2011高考数学_算法和矩阵
- 格式:doc
- 大小:661.50 KB
- 文档页数:6
高考数学矩阵的应用及实例分析高考数学是所有文理科生必备的重要课程,而矩阵则是其中必不可少的基础知识点之一。
然而,在实际应用中,矩阵的作用远不止于此,尤其是在计算机领域的广泛应用。
本文将就高考数学矩阵的应用及实例展开阐述和分析。
矩阵的基本定义矩阵是数学中经常用到的对象,其由数或其他数或向量组成的矩形阵列所构成。
例如,一个行列均为m的矩阵记作A=[a_{ij}],其中i表示行,j表示列,a_{ij}表示A的第i行第j列的元素。
在矩阵中,元素之间的顺序是有意义的,这也是矩阵与普通数组不同的地方。
矩阵的加法和乘法矩阵的加法和乘法是矩阵计算中最基础的两个操作,其定义如下:1.矩阵加法设A=[a_{ij}],B=[b_{ij}]均为m行n列的矩阵,令C=A+B,且C=[c_{ij}],则矩阵C的第i行第j列的元素c_{ij}为a_{ij}+b_{ij}。
2.矩阵乘法设A=[a_{ij}]是m行n列的矩阵,B=[b_{ij}]是n行k列的矩阵,令C=A*B,且C=[c_{ij}],则矩阵C的第i行第j列的元素c_{ij}为c_{ij}=a_{i1}*b_{1j}+a_{i2}*b_{2j}+...+a_{in}*b_{nj}矩阵的应用矩阵的应用不仅局限于高考数学的范畴,其在计算机领域中也有着广泛的应用。
1.图像处理在图像处理中,矩阵被广泛应用于图像滤波和处理算法中。
比如,利用矩阵卷积的方法对图像进行模糊和锐化处理等。
2.数据分析在机器学习和数据分析领域中,矩阵被广泛用于特征向量和特征值计算、预处理和数据降维等方面。
其中,主成分分析(PCA)就是一种常用的算法,它通过矩阵的特征向量和特征值来实现降维和特征提取。
3.计算机图形学在计算机图形学领域中,矩阵被广泛应用于更加复杂的三维图形的建模和变换中。
其中,矩阵变换(旋转、平移等)是基本操作之一,而矩阵在计算机图形学中的应用更加广泛,包括贝塞尔曲线、NURBS曲线等都离不开矩阵的支持。
2011年高考分类汇编:算法和矩阵算法和矩阵安徽理(11)如图所示,程序框图(算法流程图)的输出结果是 . (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和.【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. 北京理4.执行如图所示的程序框图,输出的s 的值为A.3-;B.12-;C. 13;D. 2 【解析】:循环操作4次时S 的值分别为11,,3,232--,选D 。
福建理11.运行如图所示的程序,输出的结果是_______。
321.(1)(本小题满分7分)选修4-2:矩阵与变换1a = 2b =a a b=+PRINT a END第4题设矩阵00a M b ⎛⎫= ⎪⎝⎭(其中a >0,b >0).(I )若a=2,b=3,求矩阵M 的逆矩阵M -1; (II )若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ’:1y 4x 22=+,求a ,b 的值.21.(1)选修4—2:矩阵与变换本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
解:(I )设矩阵M 的逆矩阵11122x y M x y -⎛⎫= ⎪⎝⎭,则110.01MM-⎛⎫= ⎪⎝⎭又2003M ⎛⎫= ⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以112211221121,20,30,31,,0,0,,23x yx y x y x y ========即故所求的逆矩阵1102.103M -⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭(II )设曲线C 上任意一点(,)P x y ,它在矩阵M 所对应的线性变换作用下得到点'(',')P x y ,则00ab ⎛⎫⎪⎝⎭'',''x x ax x y y by y =⎛⎫⎛⎫⎧=⎨⎪ ⎪=⎝⎭⎝⎭⎩即,又点'(',')P x y 在曲线'C 上, 所以22''14x y +=,,则222214a xb y +=为曲线C的方程,福建又已知曲线C 的方程为22224,1, 1.a x yb ⎧=⎪+=⎨=⎪⎩故又2,0,0, 1.a ab b =⎧>>⎨=⎩所以 福建文5.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3B .11C .38D .123 B湖南理13、若执行如图3所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于 。
第十四章系列4第二节 4-2矩阵与变换第一部分三年高考荟萃一、简单题1.(福建理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,如果多做,则按所做的前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵aMb⎛⎫= ⎪⎝⎭(其中a>0,b>0).(I)若a=2,b=3,求矩阵M的逆矩阵M-1;(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:1y4x22=+,求a,b的值.答案(1)选修4—2:矩阵与变换本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
解:(I)设矩阵M的逆矩阵11122x yMx y-⎛⎫= ⎪⎝⎭,则110.01MM-⎛⎫= ⎪⎝⎭又2003M⎛⎫= ⎪⎝⎭,所以112220100301x yx y⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1122112211 21,20,30,31,,0,0,,23 x y x y x y x y========即故所求的逆矩阵112.13 M-⎛⎫⎪= ⎪⎪⎪⎝⎭(II)设曲线C上任意一点(,) P x y它在矩阵M所对应的线性变换作用下得到点'(',')P x y,则ab⎛⎫⎪⎝⎭'',''x x ax xy y by y=⎛⎫⎛⎫⎧=⎨⎪ ⎪=⎝⎭⎝⎭⎩即又点'(',')P x y在曲线'C上,所以22''14xy+=,,则222214a xb y+=为曲线C的方程,又已知曲线C的方程为22224,1,1.ax yb⎧=⎪+=⎨=⎪⎩故又2,0,0,1.aa bb=⎧>>⎨=⎩所以2011年高考题一、填空题1.(上海理10)行列式a bc d(,,,{1,1,2}a b c d∈-)的所有可能值中,最大的是。
高考数学如何快速计算复杂的矩阵运算矩阵运算是高考数学中的一个重要知识点,它广泛应用于线性代数、概率统计、经济学等领域。
