20种滤波、放大、稳压、振荡、整流模拟电路技术原理及作用图文并茂(自动化、电子等电控类专业)
- 格式:docx
- 大小:334.38 KB
- 文档页数:15
滤波电路的作用和原理图解
滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容,电感组成而成的各种复式滤波电路。
滤波是信号处理中的一个重要概念。
滤波分经典滤波和现代滤波。
经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。
根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。
换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。
只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电路,叫做经典滤波器或滤波电路。
当流过电感的电流变化时,电感线圈中产生的感生电动势将阻止电流的变化。
当通过电感线圈的电流增大时,电感线圈产生的自感电动势与电流方向相反,阻止电流的增加,同时将一部分电能转化成磁场能存储于电感之中;当通过电感线圈的电流减小时,自感电动势与电流方向相同,阻止电流的减小,同时释放出存储的能量,以补偿电流的减小。
因此经电感滤波后,不但负载电流及电压的脉动减小,波形变得平滑,而且整流二极管的导通角增大。
在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。
只有在RLωL时才能获得较好的滤波效果。
L愈大,滤波效果愈好。
另外,由于滤波电感电动势的作用,可以使二极管的导通角接近π,减小了二极管的冲击电流,平滑了流过二极管的电流,从而延长了整流二极管的寿命。
电子滤波电路工作原理,电子稳压滤波器,模拟电路一、π 型 RC滤波电路识图方法下图 4 所示是π 型 RC 滤波电路。
电路中的 C1、C2 和 C3 是 3 只滤波电容,R1 和 R2 是滤波电阻,C1、R1 和C2 构成第一节π 型的 RC 滤波电路, C2、R2 和 C3 构成第二节π 型 RC 滤波电路。
由于这种滤波电路的形式如同希腊字母π 和采用了电阻器、电容器,所以称为π 型 RC 滤波电路。
π 型 RC 滤波电路原理如下:(1)这一电路的滤波原理是:从整流电路输出的电压首先经过C1 的滤波,将大部分的交流成分滤除,然后再加到由 R1 和 C2 构成的滤波电路中。
C2 的容抗与 R1 构成一个分压电路,因 C2 的容抗很小,所以对交流成分的分压衰减量很大,达到滤波目的。
对于直流电而言,由于 C2 具有隔直作用,所以 R1 和 C2 分压电路对直流不存在分压衰减的作用,这样直流电压通过 R1 输出。
(2)在 R1 大小不变时,加大 C2 的容量可以提高滤波效果,在C2 容量大小不变时,加大 R1 的阻值可以提高滤波效果。
但是,滤波电阻 R1 的阻值不能太大,因为流过负载的直流电流要流过 R1,在 R1 上会产生直流压降,使直流输出电压Uo2 减小。
R1 的阻值越大,或流过负载的电流越大时,在 R1 上的压降越大,使直流输出电压越低。
(3)C1 是第一节滤波电容,加大容量可以提高滤波效果。
但是C1 太大后,在开机时对 C1 的充电时间很长,这一充电电流是流过整流二极管的,当充电电流太大、时间太长时,会损坏整流二极管。
所以采用这种π 型 RC 滤波电路可以使 C1 容量较小,通过合理设计 R1 和 C2 的值来进一步提高滤波效果。
(4)这一滤波电路中共有3 个直流电压输出端,分别输出Uo1、Uo2 和 Uo3 三组直流电压。
其中, Uo1 只经过电容 C1 滤波;Uo2 则经过了 C1、 R1 和 C2 电路的滤波,所以滤波效果更好, Uo2 中的交流成分更小;Uo3 则经过了 2 节滤波电路的滤波,滤波效果最好,所以 Uo3 中的交流成分最少。
