全国通用版高考数学一轮复习第十三单元直线与圆高考达标检测三十五圆的方程命题3角度__求方程算最值定轨迹
- 格式:doc
- 大小:101.00 KB
- 文档页数:6
直线与圆的方程检测卷一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点在直线上,则直线的倾斜角为A.B.C.D.【答案】C2.已知直线l:在轴和轴上的截距相等,则的值是A.1 B.-1C.2或1 D.-2或1【答案】C【解析】当时,直线方程为,显然不符合题意,当时,令时,得到直线在轴上的截距是,令时,得到直线在轴上的截距为,根据题意得,解得或,故选C.【名师点睛】本题主要考查了直线方程的应用及直线在坐标轴上的截距的应用,其中正确理解直线在坐标轴的截距的概念,利用直线方程求得直线的截距是解答的关键,着重考查了推理与运算能力,以及分类讨论的数学思想.3.直线截圆所得弦的长度为4,则实数的值是A.-5 B.-4C.-6 D.【答案】A【名师点睛】本题主要考查了直线与圆的位置关系以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.4.若3π2π2α<<, A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】B【解析】令0x =,得sin 0y α=<,令0y =,得cos 0x α=>,直线过()()0,sin cos ,0αα,两点,因而直线不过第二象限.本题选择B 选项.5.已知直线()()1:424240l m x m y m --++-=与()()2:1210l m x m y -+++=,则“2m =-”是“12l l ∥”的 A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件【答案】B【解析】2m =-时,可得12:680,:310,l x l x --=-+=所以12l l ∥;12l l ∥时,可得()()()()422410m m m m -+++-=,解得2m =或2m =-,2m ∴=-是12l l ∥的充分不必要条件,故选B.6.若圆C 与y 轴相切于点()0,1P ,与x 轴的正半轴交于,A B 两点,且2AB =,则圆C 的标准方程是A .(()2212x y +++= B .()(2212x y +++=C .(()2212x y +-=D .()(2212x y -+=【答案】C【解析】设AB 中点为D ,则1AD CD ==,∴)1r AC C==,故选C .7.若直线过点,斜率为1,圆上恰有3个点到的距离为1,则的值为 A . B .C .D .【答案】D【名师点睛】本题主要考查了直线与圆的位置关系的应用,解答是要注意直线与圆的位置关系的合理应用,同时注意数形结合法在直线与圆问题的中应用,着重考查了分析问题和解答问题的能力,属于基础题.8.若过点()0,1A -的直线l 与圆()2234x y +-=的圆心的距离记为d ,则d 的取值范围为A .[]0,4B .[]0,3 C .[]0,2D .[]0,1【答案】A【解析】由已知,点()0,1A -在圆()2234x y +-=外,当直线l 经过圆心()0,3时,圆心到直线l 的距离最小为0,圆心到点()0,1A -的距离,是圆心到直线l 的最大距离,此时4d ==,故选A.9.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a ∈R ,b ∈R ,且0ab ≠,则2211a b+的最小值为 A .49 B .109C .1D .3【答案】C【名师点睛】解答本题的关键是准确理解题设中恰有三条切线这一信息,并进一步等价转化为“在2249a b +=,即224199a b +=的前提下,求2211a b +的最小值问题”.求解时充分借助题设条件,巧妙地将2249a b +=化为224199a b +=,再运用基本不等式从而使得问题的求解过程简捷、巧妙. 10.直线2(0)x y m m +=>与圆O :225x y +=交于A ,B 两点,若||2||OA OB AB +>,则实数m 的取值范围是 A .(,2)B .(2,)C .(,5)D .(2,)【答案】B【解析】设AB 中点为D ,则OD AB ⊥,∵2OA OB AB +>2x y m +=(0m >)与22:5O x y += 交于不同的两点A B 、,∴25OD < B.二、填空题(本题共4小题,每小题5分,共20分)11.求经过圆的圆心,且与直线平行的直线的一般式方程为________________. 【答案】【名师点睛】本题主要考查了直线的位置关系的应用,以及圆的标准方程的应用,其中解答中根据两直线的位置关系,合理设出方程是解答的关键,着重考查了推理与运算能力.12.已知直线:20l x y +-=和圆22:12120C x y x y m +--+=相切,则m 的值为___________.【答案】22【解析】由题设知圆的圆心坐标与半径分别为()6,6,C r =,则圆心()6,6C 到直线20x y +-=的距离d ===,解之得22m =,应填22.13.如果圆()()228x a y a -+-=上总存在到原点的距离为的点,则实数的取值范围是__________.【答案】[3,1][1,3]-- 【解析】圆心到原点的距离为,圆()()228x a y a -+-=上总存在到原点的距离为的点,则3a ≤≤≤≤,则或.14.设直线1y kx =+与圆2220x y x my ++-=相交于,A B 两点,若点,A B 关于直线:0l x y +=对称,则AB =__________.【解析】因为点,A B 关于直线:0l x y +=对称,所以直线1y kx =+的斜率1k =,即1y x =+,圆心(−1,2m)在直线:0l x y +=上,所以2m =.所以圆心为(−1,1),圆心到直线1y x =+的距离为2d =,【名师点睛】(1)圆上两点关于直线对称,则直线过圆心;(2)两点关于直线对称,两点所在的直线与该直线垂直,且两点的中点在该直线上.三、解答题(本大题共2小题,共20分.解答应写出文字说明、证明过程或演算步骤) 15.已知直线:43100l x y ++=,半径为2的圆与相切,圆心在轴上且在直线的上方.(1)求圆的标准方程;(2)过点的直线与圆交于两点(在轴上方),问在轴正半轴上是否存在点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)当点N 的坐标为()4,0时,能使得ANM BNM ∠=∠成立.【解析】(1)设圆心()5,0()2C a a >-,则4102055a a a +=⇒==-或(舍去).所以圆C 的标准方程为224x y +=.16.斜率为的直线与抛物线交于两点,且的中点恰好在直线上.(1)求的值; (2)直线与圆交于两点,若,求直线的方程.【答案】(1)1;(2)【解析】(1)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由22y kx m x y=+⎧⎨=⎩得,x 2-2kx -2m =0, ∆=4k 2+8m >0,x 1+x 2=2k ,x 1x 2=-2m ,因为AB 的中点在x =1上,所以x1+x2=2.即2k=2,所以k=1.。
2008届高考数学第一轮复习 直线和圆的方程单元测试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.130y +-=的倾斜角是A .6π B .3π C .32π D .65π 2.直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是A .),0[πB .),43[]4,0[πππ⋃ C .]4,0[πD .),2(]4,0[πππ⋃3. 如果直线(2a +5)x +(a -2)y+4=0与直线(2-a )x +(a +3)y -1=0互相垂直,则a 的值等于A . 2B .-2C .2,-2D .2,0,-24. 若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+ 的最小值为A .1B .5 C. D.3+5. 00(,)M x y 为圆222(0)x y a a +=>内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系为A .相切B .相交C .相离D .相切或相交 6. 已知两点M (2,-3),N (-3,-2),直线L 过点P (1,1)且与线段MN 相交,则直线L 的斜率k 的取值范围是A .34-≤k ≤4 B .k ≥43或k ≤-4 C .43≤k ≤4 D .-4≤k ≤43 7.若点(5,b )在两条平行直线6x -8y +1=0与3x -4y +5=0之间,则整数b 的值为A .5B .-5C .4D .-48.如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩ ,那么14()2xy ⋅的最大值为A .2B .1C .12 D .149.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为A.4±B.± C.2±D.10.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC的边长是A. B.364 二、填空题:本大题共5小题,每小题5分,共25分.答案填在题中横线上.11.已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则θ= . 12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为-1, 则其必互相垂直; ③过点(-1,1),且斜率为2的直线方程是211=+-x y ; ④同垂直于x 轴的两条直线一定都和y 轴平行; ⑤若直线的倾斜角为α,则πα≤≤0. 其中为真命题的有_____________(填写序号).13.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为________. 14.已知函数32)(2-+=x x x f ,集合(){}0)()(,≤+=y f x f y x M ,集合(){}0)()(,≥-=y f x f y x N ,则集合N M 的面积是 ;15.集合{05|),(≤-+=y x y x P ,∈x N* ,∈y N*},{-=x y x Q 2|),(}0≤+m y ,{y x z y x M -==|),,})(),(Q P y x ⋂∈,若z 取最大值时,{})1,3(=M ,则实数m 的取值范围是 ;三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC ∆的顶点A 为(3,-1),AB 边上的中线所在直线方程为610590x y +-=,B ∠的平分线所在直线方程为4100x y -+=,求BC 边所在直线的方程.17.(本小题满分12分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元。