在高考数学考试中,复杂的矩阵运算题目常常让考生感到头疼。
然而,只要掌握一些计算技巧和方法,我们便能迅速、准确地解决这类问题。
本文将介绍几种快速计算复杂矩阵运算的方法,帮助广大考生应对高考数学中的矩阵运算题。
一、矩阵的基本运算要快速计算复杂的矩阵运算题,首先需要掌握矩阵的基本运算法则。
矩阵的加法和减法运算是比较简单的,只需对应位置的元素相加或相减即可。
而矩阵的乘法运算则稍微复杂一些,需要注意以下几个要点:1. 矩阵乘法满足结合律,但不满足交换律,即AB≠BA;2. 两个矩阵相乘的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数;3. 矩阵乘法中,行乘以列,按照对应元素相乘后相加的规则进行;4. 如果两个矩阵无法相乘,需要注意其行数和列数是否满足乘法运算的条件。
二、矩阵的特殊矩阵在解决矩阵运算时,我们经常遇到一些特殊矩阵,如单位矩阵、零矩阵、对角矩阵等。
对于这些特殊矩阵,我们可以利用其特殊的性质来简化计算过程。
1. 单位矩阵:单位矩阵是一个主对角线上元素全为1,其余元素全为0的方阵。
任何矩阵和单位矩阵相乘,结果仍为原矩阵。
2. 零矩阵:零矩阵是一个全为0的矩阵。
任何矩阵与零矩阵相乘,结果仍为零矩阵。
3. 对角矩阵:对角矩阵是一个主对角线上元素不全为0,其余元素全为0的方阵。
对角矩阵相乘时,只需将对应位置的元素相乘即可,其它位置的元素均为0。
三、矩阵的转置和逆矩阵在复杂的矩阵运算问题中,经常需要用到矩阵的转置和逆矩阵。
矩阵的转置指的是将矩阵的行和列对换得到的新矩阵。
转置后的矩阵,其行变为原矩阵的列,列变为原矩阵的行。
我们可以利用这个性质来简化计算过程。
逆矩阵是指对于一个方阵A,如果存在一个方阵B,使得AB=BA=I(其中I为单位矩阵),则称B为A的逆矩阵。
逆矩阵的求解需要利用伴随矩阵、行列式等概念,需要一定的运算技巧和方法。
2011年高考数学试题分类解析(七)——算法初步与框图欧阳才;郭慧清
【期刊名称】《中国数学教育(高中版)》
【年(卷),期】2011(000)008
【摘要】分析2011年全国各地高考数学试卷中出现的关于“算法初步与框图”的试题,归纳试题的特点与类型,并指出试题的现状和需要改进的地方,力求为将来的数学教学与高考备考提供帮助.
【总页数】7页(P58-64)
【作者】欧阳才;郭慧清
【作者单位】湖南省宁乡县第一高级中学;广东省深圳市深圳中学
【正文语种】中文
【相关文献】
1.2011年高考数学试题分类解析(六)--不等式 [J], 王连笑
2.2011年高考数学试题分类解析(八)——立体几何 [J], 张健
3.2011年高考数学试题分类解析(七)--算法初步与框图 [J], 欧阳才;郭慧清
4.2010年高考数学试题(新课程卷)分类解析(七)——算法初步与框图 [J], 郭慧清
5.2010年高考数学试题(新课程卷)分类解析(七)--算法初步与框图 [J], 郭慧清
因版权原因,仅展示原文概要,查看原文内容请购买。
2011年普通高等学校夏季招生全国统一考试数学(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题.满分150分.参考公式:样本数据x 1,x 2,…,x n 的标准差])()()[(122221x x x x x x nS n -++-+-=其中x 为样本平均数 柱体体积公式 V =Sh其中S 为底面面积,h 为高 锥体体积公式 13V Sh =其中S 为底面面积,h 为高球的表面积、体积公式 2344,3S R V R ππ==其中R 为球的半径第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈SC .i 3∈SD .2i∈S2.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分又不必要条件3.若tan α=3,则2sin 2cos αα的值等于( ) A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14B .13C .12D .235.1(e 2)xx dx +⎰等于( )A .1B .e -1C .eD .e +16.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10 7.设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A .1322或 B .23或2C .12或2 D .2332或8.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]9.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和210.已知函数f (x )=e x+x .对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是( ) A .①③ B .①④ C .②③ D .②④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是________.12.三棱锥P —ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P —ABC 的体积等于________.13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.14.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.15.设V 是全体平面向量构成的集合.若映射f :V →R 满足: 对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ),则称映射f 具有性质P .现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ; ②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式.17.已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--.其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:X 1 5 6 7 8 P 0.4 a b 0.1且X 1的数学期望EX 1=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”= 产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.20.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°.