2010高三第一轮复习训练题数学(18)(理科 概率与统计)
- 格式:doc
- 大小:393.00 KB
- 文档页数:5
高考数学一轮专题复习概率与统计仿真练习(含答案)概率是对随机事情发作的能够性的度量,以下是概率与统计仿真练习,请考生仔细练习。
一、选择题1.(2021广东卷)5件产品中有2件次品,其他为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1解析 5件产品中有2件次品,记为a,b,有3件合格品,记为c,d,e,从这5件产品中任取2件,结果有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种.恰有一件次品的结果有6种,那么其概率为P==0.6.答案 B2.(2021新课标全国Ⅰ卷)4位同窗各自在周六、周日两天中任选一天参与公益活动,那么周六、周日都有同窗参与公益活动的概率为()A. B. C. D.解析 4名同窗各自在周六、周日两天中任选一天参与公益活动的状况有24=16(种),其中仅1种,所求概率为1-=.应选D.答案 D3.(2021山东卷)在区间[0,2]上随机地取一个数x,那么事情-11发作的概率为()A. B. C. D.解析由-11,得2,0.由几何概型的概率计算公式得所求概率P==.答案 A4.假定在区间[-5,5]内任取一个实数a,那么使直线x+y+a=0与圆(x-1)2+(y+2)2=2有公共点的概率为()A. B. C. D.解析假定直线与圆有公共点,那么圆心(1,-2)到直线的距离d==,解得-13.又-55,所求概率P==.答案 B5.(2021福建卷)如图,矩形ABCD中,点A在x轴上,点B 的坐标为(1,0),且点C与点D在函数f(x)=的图象上.假定在矩形ABCD内随机取一点,那么此点取自阴影局部的概率等于()A. B. C. D.解析由图形知C(1,2),D(-2,2),S四边形ABCD=6,S阴=31=.P==.答案 B二、6.(2021江苏卷)袋中有外形、大小都相反的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,那么这2只球颜色不同的概率为________.解析这两只球颜色相反的概率为,故两只球颜色不同的概率为1-=.答案7.在区间[-2,4]上随机地取一个数x,假定x满足|x|m的概率为,那么m=________.解析由|x|m,得-mm.当m2时,由题意得=,解得m=2.5,矛盾,舍去.当2即m的值为3.答案 38.(2021安阳模拟)有一棱长为6 cm的密闭的正方体,其外部自在飘浮着一气泡(大小疏忽不计),那么该气泡距正方体的顶点不小于1 cm的概率为________.解析距离正方体的顶点小于1 cm的一切点构成一个半径为1 cm的球,其体积为 cm3,正方体的体积为216 cm3,故该气泡距正方体的顶点不小于1 cm的概率为1-.答案 1-三、解答题9.(2021北京卷)某超市随机选取1 000位顾客,记载了他们购置甲、乙、丙、丁四种商品的状况,整理成如下统计表,其中表示购置,表示未购置.商品顾主人数甲乙丙丁 100 217 200 300 85 98 (1)估量顾客同时购置乙和丙的概率;(2)估量顾客在甲、乙、丙、丁中3种商品的概率;(3)假设顾客购置了甲,那么该顾客同时购置乙、丙、丁中哪种商品的能够性最大?解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购置了乙和丙,所以顾客同时购置乙和丙的概率可以估量为=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购置了甲、丙、丁,另有200位顾客同时购置了甲、乙、丙,其他顾客最多购置了2种商品.所以顾客在甲、乙、丙、丁中同时购置3种商品的概率可以估量为=0.3.(3)与(1)同理,可得:顾客同时购置甲和乙的概率可以估量为=0.2,顾客同时购置甲和丙的概率可以估量为=0.6,顾客同时购置甲和丁的概率可以估量为=0.1.所以,假设顾客购置了甲,那么该顾客同时购置丙的能够性最大.10.(2021湖南卷)某商场举行有奖促销活动,顾客购置一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1、b2的乙箱中,各随机摸出1个球,假定摸出的2个球都是红球那么中奖,否那么不中奖.(1)用球的标号列出一切能够的摸出结果;(2)有人以为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你以为正确吗?请说明理由.解 (1)一切能够的摸出结果为:{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2};{B,a1},{B,a2},{B,b1},{B,b2}合计12种结果.(2)不正确,理由如下:设中奖为事情A,那么P(A)==,P(A)=1-=,P(A)11.现有8名数理化效果优秀者,其中A1,A2,A3数学效果优秀,B1,B2,B3物理效果优秀,C1,C2化学效果优秀.从中选出数学、物理、化学效果优秀者各1名,组成一个小组代表学校参与竞赛.(1)求C1被选中的概率;(2)求A1和B1不全被选中的概率.解 (1)从8人中选出数学、物理、化学效果优秀者各1名,其一切能够的结果组成的基身手情空间为={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}.由18个基身手情组成.由于每一个基身手情被抽取的时机均等.因此这些基身手情的发作是等能够的.用M表示C1恰被选中这一事情,那么M={(A1,B1,C1),(A1,B2,C1),(A1,B3,C1),(A2,B1,C1),(A2,B2,C1),(A2,B3,C1),(A3,B1,C1),(A3,B2,C1),(A3,B3,C1)}.事情M由9个基身手情组成,因此P(M)==.(2)用N表示A1,B1不那么其统一事情N表示A1,B1全被选中这一事情,由于N={(A1,B1,C1),(A1,B1,C2)},事情N由2个基身手情组成,所以P(N)==.由统一事情的概率公式得P(N)=1-P(N)=1-=.概率与统计仿真练习及答案的全部内容就是这些,查字典数学网希望对考生温习有协助。