全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。
·创 作人:历恰面 日 期: 2020年1月1日金版新学案?高考总复习配套测评卷——高三一轮数学『文科』卷(七)直线和圆的方程————————————————————————————————————— 【说明】 本套试卷分为第Ⅰ、Ⅱ卷两局部,请将第一卷选择题之答案填入答题格内,第二卷可在各题后直接答题,一共150分,考试时间是是120分钟.第一卷 (选择题 一共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案个选项里面,只有一项是哪一项符合题目要求的)1.下面各组方程中,表示一样曲线的是( )A .y =x 与yx=1 B .|y |=|x |与y 2=x 2C .|y |=2x +4与y =2|x |+4D.⎩⎪⎨⎪⎧x =sin θ(θ为参数)y =cos 2θ与y =-x 2+12.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=03.“a =1”是“直线x +y =0和直线x -ay =0互相垂直〞的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.过点P (5,-2),且与直线x -y +5=0相交成45°角的直线l 的方程是( )A .y =-2B .y =2,x =5C .x =5D .y =-2,x =55.假设PQ 是圆x 2+y 2=9的弦,PQ 的中点是(1,2),那么直线PQ 的方程是( )A .x +2y -3=0B .x +2y -5=0C .2x -y +4=0D .2x -y =06.假设k ,-1,b 三个数成等差数列,那么直线y =kx +b 必经过定点( )A .(1,-2)B .(1,2)C .(-1,2)D .(-1,-2)7.D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,所确定的平面区域,那么圆x 2+y 2=4在区域D 内的弧长为( )A.π4B.π2C.3π4D.3π28.A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM |+|BM |为最短,那么点M 的坐标为( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎪⎫225,0D.⎝⎛⎭⎪⎫0,2259.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,假设目的函数z =ax +by (a >0,b >0)的最大值为12,那么2a +3b的最小值为( )A.256B.83C.113D .410.在平面直角坐标系中,O 为坐标原点,A (3,1),B (-1,3),假设点C 满足|+|=|-|,那么C 点的轨迹方程是( )A .x +2y -5=0B .2x -y =0C .(x -1)2+(y -2)2=5 D .3x -2y -11=011.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,当其中的劣弧最短时,直线l 的方程是( )A .x =1B .y =1C .x -y +1=0D .x -2y +3=012.台风中心从A 地以每小时20千米的速度向东北方向挪动,离台风中心30千米内的地区为危险区,城B 在A 的正东40千米处,那么B 城处于危险区内的时间是为( )A .小时B .1小时C .小时D .2小时第二卷 (非选择题 一共90分)二、填空题(本大题一一共4小题,每一小题5分,一共20分.把答案填在题中横线上) 13.将直线y =x +3-1绕它上面一点(1,3)沿逆时针方向旋转15°,那么所得直线的方程为________.14.在坐标平面内,与点A (1,3)的间隔 为2,且与点B (3,1)的间隔 为32的直线一共有__________条.15.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,那么△EOF (O 为坐标原点)的面积等于________.16.在直角坐标平面上,不等式组⎩⎪⎨⎪⎧x 2+y 2-4x -6y +4≤0,|x -2|+|y -3|≥3表示的平面区域的面积是________.三、解答题(本大题一一共6小题,一共70分.解容许写出文字说明,证明过程或者演算步骤)17.(本小题满分是10分)△ABC 的两条高所在直线的方程为2x -3y +1=0和x +y =0,顶点A 的坐标为(1,2),求BC 边所在直线的方程.18.(本小题满分是12分)如图,直角三角形ABC 的顶点A 的坐标为(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上.(1)求BC 边所在直线的方程.(2)圆M 是△ABC 的外接圆,求圆M 的方程.19.(本小题满分是12分)△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0.AC 边上的高BH 所在直线为x -2y -5=0.求:(1)顶点C 的坐标; (2)直线BC 的方程.20.(本小题满分是12分)甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和元/吨,乙煤矿运往东车站和西车站的运费价格分别为元/吨和元/吨.要使总运费最少,煤矿应怎样编制调运方案?21.(本小题满分是12分)圆C :x 2+y 2=r 2(r >0)经过点(1,3). (1)求圆C 的方程;(2)是否存在经过点(-1,1)的直线l ,它与圆C 相交于A ,B 两个不同点,且满足=12+32(O 为坐标原点)关系的点M 也在圆C 上?假如存在,求出直线l 的方程;假如不存在,请说明理由.22.(本小题满分是12分)圆M 的方程为:x 2+y 2-2x -2y -6=0,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E 、F 两点,圆内的动点D 使得|DE |、|DO |、|DF |成等比数列,求·的取值范围;(3)过点M 作两条直线分别与圆N 相交于A 、B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?请说明理由. 答案:卷(七)一、选择题1.B 用排除法做.A 、C 易排除,∵点坐标范围明显不一致.D 中前者x ∈[-1,1],y ∈[0,1],后者x ∈R ,y ∈(-∞,1],故排除D.2.D 选D.由题意知所求直线与2x -y -2=0垂直. 又2x -y -2=0与y 轴交点为(0,-2). 故所求直线方程为y +2=-12(x -0),即x +2y +4=0.3.C 当a =1时,直线x +y =0与直线x -y =0垂直成立;当直线x +y =0与直线x -ay =0垂直时,a =1.所以“a =1〞是“直线x +y =0与直线x -ay =0互相垂直〞的充要条件. 4.D (1)假设直线l 的斜率存在,设为k ,由题意,tan 45°=⎪⎪⎪⎪⎪⎪k -11+k ,得k =0,所求l 的直线方程为y =-2.(2)假设直线l 的斜率不存在,那么直线l 的方程为x =5,且与直线x -y +5=0相交成45°角.应选D.5.B 结合圆的几何性质易知直线PQ 过点A (1,2),且和直线OA 垂直,故其方程为:y -2=-12(x -1),整理得x +2y -5=0.6.A ∵k ,-1,b 成等差数列, ∴k +b =-2.∴当x =1时,y =k +b =-2. 即直线过定点(1,-2).7.B 如图阴影局部表示⎩⎪⎨⎪⎧x -2y ≥0x +3y ≥0,确定的平面区域,所以劣弧AB 的弧长即为所求.∵k OB =-13,k OA =12,∴tan ∠BOA =12-⎝ ⎛⎭⎪⎫-131+12×⎝ ⎛⎭⎪⎫-13=1,∴∠BOA =π4.