(1)求证:平面P AB ⊥平面PAD ;(2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由.21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)选修4—2:矩阵与变换 设矩阵00a Mb ⎛⎫=⎪⎝⎭(其中a >0,b >0). ①若a =2,b =3,求矩阵M 的逆矩阵M -1;②若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:1y 4x22=+,求a ,b 的值.(2)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧==ααsin cos 3y x(α为参数).①已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系;②设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. (3)选修4—5:不等式选讲设不等式|2x -1|<1的解集为M . ①求集合M ;②若a ,b ∈M ,试比较ab +1与a +b 的大小.参考答案1.B 2.A 3.D 4.C 5.C 6.B 7. A 8.C 9.D 10.B 11.答案:3 12.答案:3 13.答案:3514.答案:2 15.答案:①③16.解:(1)由q =3,S 3=133得311313a (-)-=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3.因为当x =6π时,f (x )取得最大值,所以sin(2×6π+φ)=1.又0<φ<π,故φ=6π.所以函数f (x )的解析式为f (x )=3sin(2x +6π).17.解法一:(1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以020m --×1=-1.解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |=22200222(-)+(-)=. 故所求圆的方程为(x -2)2+y 2=8.(2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m . 由24y x m x y=--⎧⎨=⎩,得x 2+4x +4m =0,Δ=42-4×4m =16(1-m ).①当m =1,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.解法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则224|20|2m r m r ⎧+=⎪-+⎨=⎪⎩解得222m r =⎧⎪⎨=⎪⎩所以所求圆的方程为(x -2)2+y 2=8. (2)同解法一.18.解:(1)因为x =5时,y =11,所以2a +10=11,a =2.(2)由(1)可知,该商品每日的销售量210(236)x y x +-=-,所以商场每日销售该商品所获得的利润 f (x )=(x -3)[23x -+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x ) 单调递增 极大值42 单调递减由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 19.解:(1)因为EX 1=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由67 3.20.5a b a b +=⎧⎨+=⎩,解得0.30.2a b =⎧⎨=⎩.(2)由已知得,样本的频率分布表如下:X 2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.1 0.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1所以EX 2=3P (X 2=3)+4P (X 2=4)+5P (X 2=5)+6P (X 2=6)+7P (X 2=7)+8P (X 2=8)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1 =4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.20.解法一:(1)因为P A ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面PAB ⊥平面P AD .(2)以A 为坐标原点,建立空间直角坐标系A —xyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).①设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P BP B⋅⋅n n ,即22222241242t tt t t t-=++(-)⋅.解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m ,0)(其中0≤m ≤4-t ), 则G C =(1,3-t -m ,0),CD =(0,4-t -m ,0),GP=(0,-m ,t ).由G C G D =得12+(3-t -m )2=(4-t -m )2,即t =3-m ;(ⅰ)由C D G P =|得(4-t -m )2=m 2+t 2.(ⅱ)由(ⅰ)(ⅱ)消去t ,化简得 m 2-3m +4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.解法二:(1)同解法一.(2)①以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4,得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩,取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P B P B ⋅⋅ n n ,即22222241242t t t t t t-=++(-)⋅, 解得t =45或t =4(舍去,因为AD =4-t >0).所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°. 从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABC 中,GB =22AB AG +=223λλ+(-)=239222λ(-)+>1,这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 21.