.某中学进行了该学年度期末统一考试,该校为了了解高一年级名学生的考试成绩,从中随机抽取了名学生的成绩,就这个问题来说,给出以下命题:①名学生是总体;②每个学生是个体;③名学生的成绩是一个个体;④样本的容量是.以上命题错误的是(填序号).解析名学生的成绩是总体,其容量是,名学生的成绩组成样本,其容量是. 答案①②③.(·柳州、北海、钦州三市联考)某企业在甲、乙、丙、丁四个城市分别有个,个,个,个销售点.为了调查产品的质量,需从这个销售点中抽取一个容量为的样本,记这项调查为①;在丙城市有个特大型销售点,要从中抽取个调查,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次为.解析①四个城市销售点数量不同,个体存在差异比较明显,选用分层抽样;②丙城市特大销售点数量不多,使用简单随机抽样即可.答案分层抽样、简单随机抽样.某中学有高中生人,初中生人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取人,则为.解析样本抽取比例为)=,该校总人数为+=,则)=,故=.答案.在一个容量为的总体中抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为,,,则,,的大小关系是.解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.答案==.(·武昌调研)已知某地区中小学生人数和近视情况如下表所示:行调查,则:()样本容量为;()抽取的高中生中,近视人数为.解析()由题意知,样本容量为( ++)×=.()抽取的高中生中,近视人数为××=.答案() ().(·湖南卷)在一次马拉松比赛中,名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为~号,再用系统抽样方法从中抽取人,则其中成绩在区间[,]上的运动员人数是.解析从人中用系统抽样方法抽取人,则可将这人分成组,每组人,从每一组中抽取人,而成绩在[,]上的有组,所以抽取人.答案.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为∶∶∶,则应从一年级本科生中抽取名学生.解析由题意知应抽取人数为×=.答案.(·青岛模拟)某班级有名学生,现要采取系统抽样的方法在这名学生中抽出名学生,将这名学生随机编号~号,并分组,第一组~号,第二组~号,…,第十组~号,若在第三组中抽得号码为的学生,则在第八组中抽得号码为的学生.。
.在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是二级品.其中是必然事件;是不可能事件;是随机事件(填序号).答案③②①.把红、蓝、黑、白张纸牌随机分给甲、乙、丙、丁个人,每个人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是事件(填“对立”、“不可能”、“互斥但不对立”).解析由于每人分得一张牌,故“甲分得红牌”意味着“乙分得红牌”是不可能的,故是互斥事件,但不是对立事件.答案互斥但不对立.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是.解析乙不输包含两种情况:一是两人和棋,二是乙获胜,且两种情况互斥,故所求概率为+=.答案.设事件,,已知()=,()=,(∪)=,则,之间的关系一定为(填“互斥事件”或“对立事件”).解析因为()+()=+==(∪),所以,之间的关系一定为互斥事件.答案互斥事件.抛掷一枚均匀的正方体骰子(各面分别标有数字,,,,,),事件表示“朝上一面的数是奇数”,事件表示“朝上一面的数不超过”,则(+)=.解析将事件+分为:事件“朝上一面的数为,”与事件“朝上一面的数为,”.则,互斥,且()=,()=,∴(+)=(+)=()+()=.答案.(·南通调研)从装有个红球、个白球的袋中任取个球,则所取的个球中至少有个白球的概率是.解析记“从中取出个小球全是红球”为事件,则表示“所取的个球中至少有个白球”,从个红球,个白球的袋中任取个小球,共有种不同的试验结果.∴()=,从而()=-()=.答案.从装有个红球和个白球的口袋内任取个球,给出以下事件:①至少有一个红球与都是红球;②至少有一个红球与都是白球;③至少有一个红球与至少有一个白球;④恰有一个红球与恰有二个红球.那么互斥而不对立的事件是(填序号).解析对于①中的两个事件不互斥,对于②中两个事件互斥且对立,对于③中两个事件不互斥,对于④中的两个事件互斥而不对立.答案④.口袋内装有一些大小相同的红球、白球和黑球,从中摸出个球,摸出红球的概率为,摸出白球的概率为,若红球有个,则黑球有个.解析摸出黑球的概率为--=,口袋内球的个数为÷=,所以黑球的个数为×=.答案.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[,)上为一等品,在区间[,)和[,)上为二等品,在区间[,)和[,]上为三等品.用频率估计概率,现从该批产品中随机抽取件,则其为二等品的概率是.解析由频率分布直方图可知,一等品的频率为×=,三等品的频率为×+×=,所以二等品的频率为-(+)=.用频率估计概率可得其为二等品的概率为. 答案位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为.。