一:桥式整流电路全波整流二级管的单向导电性,Si管压降是0.7V,Ge管是0.5V将AC整流成DC,负载两端的电压是Uo=0.9U2, Io=0.9U 2/R L,二极管反向电压U RM=√2 U 2 反向击穿电压不能太大,太大会烧坏整流后仍然还是会有脉动,需要用到滤波电路。
将直流中的交流部分过滤,让电压平滑二:电源滤波:电容两端的电压不能突变电感两端的电流不能突变用电容滤波【C】是在负载两端并联一个电容器适用于电流变化不大的电路Uo电压在0.9 U 2与√2 U 2之间用CL滤波,在负载两端并联2个电容器进行电源滤波在两个电容器中间加一个电感【CLC】适用于电流较大,但是电压脉动较小的情况Uo电压=1.2 U 2LDO稳压电路三:信号滤波器低频范围是:30hz~~300hz中频范围是:300hz~~3000hz高频范围是:3Mhz~~30MhzLC 串联是带通滤波LC 并联是带阻滤波在RLC滤波电路中,LC串联是带阻而LC并联是带通常见无源的滤波是RC滤波一阶滤波和二阶滤波是对信号过滤能力,一次和两次都可以由R、C、运放所组成的有源滤波器没有运放的就是无源滤波器,只由RLC组成L主要是通低频,阻高频C主要是通高频,阻低频带通滤波器可以由高通和低通滤波级联组成带阻滤波器可以由高通和低通滤波输出波形相加组成1.高通滤波器:允许高于某一频率的信号通过,抑制低于它的频段2.低通滤波器:允许低于截止频率的信号通过,抑制高于它的频段3.带通滤波器:允许某一段范围内的频率信号通过,抑制其他范围4.带阻滤波器:抑制某一段范围内的频率信号,允许其他范围内频率信号通过四:微分电路和积分电路1.微分电路作用:削减不变量,突出变化量。
由RC串联组成提取脉冲前沿(反应输入波形的突变部分)高通滤波改变相角R*C越小,输出脉冲越尖,尖脉冲小于输入脉冲宽度的1/10即可2.积分电路作用:突出不变量,削减变化量RC串联的低通滤波和积分电路一样的连接方式RC串联,但是和微分电路相反连接特点:可以将方波转变为锯齿波或者是三角波【V型电源】还可以将锯齿波转换为抛物波输入和输出成积分关系积分电路的时间常数t要大于或者等于10倍输入脉冲宽度作用:在电子开关中用于延时、定时时钟、低通滤波波形转换在A/D转换中,将电压量变为时间量移相五:共射极放大电路定义:输入信号是从基极和发射极进入的,输出信号是从集电极和发射极输出的,对交流信号而言,发射极为公共端,所以称为共射极放大电路特点:1.输入信号与输出信号是反向的,180°相位差(交流)2.功率增益比共基极和共集电极要高3.有电压放大4.有电流放大5.适用于电压放大和功率放大电路中原理:Ui在基极与发射极两端,通过Rb可改变基极电流基极电流变化会引起集电极Ic的变化,从而CE间电压变化Rc是将集电极的电流变化转变为电压变化通过C2的电容,隔直流通交流到RL两端,变成Uo实现电压变化直流通路和交流通路:画直流通路:电容视为断路,电感视为短路画交流通路:电容视为短路,电感视为断路,六:共集电极放大电路:定义:输入信号从基极和发射极进,输出信号从发射极出,对于交流信号而言,VCC相当于短路,集电极是公共端所以叫共集电极放大电路特点:1.没有电压增益2.输出信号与输入信号同向3.有功率放大作用4.电流增益高共基极放大电路:特点:1.输入输出同向2.电压增益高3.电流增益低4.功率增益高5.适用于高频6.用作电流缓冲器或者高频放大器7.共基放大电路因为输入在E极,输出在C极,又因IE≈IC,所以没有电流放大能力,只有电压放大能力,即8.具有电流跟随的特点;输入电阻小,电压放大倍数、输出电阻与共射电路相当,高频特性好;输入与输出是同相的关系,属同相放大八:电路反馈框图:分类:正反馈负反馈(反馈信号加强了净输入量就是正反馈,反馈信号削减了净输入量就是负反馈)交流反馈直流反馈串联反馈并联反馈(反馈信号是以电压的形式求和是串联反馈,反馈信号是以电流的形式求和就是并联反馈)电流反馈电压反馈(反馈信号与电压成正比就是电压反馈,反馈信号与电流成正比就是电流反馈将输出端负载短路,如此时反馈不存在了,就是电压反馈。