(1)选修4-2:矩阵与变换解:①设矩阵M 的逆矩阵M -1=1122x y x y ⎛⎫ ⎪⎝⎭,则MM -1=1001⎛⎫⎪⎝⎭. 又M =2003⎛⎫⎪⎝⎭, 所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13.故所求的逆矩阵M -1=102103⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭.②设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′).则00a x x b y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭,即ax x by y'=⎧⎨'=⎩. 又点P ′(x ′,y ′)在曲线C ′上,所以2214x y ''+=.则222214a xb y +=为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故2241a b ⎧=⎪⎨=⎪⎩又a >0,b >0,所以21a b =⎧⎨=⎩(2)选修4—4:坐标系与参数方程解:①把极坐标系的点P (4,2π)化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. ②因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离是d =|3cos sin 4|2αα-+=2cos(462πα+)+=2cos(α+6π)+22,由此得,当cos(α+6)=-1时,d 取得最小值,且最小值为2.(3)选修4-5:不等式选讲解:①由|2x -1|<1得-1<2x -1<1, 解得0<x <1.所以M ={x |0<x <1}.②由(1)和a ,b ∈M 可知0<a <1,0<b <1. 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +B .。
高考数学中的矩阵解析技巧矩阵是高中数学中的一个重要知识点,也是高考数学必考内容之一。
矩阵不仅在数学中有着重要应用,还被广泛应用于物理、化学、工程等领域。
因此,掌握矩阵的解析技巧不仅有助于高考成绩的提升,也能为今后的学习和工作打下坚实的基础。
本文将就高考数学中的矩阵解析技巧进行详细的阐述和探讨。
一、矩阵的定义和基本运算矩阵由一组数排成的矩形数组组成,通常用大写字母表示。
矩阵的行数与列数分别称为矩阵的行数和列数。
例如,A=[a_ij ]表示一个m行n列的矩阵,其中a_ij是矩阵A的第i行第j列的元素。
矩阵中的元素可以是实数、复数、方程等。
矩阵的基本运算有加法、数乘、乘法三种。
加法:设A=[a_ij ],B=[b_ij ]是两个m行n列的矩阵,则矩阵A与B的和C=[c_ij ]定义为C=A+B,其中c_ij=a_ij+b_ij。
数乘:设k为实数,A=[a_ij ]是一个m行n列的矩阵,则k乘以矩阵A的结果为D=[d_ij ],其中d_ij=k×a_ij。
乘法:设A=[a_ij ]是一个m行n列的矩阵,B=[b_ij ]是一个n 行r列的矩阵,则A乘以B的积C=[c_ij ]定义为:c_ij=a_i1×b_1j+a_i2×b_2j+···+a_in×b_nj其中1≤i≤m,1≤j≤r,c_ij是矩阵C的第i行第j列的元素。
需要注意的是,两个矩阵相乘的前提是它们的行列数符合要求,即一个矩阵的列数等于另一个矩阵的行数。
二、矩阵的性质矩阵有一些重要的性质,掌握这些性质有助于更深入地理解矩阵并应用于实际问题的解决中。
1.矩阵的转置矩阵的转置是指将矩阵的行和列调换位置得到的结果。
设A=[a_ij ]为一个m行n列的矩阵,A的转置记作A^T,其中A^T=[b_ij ],b_ij=a_ji。
即将A的第i行变为A^T的第i列,A的第j列变为A^T的第j行。
2011年上海市高考数学试题(理科)一.填空题(56分) 1.函数1()2f x x =-的反函数为1()f x -= . 【测量目标】反函数.【考查方式】直接利用函数的表达式,解出用y 表示x 的式子,即可得到答案. 【难易程度】容易 【参考答案】12x+ 【试题解析】设12y x =-,可得21xy y -=, (步骤1) ∴12xy y =+,可得12y x y+=,将x 、y 互换得112()x f x x -+=. (步骤2)∵原函数的值域为{}|0y y y ∈≠,∴112()(0)xfx x x-+=≠. (步骤3) 2.若全集U =R ,集合{}{}=|1|0A x x x x 厔,则U A =ð .【测量目标】集合的基本运算(补集).【考查方式】集合的表示法(描述法)求集合的补集. 【难易程度】容易【参考答案】{|01}x x <<【试题解析】∵集合{}{}{}=|1|0|10A x x x xx x x = 或厔厔∴U A =ð{|01}x x <<. 3.设m 为常数,若点(0,5)F 是双曲线2219y x m -=的一个焦点,则m = . 【测量目标】双曲线的简单几何性质.【考查方式】利用双曲线标准方程中的分母与焦点(非零坐标)的关系,列出关于m 的方程,通过解方程求出m 的值. 【难易程度】容易 【参考答案】16【试题解析】由于点(0,5)F 是双曲线2219y x m -=的一个焦点, 故该双曲线的焦点在y 轴上,从而0m >. 从而得出m +9=25,解得m =16. 4.不等式13x x+…的解为 . 【测量目标】解一元二次不等式.【考查方式】通过移项解一元二次不等式.【难易程度】容易【参考答案】0x <或12x …【试题解析】原不等式同解于130x x +-…,同解于(12)00x x x -⎧⎨≠⎩…,即2200x x x ⎧-⎨≠⎩…,解得 0x <或12x ….5.在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 . 【测量目标】简单曲线的极坐标方程.【考查方式】先转换得到直角坐标系,再利用直线的直角坐标方程求出它们的夹角即可. 【难易程度】容易 【参考答案】1arctan2【试题解析】∵(2cos sin )2ρθθ+=,cos 1ρθ=, ∴转化到直角坐标系得到:220x y +-=与x =1. (步骤1) ∴220x y +-=与x =1夹角的正切值为12, (步骤2) 直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为1arctan2.(步骤3) 6.在相距2千米的A 、B 两点处测量目标C ,若75,60CAB CBA ∠=∠= ,则A 、C 两点之间的距离是 千米.【测量目标】解三角形的实际应用.【考查方式】用三角形内角和求得ACB ∠,进而表示出AD ,进而在Rt ABD △中,表示出AB 和AD 的关系求得.