高考数学一轮复习《统计》练习题(含答案)一、单选题1.已知条件p :11x -<<,q :x >m ,若p 是q 的充分不必要条件,则实数m 的取值范围是( ) A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-2.下表为随机数表的一部分:08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是( ) A .11B .15C .25D .373.一组数据的方差为()20S S ≥,将该组数据都乘以2,所得到的一组新数据的标准差为( )A .22S B .SC .2SD .2S4.甲、乙两所学校的男女生比例如图所示,已知甲校学生总数为1500,乙校学生总数为1000,下列结论错误的是( )A .甲校女生比乙校女生多B .乙校男生比甲校男生少C .乙校女生比甲校男生少D .甲校女生比乙校男生少5.某校共有学生3000人,为了解学生的身高情况,用分层抽样的方法从三个年级中抽取容量为100的样本,其中高一抽取40人,高二抽取30人,则该校高三学生人数为( ) A .600B .800C .900D .12006.设某高中的男生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据()(12)i i x y i n =,,,,,用最小二乘法建立的回归方程为ˆ0.8580.71y x =-,则下列结论中不正确的是( ) A .y 与x 有正的线性相关关系B .回归直线过样本点的中心(),x yC .若该高中某男生身高增加1cm ,则其体重约增加0.85kgD .若该高中某男生身高为170cm ,则可断定其体重必为63.79kg 7.x 是12100,,,x x x 的平均值,5为4120,,,x x x 的平均值,10为4142100,,,x x x 的平均值,则x =( ) A .8B .9C .15D .1528.某学校有男生400人,女生600人.为调查该校全体学生每天睡眠时间,采用分层抽样的方法抽取样本,计算得男生每天睡眠时间均值为7.5小时,方差为1,女生每天睡眠时间为7小时,方差为0.5.若男、女样本量按比例分配,则可估计总体方差为( ). A .0.45B .0.62C .0.7D .0.769.某样本点)()(,1,2,,i i x y i n =⋅⋅⋅的经验回归方程为ˆ0.50.7yx =+,当8x =时,y 的实际值为4.5,则当8x =时,预测值与实际值的差值为( ). A .0.1B .0.2C .0.3D .0.410.若数据9,m ,6,n ,5的平均数为7,方差为2,则数据11,9,21m -,17,21n -的平均数和方差分别为( ) A .13,4B .14,4C .13,8D .14,811.2021年起,我市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A .甲的化学成绩领先年级平均分最多.B .甲有2个科目的成绩低于年级平均分.C .甲的成绩最好的前两个科目是化学和地理.D .对甲而言,物理、化学、地理是比较理想的一种选科结果.12.冬末春初,乍暖还寒,人们容易感冒发热,若发生群体性发热,则会影响到人们的身体健康,干扰正常工作生产,某大型公司规定:若任意连续7天,每天不超过5人体温高于37.3℃,则称没有发生群体性发热,下列连续7天体温高于37.3℃人数的统计特征数中,能判定该公司没有发生群体性发热的为( )(1)中位数为3,众数为2 (2)均值小于1,中位数为1(3)均值为3,众数为4 (4)均值为2 A .(1)(3)B .(3)(4)C .(2)(3)D .(2)(4)二、填空题13.某校高一、高二、高三年级的学生人数之比为5:5:4,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生人数为20,则抽取的样本容量为______.14.已知具有线性相关的变量x 、y ,设其样本点为()(1,2,,,8)i i i A x y i =,回归直线方程为1ˆ2yx b =+,若128(6,2)OA OA OA +++=(O 为原点),则b =_______.15.已知一组数据按顺序排列为:12,16,20,n ,46,51,58,60.若这组数据的第30百分位数的两倍与这组数据的第50百分位数相等,则n 的值为___________.16.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中的数据得线性回归方程为y bx a =+,其中20b =-,预测当产品价格定为9.5(元)时,销量约为__________件.三、解答题17.某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h )的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92.(1)求n 的值;(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(]16,20,(]20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.18.由于疫情影响,今年我们学校开展线上教学,高一年级某班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20,0.05,则根据直方图所提供的信息:(1)这一天上网学习时间在100~119分钟之间的学生有多少人?(2)估计这40位同学的线上平均学习时间(同一组中的数据用该组区间的中点值为代表)以及中位数分别是多少?(精确到0.1)(3)如果只用这40名学生这一天上网学习时间作为样本去推断该校高一年级全体学生该天的上网学习时间,这样推断是否合理?为什么?19.省政府坚持以习近平新时代中国特色社会主义思想为指导,落实全国、全省教育大会部署,坚持社会主义办学方向,落实立德树人根本任务,发展素质教育,推进育人方式变革,引导全社会树立科学的教育质量观和人才培养观,切实减轻有损中小学生身心健康的过重学业负担,遵循教育教学规律,促进中小学生健康成长,培养德智体美劳全面发展的社会主义建设者和接班人.从某市抽取1000名一年级小学生进行调查,统计他们每周做作业的时长(单位:小时),根据结果绘制的频率分布直方图如下:(1)根据频率分布直方图,求所有被抽查小学生每周做作业的平均时长和中位数;(同一组中的数据用该组区间的中点值作代表)(2)①为了进一步了解,现采用分层抽样的方法从[8,10]和[10,12]组中抽取50名学生,则两组各抽取多少人?②再利用分层抽样从抽取的50人中选5人参加一个座谈会.