整流、滤波和稳压电路滤波电路交流电经过二极管整流之后,方向单一了,但是大小(电流强度)还是处在不断地变化之中。
这种脉动直流一般是不能直接用来给无线电装供电的。
要把脉动直流变成波形平滑的直流,还需要再做一番“填平取齐”的工作,这便是滤波。
换句话说,滤波的任务,就是把整流器输出电压中的波动成分尽可能地减小,改造成接近恒稳的直流电。
一、电容滤波电容器是一个储存电能的仓库。
在电路中,当有电压加到电容器两端的时候,便对电容器充电,把电能储存在电容器中;当外加电压失去(或降低)之后,电容器将把储存的电能再放出来。
充电的时候,电容器两端的电压逐渐升高,直到接近充电电压;放电的时候,电容器两端的电压逐渐降低,直到完全消失。
电容器的容量越大,负载电阻值越大,充电和放电所需要的时间越长。
这种电容带两端电压不能突变的特性,正好可以用来承担滤波的任务。
图5-9是最简单的电容滤波电路,电容器与负载电阻并联,接在整流器后面,下面以图5-9(a)所示半波整施情况说明电容滤波的工作过程。
在二极管导通期间,e2 向负载电阻R fz提供电流的同时,向电容器C充电,一直充到最大值。
e2 达到最大值以后逐渐下降;而电容器两端电压不能突然变化,仍然保持较高电压。
这时,D受反向电压,不能导通,于是Uc便通过负载电阻R fz放电。
由于C和R fz较大,放电速度很慢,在e2 下降期间里,电容器C上的电压降得不多。
当e2 下一个周期来到并升高到大于Uc时,又再次对电容器充电。
如此重复,电容器C两端(即负载电阻R fz:两端)便保持了一个较平稳的电压,在波形图上呈现出比较平滑的波形。
图5-10(a)(b)中分别示出半波整流和全波整流时电容滤波前后的输出波形。
显然,电容量越大,滤波效果越好,输出波形越趋于平滑,输出电压也越高。
但是,电容量达到一定值以后,再加大电容量对提高滤波效果已无明显作用。
通常应根据负载电用和输出电说的大小选择最佳电容量。
表5-2 中所列滤波电容器容量和输出电流的关系,可供参考。
整流、滤波和稳压电路第一节整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,R fz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压U sc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
各种整流滤波电路,电路图及原理讲解!基础电路一般直流稳压电源都使用220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进行稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将无法正常工作。
1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在 2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
整流、滤波、稳压电路看不懂你砍我好久的电路原理说明,终于能够看懂整流滤波稳压电路了,分享一下。
一、整流与滤波电路整流电路的任务是利用二极管的单向导电性,把正、负交变的50Hz电网电压变成单方向脉动的直流电压。
整流电路只是将交流电变换为单方向的脉动电压和电流,由于后者含有较大的交流成分,通常还需在整流电路的输出端接入滤波电路,以滤除交流分量,从而得到平滑的直流电压。
由波形可知:1.开关S打开时,电容两端电压为变压器付边的最大值。
2 .开关S闭合,即为电容滤波电阻负载,当变压器付边电压大于电容上电压时,电容充电,输出电压升高,当时电容放电,输出下降。
如此充电快,放电慢的不断反复,在负载上将得到比较平滑的输出电压。