【难易程度】容易【试题解析】由A 点向BC 作垂线,垂足为D ,设AC x =, (步骤1) ∵75,60CAB CBA ∠=∠= ,∴180756045ACB ∠=--=∴AD x =. (步骤2) ∴在Rt ABD △中,sin 602AB x ==(步骤3)x =. (步骤4)第6题图7.若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 .【测量目标】柱、锥、台、球的体积.【考查方式】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥体积. 【难易程度】容易【试题解析】根据题意,圆锥的底面面积为π,则其底面半径是1,底面周长为2π.(步骤1)又π2πrl =,∴圆锥的母线为2(步骤2)所以圆锥的体积1π3= (步骤3) 8.函数ππsin()cos()26y x x =+-的最大值为 【测量目标】三角函数的最值.【考查方式】利用诱导公式和积化和差公式对解析式化简,进而根据正弦函数的值域求得函数的最大值. 【难易程度】容易【参考答案】24+ 【试题解析】ππsin()cos()26y x x =+-=πcos cos()6x x -=1ππcos cos(2)266x ⎡⎤+-⎢⎥⎣⎦=1πcos(2)26x -+. 9.马老师从课本上抄录一个随机变量ε的概率分布律如下表请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E ε= .【测量目标】离散型随机变量的期望与方差.【考查方式】(1)(3)(2)1P P P εεε=+=+==,然后根据期望求法即可求得结果. 【难易程度】容易 【参考答案】2【试题解析】设(1)(3),(2),P P a P b εεε====== 则21,232(2)2a b E a b a a b ε+==++=+=.10.行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 . 【测量目标】矩阵与行列式.【考查方式】按照行列式的运算法则,化简得ad bc -,再根据条件进行分析计算,比较可得其最大值. 【难易程度】容易 【参考答案】6 【试题解析】a bad bc c d=-, ∵,,,{1,1,2}a b c d ∈-∴ad 的最大值是:2⨯2=4,bc 的最小值是:122-⨯=-, ∴ad bc -的最大值是6.11.在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD =.【测量目标】平面向量在平面几何中的应用.【考查方式】把AD 用,AB BC表示出来,利用向量的数量积的运算法则即可求得AB AD 的值.【难易程度】容易【参考答案】152【试题解析】∵3AB =,1BD =,∴D 是BC 上的三等分点, (步骤1) ∴13AD AB BD AB BC =+=+, (步骤2)∴2111115()9933322AB AD AB AD AB AB BC AB AB BC ==+=+=-⨯⨯=. (步骤3) 12.随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001).【测量目标】古典概型.【考查方式】先求事件发生总数,再求出所求事件的对立事件总数,继而得到结果. 【难易程度】容易 【参考答案】0.985【试题解析】事件发生总数为912,至少有2位同学在同一个月出生的对立事件是没有人生日在同一个月,共有912P 种结果,∴要求的事件的概率是9129P 3850110.98512248832-=-=.13.设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【测量目标】函数的周期性;函数的值域.【考查方式】根据题意条件,研究函数()()f x x g x =+的性质,得()()11f x f x +-=,由此关系求出函数值域.【难易程度】容易 【参考答案】[15,11]-【试题解析】由题意()()f x x g x -=在R 上成立, 故()()()111f x x g x +-+=+ 所以()()11f x f x +-=,由此知自变量增大1,函数值也增大1 故()f x 在[10,10]-上的值域为[15,11]-14.已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ……,则0lim ||n n Q P →∞= . 【测量目标】数列的极限与运算.【考查方式】由题意推导下去,则1122;Q R Q R 、、中必有一点在的左侧,一点在右侧,然后退出12n ,P P P ,的极限,继而求出结果. 【难易程度】中等【试题解析】由题意11(||2)(||2)0OQ OR --<,所以第一次只能取10PR 一条,22(||2)(||2)0OQ OR --<.依次下去,则1122;Q R Q R 、、…中必有一点在的左侧,一点在右侧,由于12n ,,,,P P P ,……是中点,根据题意推出12n ,P P P ,…,,…,的极限为:),所以001lim n n Q P Q P →∞==二、选择题(20分)15.若,a b ∈R ,且0ab >,则下列不等式中,恒成立的是 ( )A.222a b ab +> B.a b +… C.11a b +>D.2b a a b +… 【测量目标】基本不等式.【考查方式】根据基本不等式使用条件和定义逐个排除得到结果. 【难易程度】容易 【参考答案】D【试题解析】对于A ,222a b ab +…所以A 错;对于B ,C ,虽然0ab >,只能说明a ,b 同号,若a ,b 都小于0时,所以B ,C 错 ∵0ab >∴2b aa b+…,故选D. 16.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 ( ) A.1ln||y x = B.3y x = C.||2x y = D.cos y x = 【测量目标】函数单调性的判断;函数奇偶性的判断.【考查方式】再结合偶函数的定义判断出为偶函数;求出导函数判断出导函数的符号,判断出函数的单调性.【难易程度】容易 【参考答案】A 【试题解析】对于1ln||y x =,函数的定义域为x ∈R 且0x ≠,(步骤1) 将x 用x -代替,解析式不变,所以是偶函数. (步骤2) 当(0,)x ∈+∞时,11lnln ||y x x==,10y x '=-<∴1ln||y x =在区间(0,)+∞上单调递减的函数,故选A . (步骤3) 17.设12345,,,,A A A A A 是空间中给定的5个不同的点,则使123450MA MA MA MA MA ++++=成立的点M 的个数为 ( )A.0B.1C.5D.10 【测量目标】向量的线性运算.