现从参加座谈会的5名学生中随机抽取两人发言,求[8,10]小组中恰有2人发言的概率?20.为了调查某地区高中女生的日均消费情况,研究人员随机抽取了该地区5000名高中女生作出调查,所得数据统计如下图所示.(1)求a 的值以及这5000名高中女生的日均消费的平均数(同一组数据用该组区间的中间值代替);(2)在样本中,现按照分层抽样的方法从该地区消费在[)15,20与[)20,25的高中女生中随机抽取9人,若再从9人中随机抽取3人,记这3人中消费在[)15,20的人数为X ,求X 的分布列以及数学期望.21.道德与法律的联系:法律、道德都是行为规范,都是为规范人们的行为而规定的行动准则.1.法律需要道德的奠基和撑持;2.道德的实施需要法律的强制保障.某校进行了一次道德与法律的相关测试(满分:100分),并随机抽取了50个统计其分数,得到的结果如下表所示: 成绩/分 [)0,20[)20,40[)40,60[)60,80[)80,100人数/个 44102210(1)若同一组数据用该区间中点值作代表,试估计这次测试的平均分和中位数(所得结果四舍五入保留整数);(2)假设处于[)20,40的4个人的成绩分别为20,26,35,38,求表中成绩的10%分位数; (3)以频率估计概率,若在这个学校中,随机挑选3人,记3人的成绩在[)80,100间的数量为随机变量X ,求X 的分布列和数学期望()E X .22.某校从高三年级学生中随机抽取100名学生的某次数学考试成绩,将其成绩分成[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的5组,制成如图所示的频率分布直方图.(1)求图中x 的值;(2)估计这组数据的平均数;(3)若成绩在[)50,60内的学生中男生占40%.现从成绩在[)50,60内的学生中随机抽取2人进行分析,求2人中恰有1名女生的概率.23.某校从高三学生中选取了50名学生参加数学质量检测,成绩(单位:分)分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出频率分布表;(2)画出频率直方图及频率折线图.24.某农业科学研究所为检验某农作物种子的培育有效率,进行了如下试验:一是对该农作物的10000粒种子进行培育,发现有20粒种子未发芽;二是将未进行培育的该农作物的2500粒种子种植在5块试验田中,各试验田种植的种子数及未发芽数如下表:(1)求y 关于x 的回归直线方程; (2)在上述试验下,若以1nN-表示该农作物种子的培育有效率,其中n 为进行培育的10000粒种子的未发芽数,N 为依据上述回归方程估算的未进行培育的10000粒种子的未发芽数,请估计该农作物种子的培育有效率(结果保留3位有效数字).参考公式;在回归方程ˆˆˆy bx a =+中,1221ˆni ii nii x y nx ybxnx==-⋅=-∑∑,ˆˆa y bx=-参考答案1.D2.A3.D4.D5.C6.D7.A8.D9.B10.C11.A12.D 13.7014.18-##-0.12515.34 16.6017.(1)由已知可得,0.25(0.02500.04750.05000.0125)0.1150a =-+++=. 则0.1150492n ⨯⨯=,得922000.11504n ==⨯.(2)设中位数为x ,则0.050040.01254(16)0.11500.5x ⨯+⨯+-⨯=,得13.83x ≈.(3)按照分层抽样的方法从(16,20]内选取的人数为0.050540.05000.0125⨯=+,从(20,24]内选取的人数为0.0125510.05000.0125⨯=+.记二等奖的4人分别为a ,b ,c ,d ,一等奖的1人为A ,事件E 为“从这5人中抽取2人作为主宣讲人,且这2人均是二等奖”.从这5人中随机抽取2人的基本事件为(,)a b ,(,)a c ,(,)a d ,(,)a A ,(,)b c ,(,)b d ,(,)b A ,(,)c d ,(,)c A ,(,)d A ,共10种,其中2人均是二等奖的情况有(,)a b ,(,)a c ,(,)a d ,(,)b c ,(,)b d ,(,)c d ,共6种, 由古典概型的概率计算公式得()63105P E ==. 18.(1)因为频数=样本容量⨯频率,一天上网学习时间在100119分钟之间的学生所占频率为0.35,所以一天上网学习时间在100~119分钟之间的学生人数为400.3514⨯=(人) (2)40位同学的线上学习时间估计值为:0.1569.90.2589.90.35109.90.20129.90.05149.9104.9⨯+⨯+⨯+⨯+⨯=分钟在中位数左边和右边的小长方形的面积和是相等的,设在99.9~119.9靠近左侧长度为x ,则0.15+0.25+0.350.5x =解得0.27x ≈; 所以中位数估计值是99.9+0.27=100.17100.2≈(3)因为该样本的选取只在高一某班,不具有代表性,所以这样推断不合理. 19.(1)设抽查学生做作业的平均时长为x ,中位数为y ,0.0510.130.2550.370.1590.1110.0513 6.8x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=, 0.050.10.250.15(6)0.5y y =+++⨯-=,解得203y =即抽查学生做作业的平均时长为6.8,中位数为203. (2)①[8,10]组的人数为10000.15150⨯=人,设抽取的人数为a ,[]10,12组的人数为10000.1100⨯=人, 设抽取的人数为b ,则50150100250a b ==,解得30a =,20b = 所以在[8,10]和[]10,12两组中分别抽取30人和20人,②再抽取5人,其中[8,10]和[]10,12两组中分别抽取3人和2人,将[8,10]组中被抽取的工作人员标记为1A ,2A ,3A ,将[]10,12中的标记为1B ,2B . 设事件C 表示从[8,10]小组中恰好抽取2人,则抽取的情况如下:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B 共10种情况;其中在[8,10]中恰好抽取2人有3种,则3()10P C =. 