∴劣弧A B 的长度为2×π4=π2.8.B 点B (2,2)关于x 轴的对称点为B ′(2,-2),连接AB ′,易求得直线AB ′的方程为2x +y -2=0,它与x 轴交点M (1,0)即为所求.9.A 不等式组表示的平面区域如下图阴影局部,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目的函数z =ax +by (a >0,b >0)获得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b=⎝ ⎛⎭⎪⎫2a +3b ·2a +3b 6 =136+⎝ ⎛⎭⎪⎫b a +a b ≥136+2 =256, 应选A10.C 由|+|=|-|知⊥,所以C 点的轨迹是以两个端点A 、B 为直径的圆,圆心坐标为线段AB 的中点(1,2),半径等于5,所以C 点的轨迹方程是(x -1)2+(y -2)2=5.11.D 由条件知M 点在圆内,故当劣弧最短时,l 应与圆心与M 点的连线垂直, 设圆心为O ,那么O (2,0), ∴K OM =2-01-2=-2.∴直线l 的斜率k =12,∴l 的方程为y -2=12(x -1).即x -2y +3=0.12.B 如图,以A 为坐标原点,建立平面直角坐标系,那么B (40,0),台风中心挪动的轨迹为射线y =x (x ≥0),而点B 到射线y =x 的间隔 d =402=202<30,故l =2302-(202)2=20,故B 城处于危险区内的时间是为1小时. 二、填空题13.【解析】 直线y =x +3-1的斜率为1,故倾斜角为45°,旋转后的直线的倾斜角为60°,斜率为3,故所求直线方程为y -3=3(x -1),即3x -y =0.【答案】3x -y =014.【解析】 以A (1,3)为圆心,以2为半径作圆A ,以B (3,1)为圆心,以32为半径作圆B .∵|AB |=(1-3)2+(3-1)2=22=32-2, ∴两圆内切, 公切线只有一条. 【答案】 1 15.【解析】 如图圆心O 1(2,-3)到直线l :x -2y -3=0的间隔 为5,那么|EF |=29-5=4,O 到l 的间隔 d =35,故S △OEF =12d |EF |=655.【答案】65516.【解析】 区域为圆面(x -2)2+(y -3)2=9内挖去了一个内接正方形. 【答案】 9π-18三、解答题17.【解析】 可以判断A 不在所给的两条高所在的直线上,那么可设AB ,AC 边上的高所在的直线方程分别为2x -3y +1=0,x +y =0,那么可求得AB ,AC 所在的直线方程为y-2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎪⎨⎪⎧3x +2y -7=0x +y =0得B (7,-7),由⎩⎪⎨⎪⎧y -x -1=02x -3y +1=0得C (-2,-1),所以直线BC 的方程为2x +3y +7=0. 18.【解析】 (1)设C (x 0,0), 那么k AB =-220-(-2)=- 2.k BC =0+22x 0-0=22x 0. ∵AB ⊥BC ,∴k AB ·k BC =-1, 即-2×22x 0=-1,∴x 0=4,∴C (4,0),∴k BC =22, ∴直线BC 的方程为y -0=22(x -4),即y =22x -2 2. (2)圆M 以线段AC 为直径,AC 的中点M 的坐标为(1,0),半径为3, ∴圆M 的方程为x 2+y 2-2x -8=0. 19.【解析】 直线AC 的方程为:y -1=-2(x -5),即2x +y -11=0,解方程组⎩⎪⎨⎪⎧ 2x +y -11=0,2x -y -5=0,得⎩⎪⎨⎪⎧ x =4,y =3,那么C 点坐标为(4,3).设B (m ,n ),那么M (m +52,n +12),⎩⎪⎨⎪⎧ 2m +52-n +12-5=0m -2n -5=0, 整理得⎩⎪⎨⎪⎧ 2m -n -1=0m -2n -5=0, 解得⎩⎪⎨⎪⎧ m =-1n =-3那么B 点坐标为(-1,-3)直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.20.【解析】 设甲煤矿向东车站运x 万吨煤,乙煤矿向东车站运y 万吨煤,那么总运费z =x +1.5(200-x )+y +1.6(300-y )(万元),即z =780-x -y . x 、y 应满足⎩⎪⎨⎪⎧x ≥0,y ≥0,200-x ≥0,300-y ≥0,x +y ≤280,200-x +(300-y )≤360, 作出上面的不等式组所表示的平面区域如下图.设直线x +y =280与y 轴的交点为M ,那么M (0,280),把直线l :x +y =0向上平移至经过点M 时,z 的值最小. ∵点M 的坐标为(0,280),∴甲煤矿消费的煤全部运往西车站,乙煤矿向东车站运280万吨、向西车站运20万吨时,总运费最少. 21.【解析】 (1)由圆C :x 2+y 2=r 2,再由点(1,3)在圆C 上,得r 2=12+(3)2=4所以圆C 的方程为 x 2+y 2=4;(2)假设直线l 存在,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)①假设直线l 的斜率存在,设直线l 的方程为:y -1=k (x +1),联立⎩⎪⎨⎪⎧ y =k (x +1)+1x 2+y 2-4=0消去y 得,(1+k 2)x 2+2k (k +1)x +k 2+2k -3=0,由韦达定理得x 1+x 2=-2k (k +1)1+k 2=-2+2-2k 1+k 2,x 1x 2=k 2+2k -31+k 2=1+2k -41+k 2, y 1y 2=k 2x 1x 2+k (k +1)(x 1+x 2)+(k +1)2=2k +41+k 2-3, 因为点A (x 1,y 1),B (x 2,y 2)在圆C 上,因此,得x 21+y 21=4,x 22+y 22=4, 由=12+32得x 0 =x 1+3x 22,y 0=y 1+3y 22,由于点M 也在圆C 上,那么⎝ ⎛⎭⎪⎫x 1+3x 222+⎝ ⎛⎭⎪⎫y 1+3y 222 =4,整理得,x 21+y 214+3x 22+y 224+32x 1x 2+123y 1y 2=4, 即x 1x 2+y 1y 2=0,所以1+2k -41+k 2+(2k +41+k2-3)=0, 从而得,k 2-2k +1=0,即k =1,因此,直线l 的方程为 y -1=x +1,即x -y +2=0,②假设直线l 的斜率不存在,那么A (-1,3),B (-1,-3),M ⎝ ⎛⎭⎪⎫-1-32,3-32 ⎝ ⎛⎭⎪⎫-1-322+⎝ ⎛⎭⎪⎫3-322 =4-3≠4,故点M 不在圆上与题设矛盾综上所知:k =1,直线方程为x -y +2=022.【解析】 圆M 的方程可整理为:(x -1)2+(y -1)2=8,故圆心M (1,1),半径R =2 2.(1)圆N 的圆心为(0,0),因为|MN |=2<22,所以点N 在圆M 内,故圆N 只能内切于圆M .设其半径为r .因为圆N 内切于圆M ,所以有:|MN |=R -r , 即2=22-r ,解得r = 2.所以圆N 的方程为x 2+y 2=2.(2)由题意可知:E (-2,0),F (2,0).设D (x ,y ),由|DE |、|DO |、|DF |成等比数列,得|DO |2=|DE |×|DF |, 即:(x +2)2+y 2×(x -2)2+y 2=x 2+y 2,整理得:x 2-y 2=1.而=(-2-x ,-y ),=(2-x ,-y ),·=(-2-x )(2-x )+(-y )(-y )=x 2+y 2-2=2y 2-1,由于点D 在圆N 内,故有⎩⎪⎨⎪⎧ x 2+y 2<2x 2-y 2=1,由此得y 2<12,所以·∈[-1,0). (3)因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,那么直线MB 的斜率为-k .故直线MA 的方程为y -1=k (x -1),直线MB 的方程为 y -1=-k (x -1),由⎩⎪⎨⎪⎧ y -1=k (x -1)x 2+y 2=2, 得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点M 在圆N 上,故其横坐标x =1一定是该方程的解,可得x A =k 2-2k -11+k 2, 同理可得:x B =k 2+2k -11+k 2, 所以k AB =y B -y A x B -x A= -k (x B -1)-k (x A -1)x B -x A= 2k -k (x B +x A )x B -x A=1=k MN . 所以,直线AB 和MN 一定平行.。
直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