当负载电阻越大时,放电越慢,纹波电压越小,负载电阻小时,放电快,纹波大,而且输出电压低。
为此有三种情况下的输出电压估算值:1)电容滤波,负载开路时。
2)无电容滤波,电阻负载时,输出电压平均值为:。
3)电容滤波,电阻负载时通常用下式进行估算,通常按估算。
为确保二极管安全工作,要求:不同电子设备要求其电源电压的平滑程度不同,为此可采用不同的滤波电路。
常见的有电容滤波、电感滤波和复式滤波电路(两个或两个以上滤波元件组成)。
二、线性串联型稳压电路整流滤波后的电压是不稳压的,在电网电压或负载变化时,该电压都会产生变化,而且纹波电压又大。
所以,整流滤波后,还须经过稳压电路,才能使输出电压在一定的范围内稳定不变。
1.稳压电路(电源)的主要性能指标输出的稳定电压值Vo,最大输出电流Imax,输出纹波电压V~,稳压系数(电压调整率),该值越小,稳定性越好。
输出电阻(内阻),,内阻越小越好。
2.串联型稳压电路的基本结构基本思路:串联型:当输入电压(VI)改变时,能自动调节(VCE)电压的大小,使输出电压(Vo)保持恒定。
例如:VI↑→Vo↑→经取样和放大电路后→IB↓→VCE↑→Vo↓串联型稳压电路基本结构:VI是整流滤波后的电压,T为调整管,A为比较放大电路,VREF为基准电压,它由稳压管Dz与限流电阻R构成。
20个模拟电路详解
(最新版)
目录
1.模拟电路的概述
2.模拟电路的重要性
3.常见模拟电路详解
4.模拟电路的实际应用
5.模拟电路的发展前景
正文
【模拟电路的概述】
模拟电路是一种处理连续电压和电流信号的电路,与数字电路不同,它的输出信号是连续的,可以取任意值。
在现代电子技术中,模拟电路和数字电路并存,各自发挥着重要的作用。
【模拟电路的重要性】
模拟电路在现代科技中有着广泛的应用,如通信、控制、计算机、家电等领域。
模拟电路的设计和分析能力对电子工程师来说,是一项重要的基本技能。
【常见模拟电路详解】
本文将详细解释 20 个常见的模拟电路,包括放大器、滤波器、振荡器、数据转换器等。
这些电路详解将有助于读者理解和学习模拟电路的原理和应用。
【模拟电路的实际应用】
模拟电路在实际应用中具有重要作用,例如在通信系统中,调制器需要将数字信号转换为模拟信号,而解调器则需要将模拟信号转换为数字信
号。
此外,在家电控制中,模拟电路也起到了关键的作用,如电压调节器、温度控制器等。
【模拟电路的发展前景】
随着科技的发展,模拟电路也在不断更新和进步。
未来,模拟电路将在智能化、集成化、高速化等方面进行深入的研究和发展。
同时,新型材料和新型器件的出现,也将为模拟电路的创新提供更多的可能性。
总的来说,模拟电路作为电子技术的重要组成部分,其重要性不言而喻。
20种滤波、放大、稳压、振荡、整流
模拟电路设计原理及作用图文并茂
一、前言
对模拟电路的掌握分为三个层次。
初级层次是熟练记住这二十个电路,清楚这二十个电路的作用。
只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。
中级层次是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;
A、定性分析电路信号的流向,相位变化;
B、定性分析信号波形的变化过程;
C、定性了解电路输入输出阻抗的大小,信号与阻抗的关系。
有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。
高级层次是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。
达到高级层次后,只要您愿意,受人尊敬的高薪职业:电子产品和工业控制设备的开发设计工程师将是您的首选职业。
二、桥式整流电路
1、二极管的单向导电性:
A、伏安特性曲线:
B、理想开关模型和恒压降模型:
2、桥式整流电流流向过程:输入输出波形:
3、计算:Vo,Io,二极管反向电压。