20.(1)由题意得,()20.040.080.0651a +++⨯=,解得0.01a =,故所求平均数为17.50.427.50.332.50.0537.50.0524.25⨯0.2+22.5⨯+⨯+⨯++=(元); (2)由题意得,消费在[)15,20,[)20,25的高中女生分别有3人和6人,故X 的可能取值为0,1,2,3,∴()6033395021C C P X C ===,()21633915128C C P X C ===,()1263393214C C P X C ===,()0363391384C C P X C ===, 故X 的分布列为:∴()515310123121281484E X =⨯+⨯+⨯+⨯=; 故答案为:1. 21.(1)估计这次测试的平均分为1043045010702290106250x ⨯+⨯+⨯+⨯+⨯==(分);设这次测试的中位数为0x ,显然()060,80x ∈,则060441022200.550x -+++⋅=,解得066x ≈(分). 即估计这次测试的中位数为66.(2)由于5010%5⨯=,所以表中成绩的10%分位数为2026232+=. (3)X 所有可能取值为0,1,2,3.由表中数据可知,任意挑选一人,成绩在[)80,100间的概率为101505=. 所以()346405125P X ⎛⎫=== ⎪⎝⎭,()21341481C 55125P X ⎛⎫=== ⎪⎝⎭, ()122341122C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()31135125P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为故X 的数学期望()6448121301231251251251255E X =⨯+⨯+⨯+⨯=. 22.(1)由频率分布直方图得()0.0050.0350.0300.010101x ++++⨯=,解得0.020x =, 所以图中x 的值是0.020.(2)由频率分布直方图得这组数据的平均数: (550.005650.020750.03585x =⨯+⨯+⨯+⨯)0.030950.0101077+⨯⨯=, 所以这组数据的平均数为77.(3)数学成绩在[)50,60内的人数为0. 005101005⨯⨯=(人),其中男生人数为540%2⨯=(人),则女生人数为3人,记2名男生分别为1A ,2A ,3名女生分别为1B ,2B ,3B ,从数学成绩在[)50,60内的5人中随机抽取2人进行分析的基本事件为:121112132122A A A B A B A B A B A B ,,,,,,23121323A B B B B B B B ,,,,共10个不同结果,它们等可能, 其中2人中恰有1名女生的基本事件为111213212223,,,,,A B A B A B A B A B A B ,共6种结果, 所以2人中恰有1名女生的概率为为63105=. 23.(1)解:频率分布表如下:(2) 频率直方图及频率折线图如图所示.24. (1)依题意,3004005006007005005x ++++==,2466755y ++++==, 513002400450066006700713700ii i x y ==⋅+⋅+⋅+⋅+⋅=∑, 52222221(34567)100001350000i i x==++++⋅=∑, 于是得512252113700550051200ˆ0.01213500005500100000i ii i i x y nx y b x nx==-⋅-⋅⋅====-⋅-∑∑,ˆˆ50.0125001ay bx =-=-⨯=-, 所以y 关于x 的回归直线方程为ˆ0.0121yx =-; (2)由(1)知,估计未进行培育的10000粒种子的未发芽数N 约为:ˆ0.012100001119y =⨯-=,而已培育的10000粒种子有20粒种子未发芽,即20n =, 所以该农作物种子的培育有效率为209910832119119-=≈。
高三数学单元练习题:概率与统计(Ⅰ)一、选择题 (每小题5分,共10小题,每小题有且只有一个正确的答案)1. 下列随机变量中,不是离散随机变量的是 ( ) A. 从10只编号的球 ( 0号到9号) 中任取一只,被取出的球的号码 ξ u B. 抛掷两个骰子,所得的最大点数ξC. [0 , 10]区间内任一实数与它四舍五入取整后的整数的差值ξD. 一电信局在未来某日内接到的 电话呼叫次数ξ2. 某批量较大的产品的次品率为10%,从中任意连续取出4件,则其中恰好含有3件次品的概率是( )A. 0.0001B. 0.0036C. 0.0486D. 0.2916 3. 已知随机变量ξ的分布列为则ξA. 0.5 B. -1 C. 0 D. 14. 有N 件产品,其中有M 件次品,从中不放回地抽n 件产品,抽到的次品数的数学期望值是 ( )A. nB. (1)M n N - C. M n N D. (1)M n N+ 5. 某地招办为了解2007年高考文科数学主观题的阅卷质量,将2050本试卷中封面保密号的尾数是21的全部抽出来复查,这种抽样方法采用的是( )A.简单随机抽样B.系统抽样C.分层抽样D.有放回抽样 6. 已知随机变量ξ服从二项分布1~(6,)3B ξ,则P(ξ=2) = ( ) A.316B. 4243C. 16243D. 802437. 在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数 0.35 是16到25岁人员占总体分布的 ( ) A. 概率 B. 频率 C. 累计频率 D. 频数8. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为 ( ) A.1 B.2 C.3 D.49. 已知随机变量ξ的概率密度函数为 201()001x x f x x x ⎧≤≤⎪=⎨<>⎪⎩或,则11()42P ξ<<=( ) A.14 B. 17 C. 19 D. 31610. 