2025年高考数学一轮复习-直线与圆-专项训练一、基本技能练1.过点A(1,2)的直线在两坐标轴上的截距之和为零,则该直线方程为()A.x-y+1=0B.x+y-3=0C.2x-y=0或x+y-3=0D.2x-y=0或x-y+1=02.已知圆C:x2+y2=r2(r>0),直线l:x+3y-2=0,则“r>3”是“直线l与圆C 相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知O为坐标原点,直线l:y=kx+(2-2k)上存在一点P,使得|OP|=2,则k 的取值范围为()A.[3-2,3+2]B.(-∞,2-3]∪[2+3,+∞)C.[2-3,2+3]D.(-∞,3-2]∪[3+2,+∞)4.已知直线l:ax+by=1是圆x2+y2-2x-2y=0的一条对称轴,则ab的最大值为()A.1 4B.1 2C.1D.25.过点P(5,1)作圆C:x2+y2+2x-4y+1=0的割线l交圆C于A,B两点,点C 到直线l的距离为1,则PA→·PB→的值是()A.32B.33C.6D.不确定6.已知直线x+y+1=0与x+2y+1=0相交于点A,过点A的直线l与圆M:x2+y2+4x=0相交于点B,C,且∠BMC=120°,则满足条件的直线l的条数为() A.0 B.1C.2D.37.已知两条直线l1:2x-3y+2=0,l2:3x-2y+3=0,有一动圆(圆心和半径都在变动)与l1,l2都相交,并且l1,l2被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹方程为()A.(y-1)2-x2=65B.x2-(y-1)2=65C.y2-(x+1)2=65D.(x+1)2-y2=658.已知M是圆C:x2+y2=1上一个动点,且直线l1:mx-ny-3m+n=0与直线l2:nx+my-3m-n=0(m,n∈R,m2+n2≠0)相交于点P,则|PM|的取值范围是()A.[3-1,23+1]B.[2-1,32+1]C.[2-1,22+1]D.[2-1,33+1]9.(多选)已知直线l1:(a+1)x+ay+2=0,l2:ax+(1-a)y-1=0,则()A.l1恒过点(2,-2)B.若l1∥l2,则a2=12C.若l1⊥l2,则a2=1D.当0≤a≤1时,直线l2不经过第三象限10.(多选)如图,O为坐标原点,B为y轴正半轴上一点,矩形OABC为圆M的内接四边形,OB为直径,|OC|=3|OA|=3,过直线2x+y-4=0上一点P作圆M 的两条切线,切点分别为E,F,则下列结论正确的是()A.圆M的方程为x2+(y-1)2=1B.直线AB的斜率为2C.四边形PEMF的最小面积为2D.PA→·PC →的最小值为4511.已知直线l 1:y =(2a 2-1)x -2与直线l 2:y =7x +a 平行,则a =________.12.过点M (0,-4)作直线与圆C :x 2+y 2+2x -6y +6=0相切于A ,B 两点,则直线AB 的方程为________.二、创新拓展练13.(多选)已知圆C 1:(x -3)2+(y -1)2=4,C 2:x 2+(y +3)2=1,直线l :y =k (x -1),点M ,N 分别在圆C 1,C 2上.则下列结论正确的有()A.圆C 1,C 2没有公共点B.|MN |的取值范围是[1,7]C.过N 作圆C 1的切线,则切线长的最大值是42D.直线l 与圆C 1,C 2都有公共点时,k ≥2314.(多选)过点P (1,1)的直线与圆C :(x -2)2+y 2=9交于A ,B 两点,线段MN 是圆C 的一条动弦,且|MN |=42,则()A.△ABC 面积的最大值为92B.△ABC 面积的最大值为14C.|AB |的最小值为27D.|PM →+PN →|的最小值为22-215.在平面直角坐标系xOy 中,圆x 2+y 2=1交x 轴于A ,B 两点,且点A 在点B 的左侧,若直线x +3y +m =0上存在点P ,使得|PA |=2|PB |,则实数m 的取值范围为________.16.在平面直角坐标系xOy 中,过点A (0,-3)的直线l 与圆C :x 2+(y -2)2=9相交于M ,N 两点,若S △AON =65S △ACM ,则直线l 的斜率为________.参考答案与解析一、基本技能练1.答案D解析当直线过原点时,满足题意,方程为y=2x,即2x-y=0;当直线不过原点时,设方程为xa+y-a=1,∵直线过(1,2),∴1a-2a=1,∴a=-1,∴方程为x-y+1=0,故选D.2.答案A解析由题意知圆心(0,0)到直线x+3y-2=0的距离d=|-2|1+3=1,当r>3时,直线与圆相交,当直线与圆相交,则d=1<r,故“r>3”是“直线l与圆C相交”的充分不必要条件.故选A.3.答案C解析点O(0,0)到直线l:y=kx+(2-2k)的距离d=|2-2k| k2+1.由题意得坐标原点到直线l距离d≤|OP|,所以|2-2k|k2+1≤2,解得2-3≤k≤2+3,故k的取值范围为[2-3,2+3],故选C.4.答案A解析圆x2+y2-2x-2y=0的圆心为(1,1),直线l:ax+by=1是圆x2+y2-2x-2y=0的一条对称轴.可得a+b=1,则ab =14,当且仅当a =b =12时,取等号.所以ab 的最大值为14,故选A.5.答案B解析由题意,可得向量PA →与PB →共线且方向相同,圆C 的圆心为(-1,2),半径为2,如图所示,其中PD 为切线,根据切割线定理,则PA →·PB →=|PA →|·|PB →|=|PD →|2=|PC →|2-|CD →|2=62+12-22=33.故选B.6.答案B解析由题意得点A (-1,0),圆M :x 2+y 2+4x =0的标准方程为(x +2)2+y 2=4,圆心(-2,0),半径r =2,由∠BMC =120°,可得圆心M 到直线l 的距离d =1,直线l 过点A (-1,0),当直线l 的斜率不存在时,直线l 的方程为x =-1,圆心M 到直线l 的距离d =1,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x +1),即kx -y +k =0.圆心M (-2,0)到直线l 的距离d =|-2k -0+k |k 2+1=|-k |k 2+1=1,此方程无解.故满足条件的直线l 的条数为1,故选B.7.答案D解析设动圆圆心P (x ,y ),半径为r ,则P 到l 1的距离d 1=|2x -3y +2|13,P 到l 2的距离d 2=|3x -2y +3|13,因为l 1,l 2被截在圆内的两条线段的长度分别是定值26,24.∴2r 2-d 21=26,2r 2-d 22=24,化简后得r 2-d 21=169,r 2-d 22=144,相减得d 22-d 21=25,将d 1,d 2代入距离公式后化简可得(x +1)2-y 2=65,故选D.8.答案B解析依题意,直线l 1:m (x -3)-n (y -1)=0恒过定点A (3,1),直线l 2:n (x -1)+m (y -3)=0恒过定点B (1,3),显然直线l 1⊥l 2,因此,直线l 1与l 2交点P 的轨迹是以线段AB 为直径的圆,其方程为:(x -2)2+(y -2)2=2,圆心N (2,2),半径r 2=2,而圆C 的圆心C (0,0),半径r 1=1,如图:|NC |=22>r 1+r 2,所以两圆外离,由圆的几何性质得:|PM |min =|NC |-r 1-r 2=2-1,|PM |max =|NC |+r 1+r 2=32+1,所以|PM |的取值范围是[2-1,32+1].故选B.9.答案BD解析l 1:(a +1)x +ay +2=0⇔a (x +y )+x +2=0,+y =0,+2=0,=-2,=2,即直线恒过点(-2,2),故A不正确;若l1∥l2,则有(a+1)(1-a)=a2,解得a2=12,经检验满足条件,故B正确;若l1⊥l2,则有a(a+1)+a(1-a)=0,解得a=0,故C不正确;若直线l2恒过点(1,1)且不经过第三象限,则当1-a≠0时,aa-1<0,解得0<a<1,当a=1时,直线l2:x=1,也不过第三象限,当a=0时,直线l2:y=1,也不过第三象限,综上可知,当0≤a≤1时,直线l2不经过第三象限,故D正确.10.答案AD解析由题意可得圆M的直径|OB|=2,线段OB的中点即为圆M的圆心,所以圆M的方程为x2+(y-1)2=1,故A正确;易知∠AOB=π3,从而可得∠xOC=π3,所以直线OC的斜率为k OC=tan π3=3,由AB∥OC可得直线AB的斜率为k AB=k OC=3,故B错误;连接PM,可得Rt△PME≌Rt△PMF,所以四边形PEMF的面积为S=2S Rt△PME=|ME|·|PE|=|PE|=|PM|2-1,当直线PM与直线2x+y-4=0垂直时,|PM|最小,即|PM|min=|2×0+1-4|5=355,所以S min=255,故C错误;因为PA→·PC→=(PM→+MA→)·(PM→+MC→)=(PM→+MA→)·(PM→-MA→)=PM→2-MA→2=PM→2-1≥95-1=45,故D正确.故选AD.11.解析∵两直线平行,a2-1=7,≠-2,解得a=2.12.答案x-7y+18=0解析圆C的标准方程为(x+1)2+(y-3)2=4,圆心为C(-1,3),半径为2,由圆的切线的性质可得MA⊥AC,则|MA|=|MC|2-22=(-1-0)2+(3+4)2-22=46,所以,以点M为圆心、以|MA|为半径的圆M的方程为x2+(y+4)2=46,将圆M的方程与圆C的方程作差并化简可得x-7y+18=0.因此直线AB的方程为x-7y+18=0.二、创新拓展练13.答案AC解析圆C1的圆心C1(3,1),半径r1=2,圆C2的圆心C2(0,-3),半径r2=1.对于选项A,圆心距d=(0-3)2+(-3-1)2=5>r1+r2,所以圆C1,C2外离,选项A正确;对于选项B,|MN|的最小值为d-(r1+r2)=2,最大值为d+(r1+r2)=8,选项B 错误;对于选项C,连接C1C2与圆C2交于点N(外侧交点),过N作圆C1的切线,切点为P,此时|NP|最长,在Rt△C1PN中,|NP|=(d+r2)2-r21=62-22=42,选项C 正确;对于选项D,直线l方程化为kx-y-k=0,圆心C1到直线l的距离|2k-1|k2+1≤2,解得k≥-3 4,圆心C2到直线l的距离|3-k|k2+1≤1,解得k≥43所以直线l与圆C1,C2都有公共点时,k≥43,选项D错误.故选AC.14.答案BCD解析设圆心C到直线AB的距离为d,由题意得0≤d ≤2,|AB |=29-d 2,则S △ABC =12|AB |·d =12×29-d 2·d =9d 2-d 4当d 2=2时,(S △ABC )max =14,故A 错误,B 正确;由0≤d ≤2,|AB |=29-d 2知|AB |min =29-2=27,C 正确;过圆心C 作CE ⊥MN 于点E ,则点E 为MN 的中点,又|MN |=42,则|CE |=9-8=1,即点E 的轨迹为圆(x -2)2+y 2=1.因为|PM →+PN →|=2|PE →|,且|PE →|min =|PC |-1=2-1,所以|PM →+PN →|的最小值为22-2,故D 正确.因此应选BCD.15.答案-133,1解析由题意得A (-1,0),B (1,0),设P (x ,y ),则由|PA |=2|PB |,得(x +1)2+y 2=2(x-1)2+y 2,+y 2=169,+y 2=169与直线x +3y +m =0有交点,即|53+m |2≤43,解得-133≤m ≤1.故实数m 的取值范围为-133,1.16.答案±3147解析由题意得C (0,2),直线MN 的斜率存在,设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为y =kx -3,与x 2+(y -2)2=9联立,得(k 2+1)x 2-10kx +16=0,Δ=100k 2-64(k 2+1)=36k 2-64>0,得k 2>169,x 1+x 2=10k k 2+1,x 1x 2=16k 2+1.因为S △AON =65S △ACM ,所以12×3×|x 2|=65×12×|2-(-3)|×|x 1|,则|x 2|=2|x 1|,于是x 2=2x 1,x 1=10kk 2+1,x 21=16k 2+1两式消去x 1得k 2=187,满足Δ>0,所以k =±3147.。
