图】如此设计可调动学生积极性,使其更深入地掌握定理的内涵,提高学生归纳、概括的能力.第四环节 巩固练习1.如图,AB 是⊙O 的直径,AB ⊥CD 于点E ,若CD =6,则DE =( )A .3B .4C .5D .62.如图,AB 是⊙O 的直径,弦CD 与AB 相交于点E ,若 ,则CE =DE .(只需填一个条件)3.如图,CD 是⊙O 的直径,AB 是弦,CD ⊥AB ,垂足为M ,则可得出AM =BM ,弧AC =弧BC ,请你按所绘图形再写出另两个结论.4.已知如图,在⊙O 中,弦AB 的长为8cm ,若圆心O 到AB 的距离为3 cm ,则 ⊙O 的半径为 cm .5.已知⊙O 的直径是50 cm ,⊙O 的两条平行弦AB =40 cm ,CD =48cm ,求弦AB 与CD 之间的距离.参考答案:1.A 2.CD ⊥AB3.答案不唯一,如弧AD =弧BD , △ABC 是等腰三角形4.55.如图所示,包括两种情况:(1)弦AB 和CD 在⊙O 两旁,d =15-7=8cm ,15+7=22cm ;(2)弦AB 和CD 在⊙O 同旁,d =15-7=8cm .【设计意图】检查学生对基础知识的掌握情况.对垂径定理的理解应用.第五环节 反思升华引导学生从以下几个方面进行小结:(1)你学到了哪些知识?(2)垂径定理有哪些作用?【设计意图】通过归纳总结,使学生优化定理,内化知识.第六环节 课后作业1.如图,O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则O 的半径长为( )A .3cmB .4cmC .5cmD .6cm2.如图,在⊙O 中, 40AB AC A °=?,,则B Ð=________度.3.如图,⊙O 的半径OA =10㎝,弦AB =16㎝,P 为AB 上一动点,则点P 到圆心O 的最短距离为________㎝.4.如图,已知⊙O 的半径为5,弦8AB =,P 是弦AB 上任意一点,则OP 的取值范围是 .5.如图,BD 是⊙O 的弦,PO ⊥BD 于M 点,PB 、PB 分别交⊙O 于A ,C 点.根据以上条件,写出三个正确结论:① ;② ;③ .6.如图,在⊙O 中,弦5AB AC ==cm ,8BC =cm ,求⊙O 的半径.参考答案:1.C 2.70 3.64.3≤OP ≤55.答案不唯一,如:PA PC PB PD BPM MPD B D ==∠=∠∠=∠,,,,△PBM ≌△PDM 等.6.连接AO 交BC 于D 点,连接OB .则BD =4,可以求得AD =3.设OB =r ,得r 2=42+(r -3)2,解得r =256.板书设计本教案已用于实际教学,反思整节课,我有以下感受:1.注重解决问题策略的多样化.教学中,我努力引导学生通过动手,多手段、多角度地探索,分析问题、解决问题,发展创新意识.2.本节教学虽然达到了预期的效果,但也存在着不足:例如:在学生汇报学习结果时,没有借助其他的教学手段来辅助教学,致使班内理解能力较差的学生没有透彻的理解.从而学困生没有掌握此解题方法,也让他们在解决问题时缺乏了自信心.。
教学时间课题24.1.1 圆课型新授课教学目标知识和能力探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.过程和方法体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.情感态度价值观在解决问题过程中使学生体会数学知识在生活中的普遍性.教学重点圆的两种定义的探索,能够解释一些生活问题.教学难点圆的运动式定义方法教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、创设问题情境,激发学生兴趣,引出本节内容活动1:如图1,观察下列图形,从中找出共同特点.图1学生活动设计:学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.教师活动设计:让学生观察图形,感受圆和实际生活的密切联系,同时激发学生的学习渴望以及探究热情.二、问题引申,探究圆的定义,培养学生的探究精神活动2:如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?(课件:画圆)图2学生活动设计:学生小组合作、分组讨论,通过动画演示,发现在一个平面内一条线段OA绕它的一个端点O旋转一周,另一个端点形成的图形就是圆.教师活动设计:在学生归纳的基础上,引导学生对圆的一些基本概念作一界定:圆:在一个平面内,一条线段OA绕它的一个端点O旋转一周,另一个端点A所形成的图形叫作圆;圆心:固定的端点叫作圆心;半径:线段OA的长度叫作这个圆的半径.圆的表示方法:以点O为圆心的圆,记作“⊙O”,读作“圆O”.同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径);(2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆.活动3:讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗?图3学生活动设计:学生小组讨论,讨论结束后派一名代表发言进行交流,在交流中逐步完善自己的结果.教师活动设计:在学生交流的基础上得出上述概念的严格定义,对于学生的不准确的叙述,可以让学生讨论解决.