某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,适合的抽取样本的方法是 ( ) A. 简单的随机抽样 B. 系统抽样 C. 先从老年中排除一人,再用分层抽样 D.分层抽样二、填空题 ( 每小题5分,共5个小题,25分)11. 一个容量为20的样本数据,分组后,组距与频数如下: (]10,20,2; (]20,30, 3 ;(]30,40, 4 ; (]40,50, 5 ; (]50,60, 4 ; (]60,70, 2 .则样本在区间 (],50-∞上的频率为________________12. 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是 p , 则该部门一天中平均需要服务的对象个数是 13. 一射手对靶射击,直到第一次中靶为止.他每次射击中靶的概率是 0.9 ,他有3颗弹子,射击结束后尚余子弹数目ξ的数学期望E ξ=_______________14. 有一个简单的随机样本: 10, 12, 9, 14, 13 则样本平均数x =______ ,样本方差2s =______15. 某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人。
第十二章概率与统计(理)网络体系总览考点目标定位1.离散型随机变量的分布列.离散型随机变量的期望和方差.2.抽样方法、总体分布的估计、正态分布、线性回归.复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列巩固·夯实基础一、自主梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ξ、η等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i(i=1,2,…)的概率P(ξ=x i)=p i,则称表为随机变量ξ的概率分布,简称ξ的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(ξ=k)=C k n p k q n-k .C k n p k q n-k =b(k;n,p). 二、点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ) A.一颗是3点,一颗是1点 B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点 解析:对A 、B 中表示的随机试验的结果,随机变量均取值4,而D 是 ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键. 答案:DA.1B.1±22 C.1+22 D.1-22解析:∵0.5+1-2q+q 2=1,∴q=1±22. 当q=1+22时,1-2q<0,与分布列的性质矛盾, ∴q=1-22. 答案:D3.已知随机变量ξ的分布列为P(ξ=k)=k21,k=1,2,…,则P(2<ξ≤4)等于( ) A.163 B.41 C.161 D.51 解析:P(2<ξ≤4)=P(ξ=3)+P(ξ=4)=321+421=163.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为 __________________________.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n=5,因而次品数ξ服从二项分布, 即ξ—B(5,0.1).5.某射手有5发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则耗用子弹数ξ的分布列为___________________________. 解析:ξ可以取1,2,3,4,5,P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.12×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1. 诱思·实例点拨【例1】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53;当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103;当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101.讲评:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n=C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例2】(2005北京高考,理)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.剖析:(1)甲射击有击中目标与击不中目标两个结果,且3次射击是3次独立重复试验.∴ξ—B(3,21).(2)“乙至多击中目标2次”的对立事件是“乙击中目标3次”.(3)“甲恰好比乙多击中目标2次”即“甲击中2次乙没击中目标或甲击中目标3次乙击中1次”.解:(1)P(ξ=0)=C 03(21)3=81; P(ξ=1)=C 13(21)3=83;P(ξ=2)=C 23(21)3=83;P(ξ=3)=C 33(21)3=81.∵ξ—B(3,2), ∴E ξ=3×21=1.5.(2)乙至多击中目标2次的概率为1-C 33(32)3=2719. (3)设甲恰好比乙多击中目标2次为事件A,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1、B 2为互斥事件,∴P(A)=P(B 1)+P(B 2)=83×271+81×92=241. ∴甲恰好比乙多击中目标2次的概率为241.讲评:求离散型随机变量的概率分布的步骤为:(1)找出随机变量ξ的所有可能的值x i (i=1,2,…);(2)求出各值的概率P(ξ=x i )=p i ;(3)列成表格.