【考查方式】把M 的坐标用其他5个点的坐标表示出来,进而判断M 的坐标x 、y 的解的组数,进而转化可得答案【难易程度】容易 【参考答案】B【试题解析】根据题意,设M 的坐标为()x y ,,x 、y 解得组数即符合条件的点M 的个数,再设12345,,,,A A A A A 的坐标依次为11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y ;若123450MA MA MA MA MA ++++= 成立,则123455x x x x x x ++++=,123455y y y y y y ++++=; 只有一组解,即符合条件的点M 有且只有一个;故选B .18.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ( ) A . {}n a 是等比数列.B . 1321,,,,n a a a -……或242,,,,n a a a ……是等比数列.C . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列.D . 1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 【测量目标】充分、必要条件;等比数列的性质.【考查方式】结合等比数列的性质,先判断必要性,再判断充分性得到结果. 【难易程度】容易 【参考答案】D【试题解析】依题意可知1i i i A a a += ,∴12i i i A a a ++= , (步骤1) 若{}n A 为等比数列则12i i i iA a q A a ++==(q 为常数),则1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比均为q ; (步骤2) 反之要想{}n A 为等比数列则12i i i iA a A a ++=需为常数,即需要1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相等;(步骤3)故{}n A 为等比数列的充要条件是1321,,,,n a a a -……和242,,,,n a a a ……均是等比数列,且公比相同. 故选D. (步骤4) 三、解答题(74分)19.(12分)已知复数1z 满足1(2)(1i)1i z -+=-(i 为虚数单位),复数2z 的虚部为2,12z z 是实数,求2z .【测量目标】复数代数形式的运算.【考查方式】利用复数的除法运算法则求出1z ,设出复数2z ;利用复数的乘法运算法则求出12z z ;利用当虚部为0时复数为实数,求出2z . 【难易程度】中等【试题解析】1(2)(1i)1i z -+=-⇒12i z =- (步骤1)设22i,z a a =+∈R ,则12(2i)(2i)(22)(4)i z z a a a =-+=++-,(步骤2) ∵ 12z z ∈R ,a =4∴ 242i z =+ (步骤3)20.(12分)已知函数()23x x f x a b =+ ,其中常数,a b 满足0ab ≠. ⑴ 若0ab >,判断函数()f x 的单调性; ⑵ 若0ab <,求(1)()f x f x +>时x 的取值范围. 【测量目标】函数单调性的判断.【考查方式】先把0ab >分为0,0a b >>与0,0a b <<两种情况,然后根据指数函数的单调性即可作出判断;把0ab <分为0,0a b ><与0,0a b <>两种情况;然后由(1)()f x f x +>化简得223x xa b +,最后由指数函数的单调性求出x 的取值范围. 【难易程度】中等【试题解析】⑴ 当0,0a b >>时,任意1212,,x x x x ∈<R , 则121212()()(22)(33)x x x xf x f x a b -=-+-. (步骤1)∵ 121222,0(22)0xxxxa a <>⇒-<,121233,0(33)0xxxxb b <>⇒-<, ∴ 12()()0f x f x -<,函数()f x 在R 上是增函数. (步骤2) 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (步骤3) ⑵ (1)()223x x f x f x a b +-=+> (步骤4) 当0,0a b <>时,32()2xb a <-,则322log ()bx a >-; (步骤5) 当0,0a b ><时,32()2xb a >-,则322log ()bx a <-. (步骤6) 21.(14分)已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点. ⑴ 设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β.求证:tan βα=; ⑵ 若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -的高.第21题图【测量目标】空间直角坐标系;点、线、面间的距离公式. 【考查方式】利用线面角及二面角的定义求出α,β;借助面面垂直找到点C 在平面11AB D 的位置,利用三角形的相似解出. 【难易程度】中等【试题解析】(1)设正四棱柱的高为h .连1AO ,1AA ⊥底面1111A B C D 于1A , ∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠=∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===.第21题(1)图⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥=⎪⎪⇔⎨⎨⊥=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D的距离为||43||n AC d n === ,则2h =.第21题(2)图22.(18分)已知数列{}n a 和{}n b 的通项公式分别为36n a n =+,27n b n =+(*n ∈N ),将集合**{|,}{|,}n n x x a n x x b n =∈=∈N N 中的元素从小到大依次排列,构成数列123,,,,,n c c c c .⑴ 求1234,,,c c c c ;⑵ 求证:在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……; ⑶ 求数列{}n c 的通项公式.【测量目标】等差数列的通项公式;数列的概念及其表示.【考查方式】利用两个数列的通项公式求出前3项,按从小到大挑出4项;对于数列{}n a ,对n 进行分类讨论,判断是否能写成27n +的形式;对{}n a 中的n 进行分类讨论,对{}n b 中的n 从被3除的情况分类讨论,判断项的大小,求出数列的通项. 