弦:连接圆上任意两点的线段叫作弦;直径:经过圆心的弦叫作直径;弧:圆上任意两点间的部分叫作圆弧,简称弧;弧的表示方法:以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”;半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫作半圆.优弧:大于半圆的弧叫作优弧,用三个字母表示,如图3中的ABC;劣弧:小于半圆的弧叫作劣弧,如图3中的BC.活动4:讨论,车轮为什么做成圆形?如果做成正方形会有什么结果?(课件:车轮;课件:方形车轮)学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.教师活动设计:引导学生进行如下分析:如图4,把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成其他图形,比如正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.图4三、应用提高,培养学生的应用意识和创新能力活动5:如何在操场上画一个半径是5 m的圆?说出你的理由师生活动设计:教师鼓励学生独立思考,让学生表述自己的方法.根据圆的定义可以知道,圆是一条线段绕一个端点旋转一周,另一个端点形成的图形,所以可以用一条长5m的绳子,将绳子的一端A固定,然后拉紧绳子的另一端B,并绕A在地上转一圈.B所经过的路径就是所要的圆.活动6:从树木的年轮,可以很清楚地看出树生长的年龄.如果一棵20年树龄的红杉树的树干直径是23 cm,这棵红杉树平均每年半径增加多少?图5师生活动设计:首先求出半径,然后除以20即可.〔解答〕树干的半径是23÷2=11.5(cm).平均每年半径增加11.5÷20=0.575(cm).小结:圆的两种定义以及相关概念.在学生归纳的过程中注意学生语言的准确性和简洁性.二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神活动2:按下面的步骤做一做:第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;第二步,得到一条折痕CD;第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;第四步,将纸打开,新的折痕与圆交于另一点B,如图1.图1 图2在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OA M与△OB M都是直角三角形,又O M为公共边,所以两个直角三角形全等,则A M=B M.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,AC与BC重合.因此.AM=B M,AC=BC,同理得到AD BD教师活动设计:在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动3:如图3,AB所在圆的圆心是点O,过O作OC⊥AB于点D,若CD=4 m,弦AB=16 m,求此圆的半径.图3学生活动设计:学生观察图形,利用垂直于弦的直径的性质分析图形条件,发现若OC⊥AB,图7 图8师生活动设计:让学生在探究过程中,进一步把实际问题转化为数学问题,掌握通过作辅助线构造垂径定理的基本结构图,进而发展学生的思维.〔解答〕如图8所示,连接作OE ⊥AB ,垂足为E ,交圆于则AE =21AB = 30 cm .令⊙的半径为R ,情感培养学生积极探索数学问题的态度及方法.态度价值观教学重点探索圆心角、弧、弦之间关系定理并利用其解决相关问题.教学难点圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.教学准备教师多媒体课件学生“五个一”课堂教学程序设计设计意图一、一、创设问题情境,激发学生兴趣,引出本节内容活动11.按下面的步骤做一做:(1)在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下;(2)在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′,如图1所示,圆心固定.注意:在画∠AOB与∠A′O′B′时,要使OB相对于OA的方向与O′B′相对于O′A′的方向一致,否则当OA与OA′重合时,OB与O′B′不能重合.图1(3)将其中的一个圆旋转一个角度.使得OA与O′A′重合.通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.(课件:探究三量关系)师生活动设计:教师叙述步骤,同学们一起动手操作.由已知条件可知∠AOB=∠A′O′B′;由AB AC=,△ABC是等腰三角形,由∠ACB=60°,得到△ABC是等边三角形,AB=AC=BC,所以得到∠AOB=∠AOC=∠BOC.教师活动设计:这个问题是对三量关系定理的简单应用,因此应当让学生独立解决,在必要时教师可以进行适当的启发和提醒,最后学生交流自己的做法.〔证明〕∵AB AC=∴AB=AC,△ABC是等腰三角形.又∠ACB=60°,∴△ABC是等边三角形,AB=BC=CA.∴∠AOB=∠AOC=∠BOC.2.如图3,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,求∠BOD的度数.