【例3】(2005广东高考)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s ∶t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (1)求ξ的分布列; (2)求ξ的数学期望.解:(1)ξ的可能取值为0,1,2,…,n.(2)ξ的数学期望为E ξ=0×t s s ++1×2)(t s st++2×32)(t s st ++…+(n-1)×n n t s st )(1+-+n ×n n t s t )(+. ① t s t +E ξ=3)(t s st ++42)(2t s st ++…+n n t s st n )()2(1+--+1)()1(++-n n t s st n +11)(+++n n t s nt . ②①-②,得E ξ=s t +1)()1(-+-n n t s s t n -n n t s t n )()1(+--nn t s s nt )(1++. 讲评:本题是几何分布问题,其中用到数列的错位相减法求和,注意运算的严谨性.。
高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。
如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。
CDBAE概率与统计专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )(A )511 (B )681 (C )3061 (D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A.256625B.192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.75 14. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C三人独立解答此题,只有1人解出的概率为 ()31.2417.2411.241.D C B A则两人射击成绩的稳定程度是__________________。
高三第一轮复习训练题
数学(十八)(概率与统计)
一、选择题(本题共12小题,每小题5分,共60分)
1设M 和N 是两个随机事件,表示事件M 和事件N 都不发生的是
A .M N +
B .M N ⋅
C . M N M N ⋅+⋅
D .M N ⋅ 2. 如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作, 那么该系统正常工作的概率是
A . 0.994
B .0.504
C .0.496
D .0.06 3. 甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( D )
A .60%
B .30%
C .10%
D .50% 4. 设ξ是离散型随机变量,η=2ξ+3,则有
A .E η=2E ξ,D η=4D ξ
B .E η=2E ξ+3,D η=4D ξ
C .E η=2E ξ+3,
D η=2D ξ+3 D .
E η=2E ξ,D η=4D ξ+3 5. 已知随机变量ξ~ B (n ,p )且E ξ= 2.4,D ξ= 1.44,,则参数n ,p 的值为 A .n = 4, p = 0.6 B .n = 6, p = 0.6 C .n = 6, p = 0.4 D .n = 24, p = 0.1 6. 将一组数据x 1,x 2,…,x n 改变为x 1-c ,x 2-c ,…,x n -c (c ≠0),下面结论正确的是 A .平均数变了,方差不变 B .平均数不变,方差变了 C .平均数和方差都不变 D .平均数和方差都变了
7. 同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是
A .20
B .25
C .30
D .40
8.设随机变量ξ服从正态分布N(0,1),记()()x P x ξΦ=<.给出下列结论:①1(0)2
Φ=
;②()1()x x Φ=-Φ-;③(||)2()1P a a ξ=Φ-<;④(||)1()P a a ξ=-Φ>.其中正确命题的个数为
A.1
B.2
C.3
D.4
9. 某路段检查站监控录象显示,在某时段内,有1000辆汽车
通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的约有 A .400辆 B .300辆 C .200辆
D .100辆
10. 抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是
60 70 80 90 100 110
A.3
10
B.9
55 C. 9
50
D. 9
80
11. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均
数为10,方差为2,则|x -y |的值为
(A )1 (B )2 (C )3 (D )4 12. 连掷两次骰子分别得到点数m 、n ,则向量(m ,n)与向量(-1,1)的夹角
90>θ 的概率是 A . 5 B .7 C .1 D .1
二、填空题:(共4小题;每小题4分,共16分)
13. 若以连续掷两次骰子分别得点数m ,n 作为点P 的横、纵坐标,则点P 落在圆x 2+y 2=16内的概率是
14. 某工厂生产A 、B 、C 三种不同型号的产品。
产品数量之比依次为5:3:2。
现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件。
那么此样本的容量n=
15. 若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 16.. 有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则D ξ=
三、解答题(本大题共6小题,共76分)
17. 甲、乙两人玩轮流抛掷一对骰子的游戏,由甲先掷,乙后掷,然后甲再掷,…. 规定先得到两颗骰子点数之和等于7的一方获胜,一旦决出胜负游戏便结束.