【难易程度】较难【试题解析】⑴ 13169a =⨯+=,12179b =⨯+=,232612a =⨯+=,222711b =⨯+=,333612a =⨯+=,323713b =⨯+=,12349,11,12,13c c c c ====;⑵ ① 任意*n ∈N ,设213(21)66327n k a n n b k -=-+=+==+,则32k n =-,即2132n n a b --=② 假设26627n k a n b k =+==+⇔*132k n =-∈N (矛盾),∴ 2{}n n a b ∉ ∴ 在数列{}n c 中、但不在数列{}n b 中的项恰为242,,,,n a a a ……. ⑶ 32212(32)763k k b k k a --=-+=+=,3165k b k -=+,266k a k =+,367k b k =+∵ 63656667k k k k +<+<+<+ ∴ 当1k =时,依次有111222334,,,b a c b c a c b c =====,…∴ *63(43)65(42),66(41)67(4)n k n k k n k c k k n k k n k +=-⎧⎪+=-⎪=∈⎨+=-⎪⎪+=⎩N .23.(18分)已知平面上的线段l 及点P ,在l 上任取一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记作(,)d P l .⑴ 求点(1,1)P 到线段:30l x y --=(35x 剟)的距离(,)d P l ;⑵ 设l 是长为2的线段,求点集{|(,)D P d P l =…}1所表示图形的面积;⑶ 写出到两条线段12,l l 距离相等的点的集合12{|(,)(,)}P d P l d P l Ω==,其中12,l AB l CD ==, ,,,A B C D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分.①(1,3),(1,0),(1,3),(1,0)A B C D --.②(1,3),(1,0),(1,3),(1,2)A B C D ---.③(0,1),(0,0),(0,0),(2,0)A B C D .【测量目标】点到直线的距离公式;空间中点、线、面的位置关系.【考查方式】用两点之间的距离公式求解;集合{|(,)D P d P l =}1…表示一个半圆,据此求出面积;写出两条直线的方程,从直线方程中看出这两条直线之间的平行关系,得到结果.【难易程度】较难【试题解析】⑴ 设(,3)Q x x -是线段:30l x y --=(35x 剟)上一点,则||PQ ==35x 剟),当3x =时,min (,)||d P l PQ =⑵ 设线段l 的端点分别为,A B ,以直线AB 为x 轴,AB 的中点为原点建立直角坐标系,则(1,0),(1,0)A B -,点集D 由如下曲线围成12:1(1),:1(1)l y x l y x==-剟,221:(1)1C x y ++=,(1)x -…,222:(1)1C x y -+=,(1)x …其面积为4πS =+.第23题(2)图⑶ ① 选择(1,3),(1,0),(1,3),(1,0)A B C D --,{(,)|0}x y x Ω==第23题(3)图② 选择(1,3),(1,0),(1,3),(1,2)A B C D ---.{}{}{}2(,)|0,0(,)|4,20(,)|10,1x y x y x y y x y x y x y x Ω===-<++=> 厔第23题(3)图③ 选择(0,1),(0,0),(0,0),(2,0)A B C D .{}{}(,)|0,0(,)|,01x y x y x y y x x Ω==< 剟?{}{}2(,)|21,12(,)|4230,2x y x y x x y x y x =-<--=> …第23题(3)图。
历届真题专题【2011年高考试题】 一、填空题:1.(2011年高考上海卷理科10)行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
【答案】6 【解析】因为a b c d=ad bc -,,,,{1,1,2}a b c d ∈-,所以容易求得结果.二、解答题:1.(2011年高考江苏卷21)选修4-2:矩阵与变换(本小题满分10分)已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 解:(I )设矩阵M 的逆矩阵11122x y Mx y -⎛⎫= ⎪⎝⎭,则110.01MM -⎛⎫= ⎪⎝⎭ 又2003M ⎛⎫=⎪⎝⎭,所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以112211221121,20,30,31,,0,0,,23x y x y x y x y ========即 故所求的逆矩阵1102.103M -⎛⎫⎪= ⎪ ⎪ ⎪⎝⎭【2010年高考试题】 一、填空题:1.(2010年高考上海市理科4)行列式cossin 36sincos36ππππ的值是 。
【答案】0 【解析】原式=coscos63ππ⋅-sinsin63ππ⋅=cos()63ππ+=cos 2π=0.2.(2010年高考上海市理科10)在n 行n 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。
当9n =时,11223399a a a a +++⋅⋅⋅+= 。
【答案】453.(2010年上海市春季高考11)方程212410139xx =-的解集为 。
答案:{3,2}-解析:2221241921243180139xx x x x x =+--+-=-,即260x x +-=,故123,2x x =-=4.(2010年上海市春季高考14)答案:1。
算法和矩阵
安徽理(11)如图所示,程序框图(算法流程图)的输出结果是 . (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)
1232
k k T k +=++++=
,若T =105,则K =
14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. 北京理4.执行如图所示的程序框图,输出的s 的值为A. 3-;B. 12
-;C.
13
;
D. 2
【解析】:循环操作4次时S 的值分别为1
1,,3,232
-
-,选D 。
福建理11.运行如图所示的程序,输出的结果是_______。
3
21.(1)(本小题满分7分)选修4-2:矩阵与变换
设矩阵00
a
M b ⎛⎫
=
⎪⎝⎭
(其中a >0,b >0)
. (I )若a=2,b=3,求矩阵M 的逆矩阵M -1;
(II )若曲线C :x 2
+y 2
=1在矩阵M 所对应的线性变换作用下得到曲线C ’:
1y
4
x
2
2
=+,
求a ,b 的值.