图3学生活动设计:学生分析,由BC=CD=DA可以得到这三条弦所对的圆心角相等,所以考虑连接OC,得到∠AOD=∠DOC=∠BOC,而AB是直径,于是得到∠BOD=23×180°=120°.教师活动设计:此问题的解决方式和活动3类似,不过要注意学生对辅助线OC的理解,添加辅助线OC的原因.三、拓展创新、应用提高,培养学生的应用意识和创新能力活动3:定理“在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?师生活动设计:小组讨论,可以在教师的引导下,举出反例说明条件“在同圆或等圆中”不能去掉,比如可以请同学们画一个只能是圆心角相等的这个条件的图.如图4所示,虽然∠AOB=∠A′O′B′,但AB≠A′B′,弧AB≠弧A′B′.图4教师进一步引导学生用同样的思路考虑命题:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等中的条件“在同圆和等圆中”是否能够去掉.小结:弦、圆心角、弧三量关系.作业设计必做习题24.1 第2、3题,第10题.选做P88:11、12教学反思教学时间课题24.1.4 圆周角课型新授课教学目标知识和能力1.了解圆周角与圆心角的关系.2.探索圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.过程和方法1.通过观察、比较,分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.4.学生在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想、转化的数学思想解决问题.情感态度价值观引导学生对图形的观察发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.教学重点探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征.教学难点发现并论证圆周角定理.教学准备教师多媒体课件学生“五个一”问题与情境师生行为设计意图[活动1 ]演示课件或图片:教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发问题1如图:同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C ,他们的视角(AOB ∠和ACB ∠)有什么关系?问题2如果同学丙、丁分别站在其他靠墙的位置D 和E ,他们的视角(ADB ∠和AEB ∠)和同学乙的视角相同吗?角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧(AB )所对的圆心角(AOB ∠)与圆周角(ACB ∠)、同弧所对的圆周角(ACB ∠、ADB ∠、AEB ∠等)之间的大小关系.教师引导学生进行探究.教师关注:1.问题的提出是否引起了学生的兴趣;2.学生是否理解了示意图; 3.学生是否理解了圆周角的定义;4.学生是否清楚了要研究的数学问题.现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题1同弧(弧AB )所对的圆心角∠AOB 与圆周角∠ACB 的大小关系是怎样的?问题2同弧(弧AB )所对的圆周角∠ACB 与圆周角∠ADB 的大小关系是怎样的?O BAC BOA C D E教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论. 在活动中,教师应关注:1.学生是否积极参与活动; 2.学生是否度量准确,观察、发现的结论是否正确.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师利用几何画板课件“圆周角定理”,从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化.1.拖动圆周角的顶点使其在圆周上运动;2.改变圆心角的度数; 3.改变圆的半径大小.活动2的设计是为 引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.问题5如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?问题6如图,⊙O的直径AB 为10 cm,弦AC 为6 cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.问题6提出后,教师关注:1.学生是否能由已知条件得出直角三角形ABC、ABD;2.学生能否将要求的线段放到三角形里求解;3.学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.[活动5]问题通过本节课的学习你有哪些收获?教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结,使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联系,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业的目的是让学生养成看书的习惯,并通过看书加DBOAC。