素质能力检测(七)一、选择题(每小题5分,共60分)1.集合M ={(x ,y )|y =21x -,x 、y ∈R },N ={(x ,y )|x =1,y ∈R },则M ∩N 等于A.{(1,0)}B.{y |0≤y ≤1}C.{1,0}D.解析:y =21x -表示单位圆的上半圆,x =1与之有且仅有一个公共点(1,0). 答案:A2.(2004年湖北,文2)已知点M 1(6,2)和M 2(1,7),直线y =mx -7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3∶2,则m 的值为A.-23B.-32 C.41D.4 解析:设M (x ,y ),点M 分M 1M 2所成比为λ=23. 得x =231236++=3,y =2317236+⨯+=5. 代入y =mx -7,得m =4.答案:D3.(2003年辽宁)在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是ABCD解:根据a 的符号和表示直线的位置特征,显见C 正确,因为当a <0时,y =ax 表示过原点且下降的直线,y =x +a 表示纵截距小于零且上升的直线.故选C.答案:C4.(2005年春季北京,6)直线x +3y -2=0被圆(x -1)2+y 2=1所截得的线段的长为A.1B.2C.3D.2 解析:圆心(1,0),r =1到直线x +3y -2=0的距离d =22)3(1|201|+-+=21. 则21弦长=23.∴弦长为3.答案:C5.(2004年湖北,4)圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +1=0的公切线有A.1条B.2条C.3条D.4条 解析:圆C 1的圆心C 1(-1,-1),r 1=2, 圆C 2的圆心C 2(2,1),r 2=2. ∵|C 1C 2|=22)11()21(--+--=13<r 1+r 2=4,∴圆C 1与圆C 2相交.故公切线有2条. 答案:B6.(2004年天津,理7)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是A.x -y -3=0B.2x +y -3=0C.x +y -1=0D.2x -y -5=0解:由(x -1)2+y 2=25知圆心为Q (1,0).据k QP ·k AB =-1,∴k AB =-QPk 1=1(其中k QP =1201---=-1). ∴AB 的方程为y =(x -2)-1=x -3,即x -y -3=0. 答案:Ax =3+5cos θ,y =-4+5sin θA.10B.16C.25D.100 解析:易知22y x +是圆(x -3)2+(y +4)2=25上的点到原点的距离.答案:D8.把直线x -2y +λ=0向左平移1个单位,再向下平移2个单位后,所得直线正好与圆x 2+y 2+2x -4y =0相切,则实数λ的值为A.3或13B.-3或13C.3或-13D.-3或-13解析:直线x -2y +λ=0按a =(-1,-2)平移后的直线为x -2y +λ-3=0,与圆相切,易得λ=13或3.答案:A9.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有7.如果点P (x ,y )在曲线(θ为参数)上,则x 2+y 2的最大值是A.1个B.2个C.3个D.4个解析:易知圆心(-1,-2)到x +y +1=0的距离d =2,所以满足题意的点共有3个. 答案:Cx =1+cos θ,y =1-sin θ (θ为参数),直线l 经过点(0,2),倾斜角为α,则α=4π是直线l 与曲线C 相切的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 解析:数形结合法易知. 答案:A11.如果直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M 、N 两点,且M 、N 关于直线x +y =0对称,则不等式组kx -y +1≥0,kx -my ≤0, y ≥0 A.41 B.21C.1D.2 解析:由题中条件知k =1,m =-1,易知区域面积为41.答案:A12.(2002年全国新课程)平面直角坐标系中,O 为坐标原点,已知两点A (3,1)、B (-1,3),若点C 满足=α+β,其中α、β∈R ,且α+β=1,则点C 的轨迹方程为A.(x -1)2+(y -2)2=5B.3x +2y -11=0C.2x -y =0D.x +2y -5=0解析:设C 点坐标为(x ,y ),则=(x ,y ),=(3,1),=(-1,3), 所以(x ,y )=α·(3,1)+β·(-1,3)=(3α-β,α+3β). x =3α-β, y =α+3β, α=103yx +, β=103x y -.因为α+β=1,10.已知曲线C :表示的平面区域的面积是 所以 变形得所以103y x ++103xy -=1,即x +2y -5=0.故选D. 答案:D二、填空题(每小题4分,共16分)13.(2005年北京东城区目标检测题)设实数x 、y 满足 x ≥0,x -y +2≤0, 2x +y -5≤0,解析:画出图形即可得到在(0,5)点z =x +y 取得最大值5. 答案:514.(2004年春季北京)若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +32y =1的公共点有____________个.解析:将直线方程代入圆方程中“Δ<0”即可. 答案:0<m 2+n 2<3 215.(2004年北京,11)圆x 2+(y +1)2=1的圆心坐标是__________,如果直线x +y +a =0与该圆有公共点,那么实数a 的取值范围是__________.解析:由圆的定义知,圆x 2+(y +1)2=1的圆心坐标是(0,-1).圆心(0,-1)到直线x +y +a =0的距离d =2|1|a +-.若圆与直线有公共点,则d ≤1,即得1-2≤a ≤1+2. 答案:(0,-1) 1-2≤a ≤1+216.(2001年上海,理)已知两个圆:①x 2+y 2=1;②x 2+(y -3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广命题为____________.解析:设两圆方程为(x -a )2+(y -b )2=r 2①和(x -c )2+(y -d )2=r 2.② 由①-②得两圆的对称轴方程为2(c -a )x +2(d -b )y +a 2+b 2-c 2-d 2=0.所以推广命题为:已知两个圆:①(x -a )2+(y -b )2=r 2;②(x -c )2+(y -d )2=r 2. 则由①式减去②式可得两圆的对称轴方程.答案:已知两个圆:①(x -a )2+(y -b )2=r 2;②(x -c )2+(y -d )2=r 2.则由①式减去②式可得两圆的对称轴方程.三、解答题(共6小题,满分74分)17.(12分)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,试求θ的值,使得 (1)l 1∥l 2;(2)l 1⊥l 2. 解:(1)当sin θ=0时,l 1斜率不存在,l 2斜率为零,l 1显然不平行于l 2.当sin θ≠0时,k 1=-θsin 1,k 2=-2sin θ. ∵k 1=k 2是l 1∥l 2的条件,∴-θsin 1=-2sin θ,sin θ=±22,则z=x +y 的最大值是____________.θ=n π+4π,n ∈Z .此时两直线截距不等, ∴当θ=n π±4π,n ∈Z 时,l 1∥l 2.(2)∵A 1A 2+B 1B 2=0是l 1⊥l 2的充要条件,∴2sin θ+sin θ=0. ∴sin θ=0,即θ=n π(n ∈Z ). ∴当θ=n π,n ∈Z 时,l 1⊥l 2.18.(12分)过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点, ∴A 的坐标为(2x ,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =x 2204--,k PB =0224--y (x ≠1), ∴x -12·12y -=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0)、(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0. 