21.(1)选修4—2:矩阵与变换
本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
解:(I )设矩阵M 的逆矩阵1
11
22x y M
x y -⎛⎫
= ⎪⎝⎭
,则1
10.01M M -⎛⎫= ⎪⎝⎭
又2003M ⎛⎫=
⎪⎝⎭,所以1
1222
010030
1x y x y ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭,
第4题图
所以112211221121,20,30,31,,0,0,,2
3
x y x y x y x y =====
===
即
故所求的逆矩阵1
102.103M
-⎛⎫ ⎪
= ⎪ ⎪ ⎪⎝
⎭
(II )设曲线C 上任意一点(,)P x y ,它在矩阵M 所对应的 线性变换作用下得到点'(',')P x y ,
则00
a b ⎛⎫ ⎪⎝⎭''
,''x x ax x y y by y =⎛⎫⎛⎫⎧=⎨
⎪ ⎪=⎝⎭⎝⎭⎩即,又点'(',')P x y 在曲线'C 上, 所以2
2
''14
x y +=,,则
22
22
14
a x
b y +=为曲线C 的方程,
又已知曲线C 的方程为2
2
2
24,
1, 1.
a x y
b ⎧=⎪+=⎨=⎪⎩故
又2,0,0, 1.
a a
b b =⎧>>⎨
=⎩所以
福建文5.阅读右图所示的程序框图,运行相应的程序,输出的结果是
A .3
B .11
C .38
D .123
1,0x ==
福建文5
湖南理13
1234
154
4
x x x x x +++=
=。
江苏4.根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出 的m 的值是________ 答案:3
解析:2,3a b ==,,a b <3m b ==.
本题主要考查考查算法的含义,基本算法语句,选择结构和伪代码,容易题. 21.B 选修4-2:矩阵与变换(本小题满分10分) 已知矩阵112
1A ⎡⎤=⎢
⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦
,求向量α,使得2
A αβ=
B .选修4-2:矩阵与变换 本小题主要考查矩阵运算等基础知识,考查运算求解能力。
满分10分。
解:2
1
111322
12
143A ⎡⎤⎡⎤⎡⎤==⎢
⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
设2
321.,4
32x x A y y ααβ⎡⎤
⎡⎤⎡⎤⎡⎤===⎢⎥⎢
⎥⎢⎥⎢⎥
⎣⎦
⎣⎦⎣⎦⎣⎦由得,从而321,
43 2.
x y x y +=⎧⎨+=⎩
解得11,2,.2x y α-⎡⎤
=-==⎢⎥⎣⎦
所以
江西理
13. 下图是某算法的程序框图,则程序运行后输出的结果是 .
13.下图是某算法的程序框图,则程序运行后输出的结果是____.
输出s 是
答案:27. 解析:由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环
S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次 s=(6+3)*3=27,n=4,此刻输出,s=27.
辽宁理
6.执行右面的程序框图,如果输入的n 是4,则输出的P 是 C A .8;B .5;C .3;D .2 全国Ⅰ理
(3)执行右面的程序框图,如果输入的 N 是6,那么输出的p 是 (A )120 (B ) 720 (C ) 1440 (D ) 5040
B
山东理
13.执行右图所示的程序框图,输入l=2,m=3,n=5, 则输出的y 的值是 . 【答案】68
【解析】由输入l=2,m=3,n=5,计算得出y=278,第一次得新 的y=173;第二次得新的y=68<105,输出y.
陕西理
8.右图中,1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分,当16x =,29x =,8.5p =时,3x 等于( )
全国Ⅰ理
3
(A )11 (B )10 (C )8 (D )7
【分析】先读懂右图的逻辑顺序,然后进行计算判断,其中判断条件3132||||x x x x -<-是否成立是解答本题的关键.
【解】选C 16x =,29x =,12||32x x -=…不成立,即为“否”,所以再输入3x ;由绝对值的意义(一个点到另一个点的距离)和不等式3132||||x x x x -<-知,点3x 到点1x 的距离小于点3x 到2x 的距离,所以当37.5x <时,3132||||x x x x -<-成立,即为“是”,此时23x x =,所以13
2
x x p +=
,即
3
68.52
x +=,解得311x =7.5>,不合题意;当37.5x …时,
3132||||x x x x -<-不成立,即为“否”,此时13x x =,所以32
2
x x p +=,即
398.52
x +=,解
得38x =7.5>,符合题意,故选C .
陕西文7.如右框图,当126,9,x x ==8.5p =时,3x 等于( )
(A) 7 (B) 8 (C)10 (D )11 【分析】按照程序框图的逻辑顺序进行计算. 【解】选B ∵126,9,x x ==∴3|9|3x ->; 又8.5p =,
12
7.52
x x +=,显然3|9|3x ->不成立,即为“否”,
∴有3|9|3x -…,即3612x 剟,此时有
3
98.52
x +=,解得38x =,
符合题意,故选B . 上海理10.行列式
a b c
d
(,,,{1,1,2}a b c d ∈-)的所有可能值中,
最大的是 。
6
天津理
4.阅读右边的程序框图,若输出s 的值为7-,则判断框内可填写( ).
A.3?i < B.4?i < C.5?i < D.6?i < 【解】由框图,第一步为1,3s i ==,第二步为2,5s i =-=,第三步为7,7s i =-=,由于输出s 的值为7-,则需否7i =,因此判断框内为6?i <故选D. 天津文
3.阅读右边的程序框图,运行相应的程序,则输出s 的值为( ).
A.1
-B.0
C.1D.3
【解】第一步得()
s=⨯-+=,24
13113
i=<;
第二步得()
s=⨯-+=,34
33214
i=<;
第三步得()
s=⨯-+=,34
43311
i=<;
第四步得()
s=⨯-+=,4
13410
i=;
到第四步,4
s=.
i=不是大于4,因此输出,所以输出的0
故选B.
浙江文
(14)某程序框图如图所示,则该程序运行后输出的k的值是_______________5。