三、电源滤波器
1、电源滤波的过程分析:波形形成过程:
2、计算:滤波电容的容量和耐压值选择。
四、信号滤波器
1、信号滤波器的作用:与电源滤波器的区别和相同点:
2、LC串联和并联电路的阻抗计算,幅频关系和相频关系曲线。
3、画出通频带曲线。
计算谐振频率。
五、微分和积分电路
1、电路的作用,与滤波器的区别和相同点。
2、微分和积分电路电压变化过程分析,画出电压变化波形图。
3、计算:时间常数,电压变化方程,电阻和电容参数的选择。
六、共射极放大电路
1、三极管的结构、三极管各极电流关系、特性曲线、放大条件。
2、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。
3、静态工作点的计算、电压放大倍数的计算。
七、分压偏置式共射极放大电路
1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。
2、电流串联负反馈过程的分析,负反馈对电路参数的影响。
3、静态工作点的计算、电压放大倍数的计算。
4、受控源等效电路分析。
八、射极跟随器及共集电极放大电路
1、元器件的作用、电路的用途、电压放大倍数、输入和输出的信号电压相位关系、交流和直流等效电路图。
电路的输入和输出阻抗特点。
2、电流串联负反馈过程的分析,负反馈对电路参数的影响。
3、静态工作点的计算、电压放大倍数的计算。
九、电路反馈框图
1、反馈的概念,正负反馈及其判断方法、并联反馈和串联反馈及判断方法、电流反馈和电压反馈及其判断方法。
2、带负反馈电路的放大增益。
3、负反馈对电路的放大增益、通频带、增益的稳定性、失真、输入和输出电阻的影响。
十、二极管稳压电路
1、稳压二极管的特性曲线。
2、稳压二极管应用注意事项。
3、稳压过程分析。
十一、串联稳压电源
1、串联稳压电源的组成框图。
2、每个元器件的作用;稳压过程分析。
3、输出电压计算。
十二、差分放大电路
1、电路各元器件的作用,电路的用途、电路的特点。
2、电路的工作原理分析。
如何放大差模信号而抑制共模信号。
3、电路的单端输入和双端输入,单端输出和双端输出工作方式。
十三、场效应管放大电路
1、场效应管的分类,特点,结构,转移特性和输出特性曲线。
2、场效应放大电路的特点。
3、场效应放大电路的应用场合。
十四、选频(带通)放大电路
1、每个元器件的作用:
A、选频放大电路的特点:
B、电路的作用:
2、特征频率的计算:选频元件参数的选择:
3、幅频特性曲线:
十五、运算放大电路
1、理想运算放大器的概念:
A、运放的输入端虚拟短路:
B、运放的输入端的虚拟断路:
2、反相输入方式的运放电路的主要用途:输入电压与输出电压信号的相位关系是:
3、同相输入方式下的增益表达式分别是:
A、输入阻抗分别是:
B、输出阻抗分别是:
十六、差分输入运算放大电路
1、差分输入运算放大电路的特点及用途:
2、输出信号电压与输入信号电压的关系式:十七、电压比较电路
1、电压比较器的作用:工作过程是:
2、比较器的输入-输出特性曲线图:
3、如何构成迟滞比较器:
十八、RC振荡电路
1、振荡电路的组成:
A、振荡电路的作用:
B、振荡电路起振的相位条件:
C、振荡电路起振和平衡幅度条件:
2、RC电路阻抗与频率的关系曲线:相位与频率的关系曲线:
3、RC振荡电路的相位条件分析:
A、振荡频率:
B、如何选择元器件:
十九、LC振荡电路
1、振荡相位条件分析:
2、直流等效电路图和交流等效电路图:
3、振荡频率计算:
二十、石英晶体振荡电路
1、石英晶体的特点:
A、石英晶体的等效电路:
B、石英晶体的特性曲线:
2、石英体振动器的特点:
3、石英晶体振动器的振荡频率:
二十一、功率放大电路
1、乙类功率放大器的工作过程:交越失真:
2、复合三极管的复合规则:
3、甲乙类功率放大器的工作原理分析:
A、自举过程分析:
B、甲类功率放大器的特点:
C、甲乙类功率放大器的特点:。