综上所述,点M 的轨迹方程是x +2y -5=0. 解法二:设M 的坐标为(x ,y ),则A 、B 两点的坐标分别是(2x ,0)、(0,2y ),连结PM ,∵l 1⊥l2,∴2|PM |=|AB |.而|PM |=22)4()2(-+-y x ,|AB |=22)2()2(y x +,∴222)4()2(-+-y x =2244y x +.化简,得x +2y -5=0,为所求轨迹方程. 解法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA 知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =204--=2,线段OP 的中点为(1,2),∴y -2=-21(x -1),即x +2y -5=0为所求. 19.(12分)圆C 通过不同的三点P (k ,0)、Q (2,0)、R (0,1),已知圆C 在P 点切线斜率为1,试求圆C 的方程.解:设圆C 的方程为x 2+y 2+Dx +Ey +F =0. k +2=-D , 2k =F ,E +F +1=0.∴圆的方程为x 2+y 2-(k +2)x -(2k +1)y +2k =0,圆心为(22+k ,212+k ).又∵k CP =-1,∴k =-3.∴圆的方程为x 2+y 2+x +5y -6=0.20.(12分)某房产开发公司建楼急需资金1200万元,必须向银行A 和银行B 贷款,一年本自息还清,银行A 至多贷给该公司800万元,年息12%;银行B 至多贷款给该公司1000万元,年息14%,问开发公司分别向A 、B 两银行贷款多少万元,才使所付总利息最少?解:设开发公司向银行A 贷款x 万元,向银行B 贷款y 万元,开发公司需付总利息为S ,依题意,有约束条件x ≤800,y ≤1000,x +y ≥1200, x ≥0, y ≥0..作直线l 0:0.12x +0.14y =0,把直线l 0向右上方平移至l 1的位置时,直线经过可行域上的点M ,且与原点距离最小,此时,S =0.12x +0.14y 取得最小值.x =800,x +y =1200,故该开发公司向银行A 贷款800万元,向银行B 贷款400万元时,所付总利息最少. 21.(12分)已知圆x 2+y 2-6x -8y +21=0和直线kx -y -4k +3=0. (1)求证:不论k 取什么值,直线和圆总有两个不同的公共点; (2)求当k 取何值时,直线被圆截得的弦最短,并求这最短弦的长.(1)证明:已知圆的方程为(x -3)2+(y -4)2=4,其圆心(3,4)到直线kx -y -4k +3=0的距离为|213443kk k ++--|=21|1|kk ++.要证明直线和圆总有两个不同的公共点,只要证21|1|k k ++<2,即证(k +1)2<4(1+k 2),S =0.12x +0.14y . 解方程组得M 点的坐标为(800,400),此即为最优解. 将P 、Q 、R 的坐标代入,得即证3k 2-2k +3>0.而3k 2-2k +3=3(k -31)2+38>0成立. (2)解:由于当圆心到直线的距离最大时,直线被圆截得的弦最短,而d =21|1|k k ++=1)1(22++k k =1212++k k ≤11122+++k k =2.当且仅当k =1时,“=”成立,即k =1时,d max =2.故当k =1时,直线被圆截得的弦最短,该最短弦的长为222)2(2-=22. 22.(14分)过点A (0,a )作直线与圆E :(x -2)2+y 2=1交于B 、C 两点,在BC 上取满足BP ∶PC =AB ∶AC 的点P .(1)求P 点的轨迹方程;(2)设所求轨迹方程与圆E 交于M 、N 两点,求△EMN (E 为圆心)面积的最大值. 解:(1)设AB 方程为y =kx +a ,与圆的方程联立得(k 2+1)x 2+(2ak -4)x +a 2+3=0.x B +x C =-2142kak +-,x B ·x C =2213k a ++. ∵PC BP =AC AB,∴P C B P x x x x --=CB x x .∴x P =aka -+232.同理,y P =akka -+232.消去k ,得2x -ay -3=0.∴轨迹是直线2x -ay -3=0在圆内一段. 2x -ay -3=0(x -2)2+y 2=1 |MN |=2)2(1a +|y 1-y 2|=2·4322++a a .又高为412+a ,∴S △EMN =222)4(3++a a =41)2141(22+-+-a ≤43. 仅当a =0时,(S △EMN )max =43.(2)由 ⇒(a 2+4)y 2-2ay +3=0.。
高考一轮复习备考试题直线与圆一、填空题1、(2014年江苏高考)在平面直角坐标系xOy 中,直线032x =-+y 被圆4)1(2x 22=++-y )(截得的弦长为 ▲ .2、(2012年江苏高考)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 3、(2015届江苏南通市直中学高三9月调研)已知圆22:24200C x y x y +---=,直线l 过点P (3,1),则当直线l 被圆C 截得的弦长最短时,直线l 的方程为 ▲4、(2015届江苏苏州高三9月调研)已知圆()()()22:10C x a y a a -+-=>与直线3y x =相交于,P Q 两点,则当CPQ ∆的面积最大时,此时实数a 的值为 ▲5、(南京市2014届高三第三次模拟)在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+y 2=4,P 为圆C 上一点.若存在一个定圆M ,过P 作圆M 的两条切线PA ,PB ,切点分别为A ,B ,当P 在圆C 上运动时,使得∠APB 恒为60︒,则圆M 的方程为6、(南通市2014届高三第三次调研)在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线(1)y k x =+上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 ▲ .7、(2014江苏百校联考一)已知圆22:(2)1C x y -+=,点P 在直线:10l x y ++=上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标0x 的取值范围是 .8、(南通市2014届高三第二次模拟)在平面直角坐标系xOy 中,设A 是半圆O :222x y +=(0x ≥)上一点,直线OA 的倾斜角为45°,过点A 作x 轴的垂线,垂足为H ,过H 作OA 的平行线交半圆于点B ,则直线AB 的方程是 ▲9、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ 10、(苏锡常镇四市2014届高三3月教学情况调研(一))在平面直角坐标系xOy 中,已知点(3,0)P 在圆222:24280C x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于,A B 两点,若△ABC 的面积的最大值为16,则实数m 的取值范围为 ▲11、(江苏省诚贤中学2014届高三12月月考)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 ▲12、(江苏省灌云高级中学2014届高三第三次学情调研)已知点Q b a p 与点),((1,0)在直线0132=+-y x 的两侧,则下列说法(1)0132>+-b a (2)0≠a 时,ab有最小值,无最大值 (3)M b a R M >+∈∃+22,使恒成立 (4)且0>a 1≠a ,时0>b , 则1-a b 的取值范围为(-),32()31,∞+⋃-∞ 其中正确的是 (把你认为所有正确的命题的序号都填上)二、解答题1、(2013年江苏高考)本小题满分14分。
第十三单元 直线与圆教材复习课“直线与圆”相关基础知识一课过直线的方程 1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; ③范围:直线l 的倾斜角的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线 点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线 截距式纵、横截距x a +y b =1 不过原点且与两坐标轴均不垂直的直线一般式 Ax +By +C =0(A 2+B 2≠0)所有直线1.已知A (m ,-2),B (3,0),若直线AB 的斜率为2,则m 的值为( ) A .-1 B .2 C .-1或2D .-2解析:选B 由直线AB 的斜率k =-2-0m -3=2,解得m =2.2.若经过两点(5,m )和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A .(5,8) B .(8,+∞)C.⎝⎛⎭⎪⎫132,8D.⎝⎛⎭⎪⎫5,132解析:选D 由题意知8-mm -5>1,即2m -13m -5<0,∴5<m <132. 3.过点C (2,-1)且与直线x +y -3=0垂直的直线是( ) A .x +y -1=0 B .x +y +1=0 C .x -y -3=0D .x -y -1=0解析:选C 设所求直线斜率为k , ∵直线x +y -3=0的斜率为-1,且所求直线与直线x +y -3=0垂直,∴k =1. 又∵直线过点C (2,-1), ∴所求直线方程为y +1=x -2, 即x -y -3=0.