(1)若限定每人最多掷两次,求游戏结束时抛掷次数ξ的概率分布和数学期望; (2)若不限定两人抛掷的次数,求甲获胜的概率. 18. 盒中装有5节同牌号的五号电池,其中混有两节废电池,现在无放回地每次取一节电池检验,直到取到好电池为止,试回答下列问题。
(1)求抽取次数x 的概率分布;(2)求平均抽取多少次可取到好电池。
19.蓝球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . (1) 记投篮1次得分ξ,求方差D ξ的最大值;
(2) 当(1)中D ξ取最大值 时,甲一投3次篮,求所得总分y 的概率分布.
20. 甲、乙两个篮球队进行比赛每场比赛均不出现平局,而且若有一队胜4场,则比赛宣告结束,假设甲、乙在每场比赛中获胜的概率都是.2
1
(1)求需要比赛场数ξ的分布列及数学期望E ξ;
(2)如果比赛场馆是租借的,场地租金200元,而且每赛一场追加服务费32元,那么举行一次这样的比赛,预计平均花销费用多少元钱?.
21. 甲、乙两人独立解某一道数学题,已知甲独立解出的概率为0.6,且两人中至少有一人解出的概率为0.92
(1)求该题被乙独立解出的概率;
(2)求解出该题的人数ξ的分布列与数学期望。
22. 小张有一只放有a 个红球、b 个黄球、c 个白球的箱子,且6(,,)a b c a b c N ++=∈,小刘有一只放有3个红球、2个黄球、1个白球的箱子,两人各自从自己的箱子中任取一球,规定:当两球同色时小张胜,异色时小刘胜. (1) 用a 、b 、c 表示小张胜的概率;
(2) 若又规定当小张取红、黄、白球而胜的得分分别为1分、2分、3分,否则得0分,求小张得分的期望的最大值及此时a 、b 、c 的值
高三第一轮复习训练题
数学(十八)(概率与统计)参考答案
一、1.D 2.A 3.D 4.B 5.C 6.C 7.B 8.C 9.B 10.C 11.D 12.A 二、13.
29; 14. 80; 15. 4
11; 16. 3980
三、17.解:(1) 抛掷一次出现的点数共有6×6 = 36种不同结果,其中“点数之和为7”包含
了
(1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6个结果,
∴抛掷一次出现的点数之和为7的概率为6
1
366=
ξ可取1 , 2 , 3 , 4
P (ξ=1) =61,P (ξ=2) =3656165=⨯,P (ξ= 3) =21625
61)65(2=⨯
P (ξ= 4) =216
125
1)65(3=⨯
∴ξ的概率分布列为
E ξ= 1×
61+ 2×365+ 3×21625+ 4×216125=216
671 (2) 不限制两人抛掷的次数,甲获胜的概率为:
P =61+ (65)2×61+ (65)4×6
1+ … = 116)6
5(161
2
=-. 18.解:(1)ξ可取的值为1、2、3,则52)1(=
=ςp ,10
3
4352)2(=-==ςp 10
1
534152)3(=⋅⋅=
=ςp 抽取次数x 的概率分布为
(2)5.110
1
31032531=⋅+⋅+⋅
=ξE 即平均抽取1.5次可取到好电池 19.解:(1)依题意,ξ的分布列为
2
2
20(1)111(0)(1)(1)()24
E P P P
D P P P P P ξξ∴=⨯-+⨯==-⨯-+-⨯=--+
12P ∴=时.D ξ取最大值,最大值是14
.
(2)1
~(3,),
B ηη∴的分布列是
20.解:(1)依题意,ξ的分布列为
16
E ξ=
21.解:(1)设甲、乙分别解出此题的事件为A 、B ,则P (A )=0.6
92.0)(4.01)(1=⋅-=⋅-=B P B A P P
解得8.0)(,2.0)(=∴=B P B P
(2))()()0(B P A P P ⋅==ξ=0.4×0.2=0.08
48
.08.06.0)()()2(44.0)()()()()1(=⨯=⋅===⋅+⋅==B P A P P B P A P B P A P P ξξ
∴ξ的分布列:
∴E ξ=0×0.08+1×0.44+2×0.48=1.4.
22.解: (1)P(小张胜)=P(两人均取红球)+P(两人均取黄球)+P(两人均取白球) =
636a ⨯ + 626b ⨯+ 616c ⨯=36
c b 2a 3++ (2) 设小张的得分为随机变量ξ,则
P(ξ=3)= 616c ⨯,P(ξ=2)= 626b ⨯,P(ξ=1)= 6
3
6a ⨯, P(ξ=0)=1一P(小张胜)=1一36
c
b 2a 3++,
∴E ξ=3×616c ⨯+2×626b ⨯+1×636a ⨯+0×(1一36c
b 2a 3++)
= ()36
b
2136b c b a 336c 3b 4a 3+=+++=++
∵ a ,b ,c ∈N ,a +b +c =6,∴b = 6-a -b ,此时a =c =0,6b =时,E ξ最大。