第10章 双端口网络
- 格式:ppt
- 大小:1.39 MB
- 文档页数:46
第十章双口网络为了方便复杂电网络的分析、设计和调试,常将复杂电网络分解为若干简单的子网络。
双口网络是最常见的子网络,对于复杂电网络中的双口网络,通常更多关注的是其外部的电压、电流的约束关系,而不把注意力放在对双口网络内部的分析上。
本章以不含独立源,且电容、电感处于零状态的线性双口网络为研究对象,依次介绍了双口网络方程及参数、双口网络的互连、双口网络的开路阻抗和短路阻抗、对称双口网络的特性阻抗和双口网络的等效电路。
§10-1双口网络概述一般把具有2n个对外引出端子的网络称为2n端网络(2n-terminal network),如图10-1所示。
当一对端子如nn'满足端口条件(current relationship of port),即由一个端子n 流入的电流能全部从另一个端子n'流出时,就称nn'这对端子为一个端口(port)。
如果图10-1所示的n对端子均满足端口条件,则称为n端口(n-port network)网络。
根据上述可知,一个四端网络的两对端子如果满足端口条件,则称为二端口网络或双口网络(two-port network)。
双口网络的电路符号如图10-2所示,习惯上把11'端称为输入端口(input port),把22'端称为输出端口(output port),通常也分别简称为入口和出口。
图10-1 2n端网络图10-2 双口网络的电路符号双口网络的电路符号并没有体现双口网络内部元件参数和结构,而是把双口网络视为一个满足端口上某种电压和电流关系的“黑箱子”。
即使对于某些内部元件参数和结构已知的双口网络,采用端口电压和电流关系即双口网络的外特性来描述其电性能也更有意义。
因为这样有利于双口网络输入、输出特性的讨论,特别是在分析含有集成电路元件的电路时更是如此。
一个双口网络的内部结构可能很简单,如图10-3所示,也可能很复杂。
对于复杂的双口网络可以适当分解为若干简单的双口网络来研究。
186第10章 二端口网络网络按其引出端子的数目可分为二端网络、三端网络及四端网络等,如果一个二端网络满足从一个端子流入的电流等于另一个端子上流出的电流时,就可称为一端口网络,如果电路中有两个一端口网络时就构成了一个二端口网络。
本章是把二端口网络当作一个整体,不研究其内部电路的工作状态,只研究端口电流、电压之间的关系,即端口的外特性。
联系这些关系的是一些参数。
这些参数只取决于网络本身的元件参数和各元件之间连接的结构形式。
一旦求出表征这个二端口网络的参数,就可以确定二端口网络各端口之间电流、电压的关系,进而对二端口网络的传输特性进行分析。
本章主要解决的问题是找出表征二端口网络的参数及由这些参数联系着的端口电流、电压方程,并在此基础上分析双口网络的电路。
本章教学要求理解二端口网络的概念,掌握二端口网络的特点,熟悉二端口网络的方程及参数,能较为熟练地计算参数,理解二端口网络等效的概念掌握其等效计算的方法,理解二端口网络的输入电阻、输出电阻及特性阻抗的定义及计算方法。
通过实验环节进一步加深理解二端口网络的基本概念和基本理论,掌握直流二端口网络传输参数的测量技术。
10.1 二端口网络的一般概念学习目标:熟悉二端口网络的判定,了解无源、有源、线性、非线性二端口网络在组成上的不同点。
在对直流电路的分析过程中,我们通过戴维南定理讲述了具有两个引线端的电路的分析方法,这种具有两个引线端的电路称为一端口网络,如图10.1(a )所示。
一个一端口网络,不论其内部电路简单或复杂,就其外特性来说,可以用一个具有一定内阻的电源进行置换,以便在分析某个局部电路工作关系时,使分析过程得到简化。
当一个电路有四个外引线端子,如图10.1(b )所示,其中左、右两对端子都满足:从一个引线端流入电路的电流与另一个引线端流出电路的电流相等的条件,这样组成的电路可称为二端口网络(或称为双口网络)。
(a )一端口网络 (b )二端口网络图10.1 端口网络2U +_ _187当一个二端口网络的端口处电流与电压满足线性关系时,则该二端口网络称为线性二端口网络。
第10章 二端口网络10.1 求图示各二端口网络的Y 参数。
22u (b)图题10.1解:(a) 列写节点电压方程如下:1211221212223111() (1)111()3 (2)U U I R R R U U I I R R R ⎧+-=⎪⎪⎨⎪-++=+⎪⎩ 式(1)代入式(2) 整理得: 1121222121223111()3441()()I U U R R R I U U R R R R ⎧=+-⎪⎪⎨⎪=-+++⎪⎩所以Y 参数为:12212231113441R R R R RR R -⎡⎤+⎢⎥⎢⎥=-⎢⎥-+⎢⎥⎣⎦Y (b) 10i =, 11/i u R =3212212112333()()/u u R R i u R R u R i R R R -+-+===12121331R R u u R R R +=-+ 所以12133001R R R R R ⎡⎤⎢⎥=+⎢⎥-⎢⎥⎣⎦Y10.2 一个互易网络的两组测量值如图题10.2所示。
试根据这些测量值求Y 参数。
(a)(b)22-+U图题10.2解:图(a)中11222A,j2V 2j5j 10V j5A I U U I ===⨯==-,,由Y 参数方程得:11112221222j2j 10 (1)j5j2j 10 (2)I Y Y I Y Y ⎧==⨯+⨯⎨=-=⨯+⨯⎩ 由图(b)得 222jA 1V I Y ==⨯ (3) 对互易网络有:1221Y Y = (4)由式(3) 得: 22j 1S Y =,代入式(2) 得:2112( 2.5j5)S Y Y ==-- 再代入式(1)得:11(12.5j24)S Y =+ 所以12.5j2425j52.5j5j1.+--⎡⎤=⎢⎥--⎣⎦Y S 10.3 求图示各二端口网络的Z 参数。
(b)图题10.3解 (a):按网孔列写KVL 方程得1211221(2)2 (1)2(2)3 (2)R R I RI U RI R R I U U ++=⎧⎨++=+⎩ 将式(1)代入式(2)整理得1122123273U RI RI U RI RI =+⎧⎨=--⎩ 所以 3273RR R R ⎡⎤=⎢⎥--⎣⎦Z(b) 将∆联接的三个阻抗转换成Y 形联接,如图(c)所示,由此电路可直接写出Z 参数1j j j 0+⎡⎤=⎢⎥⎣⎦Z Ω10.4求图示各二端口网络的A 参数。