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1 解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a. ∴a +2a=a +2,解得a =-2或a =1. 5.经过点(-4,1),且倾斜角为直线y =-x +1的倾斜角的13的直线方程为________.解析:由题意可知,所求直线方程的倾斜角为45°,即斜率k =1,故所求直线方程为y -1=x +4,即x -y +5=0.答案:x -y +5=0[清易错]1.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.2.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 1.过点(5,10)且到原点的距离是5的直线的方程为________.解析:当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=02.经过点A (1,1),且在两坐标轴上的截距相等的直线方程为________. 解析:当直线过原点时,方程为y =x ,即x -y =0; 当直线不过原点时,设直线方程为x +y =a , 把点(1,1)代入直线方程可得a =2, 故直线方程为x +y -2=0.综上可得所求的直线方程为x -y =0或x +y -2=0. 答案:x -y =0或x +y -2=0圆的方程1.圆的定义及方程定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准方程(x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r 一般方程x 2+y 2+Dx +Ey +F =0,(D 2+E 2-4F >0)圆心:⎝ ⎛⎭⎪⎫-D 2,-E 2,半径:12D 2+E 2-4F点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题速通]1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C .(-2,0)D.⎝⎛⎭⎪⎫-2,23 解析:选D 由题意知a 2+4a 2-4(2a 2+a -1)>0, 解得-2<a <23.2.(2018·天津模拟)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .(-1,1)B .(-3,3)C .(-2,2)D.⎝ ⎛⎭⎪⎫-22,22 解析:选C 因为(0,0)在(x -m )2+(y +m )2=4的内部,则有(0-m )2+(0+m )2<4,解得-2<m < 2.3.(2015·北京高考)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 圆的半径r =1-02+1-02=2,圆心坐标为(1,1),所以圆的标准方程为(x -1)2+(y -1)2=2.4.若圆C 的圆心在x 轴上,且过点A (-1,1)和B (1,3),则圆C 的方程为________________. 解析:设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |, 即a +12+1=a -12+9,解得a =2,所以圆心为C (2,0), 半径|CA |=2+12+1=10,∴圆C 的方程为(x -2)2+y 2=10. 答案:(x -2)2+y 2=10两条直线的位置关系 1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离|P 1P 2|=x 2-x 12+y 2-y 121.已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =( ) A .-7或-1 B .-7 C .7或1D .-1解析:选B 由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a8,解得a =-7(a =-1舍去).2.圆x 2+y 2-6x -2y +3=0的圆心到直线x +ay -1=0的距离为1,则a =( ) A .-43B .-34C. 3D .2解析:选B 圆x 2+y 2-6x -2y +3=0可化为(x -3)2+(y -1)2=7,其圆心(3,1)到直线x +ay -1=0的距离d =|2+a |1+a2=1,解得a =-34.3.已知直线l 1:(m +2)x -y +5=0与l 2:(m +3)x +(18+m )y +2=0垂直,则实数m 的值为( )A .2或4B .1或4C .1或2D .-6或2解析:选D 当m =-18时,两条直线不垂直,舍去; 当m ≠-18时,由l 1⊥l 2,可得(m +2)·⎝ ⎛⎭⎪⎫-m +318+m =-1,化简得(m +6)(m -2)=0,解得m =-6或2.4.若两条平行直线4x +3y -6=0和4x +3y +a =0之间的距离等于2,则实数a =________.解析:∵两条平行直线的方程为4x +3y -6=0和4x +3y +a =0, ∴由平行线间的距离公式可得2=|-6-a |42+32, 即|-6-a |=10, 解得a =4或-16. 答案:4或-16[清易错]1.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知直线l 1:x +(a -2)y -2=0,直线l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:(1)当直线l 1的斜率不存在,即a =2时,有l 1:x -2=0,l 2:2y -1=0,此时符合l 1⊥l 2.(2)当直线l 1的斜率存在,即a ≠2时,直线l 1的斜率k 1=-1a -2≠0,若l 1⊥l 2,则必有直线l 2的斜率k 2=-a -2a ,所以⎝ ⎛⎭⎪⎫-1a -2·⎝ ⎛⎭⎪⎫-a -2a =-1,解得a =-1.综上所述,l 1⊥l 2⇔a =-1或a =2.故“a =-1”是“l 1⊥l 2”的充分不必要条件. 法二:l 1⊥l 2⇔1×(a -2)+(a -2)×a =0, 解得a =-1或a =2.所以“a =-1”是“l 1⊥l 2”的充分不必要条件.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行.由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.直线与圆的位置关系直线与圆的位置关系(半径r ,圆心到直线的距离为d )相离 相切 相交图形量化方程 观点 Δ<0Δ=0Δ>0几何 观点d >r d =r d <r1.直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B 因为直线y =ax +1恒过定点(0,1),又点(0,1)在圆x 2+y 2-2x -3=0的内部,故直线与圆相交.2.(2018·大连模拟)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1C.22D. 2解析:选D 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 3.已知圆C :x 2+y 2-6x +8=0,则圆心C 的坐标为______;若直线y =kx 与圆C 相切,且切点在第四象限,则k 的值为________.解析:圆的方程可化为(x -3)2+y 2=1,故圆心坐标为(3,0);由|3k |1+k2=1,解得k =±24,由切点在第四象限,可得k =-24. 答案:(3,0) -24圆与圆的位置关系 [过双基]圆与圆的位置关系(两圆半径r 1,r 2,d =|O 1O 2|)相离 外切 相交 内切 内含图形量的关系 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|1.若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________. 答案:±25或02.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析:由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2. 答案:2 2一、选择题1.直线 3x +y -3=0的倾斜角为( ) A.π6 B.π3 C.2π3D.5π6解析:选C ∵直线3x +y -3=0可化为y =-3x +3, ∴直线的斜率为-3,设倾斜角为α,则tan α=-3,又∵0≤α<π, ∴α=2π3.2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则必有( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2解析:选D 由图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,所以k 1<k 3<k 2. 3.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.4.过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0解析:选A 设过直线2x -y +4=0与x -y +5=0的交点的直线方程为2x -y +4+λ(x -y +5)=0,即(2+λ)x -(1+λ)y +4+5λ=0, ∵该直线与直线x -2y =0垂直, ∴k =2+λ1+λ=-2,解得λ=-43.∴所求的直线方程为⎝ ⎛⎭⎪⎫2-43x -⎝ ⎛⎭⎪⎫1-43y +4+5×-43=0,即2x +y -8=0.5.已知直线l 1:x +2y +t 2=0和直线l 2:2x +4y +2t -3=0,则当l 1与l 2间的距离最短时t 的值为( )A .1 B.12 C.13D .2解析:选B ∵直线l 2:2x +4y +2t -3=0, 即x +2y +2t -32=0.∴l 1∥l 2,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪t 2-2t -3212+22=⎝ ⎛⎭⎪⎫t -122+545≥54,当且仅当t =12时取等号.∴当l 1与l 2间的距离最短时t 的值为12.6.已知直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直,则直线l 1在x 轴上的截距是( )A .1B .2C .3D .4解析:选B ∵直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直, ∴a +3+a -1=0,解得a =-1, ∴直线l 1:2x +y -4=0, ∴直线l 1在x 轴上的截距是2.7.一条光线从A ⎝ ⎛⎭⎪⎫-12,0处射到点B (0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .2x -y -1=0B .2x +y -1=0C .x -2y -1=0D .x +2y +1=0解析:选B 由题意可得点A ⎝ ⎛⎭⎪⎫-12,0关于y 轴的对称点A ′⎝ ⎛⎭⎪⎫12,0在反射光线所在的直线上,又点B (0,1)也在反射光线所在的直线上,则两点式求得反射光线所在的直线方程为y -10-1=x -012-0,即2x +y -1=0.8.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.二、填空题9.已知直线l 过点A (0,2)和B (-3,3m 2+12m +13)(m ∈R),则直线l 的倾斜角的取值范围为________.解析:设此直线的倾斜角为θ,0≤θ<π,则tan θ=3m 2+12m +13-2-3-0=-3(m +2)2+33≤33.因为θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π.答案:⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π10.已知点A (-1,-2),B (2,3),若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为__________.解析:如图,把A (-1,-2),B (2,3)分别代入直线l :x +y -c =0,得c 的值分别为-3,5. 故若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为[-3,5].答案:[-3,5]11.已知直线x +y -3m =0与2x -y +2m -1=0的交点在第四象限,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -3m =0,2x -y +2m -1=0,解得⎩⎪⎨⎪⎧x =m +13,y =8m -13.∵两直线的交点在第四象限,∴m +13>0,且8m -13<0, 解得-1<m <18,∴实数m 的取值范围是⎝ ⎛⎭⎪⎫-1,18. 答案:⎝⎛⎭⎪⎫-1,1812.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是______________.解析:因为圆C 与两坐标轴相切,且M 是劣弧AB 的中点, 所以直线CM 是第二、四象限的角平分线, 所以斜率为-1,所以过M 的切线的斜率为1. 因为圆心到原点的距离为2,所以|OM |=2-1, 所以M ⎝⎛⎭⎪⎫22-1,1-22,所以切线方程为y -1+22=x -22+1, 整理得x -y +2-2=0. 答案:x -y +2-2=0 三、解答题13.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.14.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a,2a ),则a 2+2a -42=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)证明:设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165.高考研究课(一)直线方程命题4角度——求方程、判位置、定距离、用对称 [全国卷5年命题分析]考点 考查频度 考查角度直线方程 5年3考 多与圆、抛物线结合考查两直线位置关系 未考查点到直线的距离 5年3考 多与圆结合考查对称问题未考查直线方程的求法[典例] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的3的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. [解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. [方法技巧]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时演练]1.若直线l 过点A (3,4),且点B (-3,2)到直线l 的距离最远,则直线l 的方程为( ) A .3x -y -5=0 B .3x -y +5=0 C .3x +y +13=0D .3x +y -13=0解析:选D 当l ⊥AB 时满足条件. ∵k AB =2-4-3-3=13,则k l =-3.∴直线l 的方程为y -4=-3(x -3), 即3x +y -13=0.2.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则当|OA |+|OB |取得最小值时,直线l 的方程为____________.解析:设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +ba ≥2+2·a b ·ba=4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.答案:x +y -2=0两直线的位置关系[典例] (1)12y -8=0平行,则m 的值为( )A .-7B .-1或-7C .-6D .-6或-7(2)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α的值为( )A.45 B .-45C .1D .-12[解析] (1)直线l 1的斜率一定存在,因为l 2:2x +(m +5)y -8=0, 当m =-5时,l 2的斜率不存在,两直线不平行. 当m ≠-5时,由l 1∥l 2,得(m +3)(m +5)-2×4=0, 解得m =-1或-7.当m =-1时,两直线重合,故不满足条件;经检验,m =-7满足条件,故选A. (2)由已知得tan α=2,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α=sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. [答案] (1)A (2)A [方法技巧]由一般式确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0) l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件 A 1A 2+B 1B 2=0 l 1与l 2平行的充分条件 A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0) l 1与l 2相交的充分条件 A 1A 2≠B 1B 2(A 2B 2≠0) l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0)[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.[即时演练]1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由点(1,0)在所求直线上,得1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.2.若直线l 经过点P (1,2),且垂直于直线2x +y -1=0,则直线l 的方程是______________.解析:设垂直于直线2x +y -1=0的直线l 的方程为x -2y +c =0, ∵直线l 经过点P (1,2), ∴1-4+c =0,解得c =3, ∴直线l 的方程是x -2y +3=0. 答案:x -2y +3=0距离问题[典例] (1)过直线x -3y +1=0与 3x +y -3=0的交点,且与原点的距离等于1的直线有( )A .0条B .1条C .2条D .3条(2)直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.[解析] (1)解方程组⎩⎨⎧x -3y +1=0,3x +y -3=0,得⎩⎪⎨⎪⎧x =12,y =32.由于⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1,则所求直线只有1条.[答案] B(2)当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.∵直线l 过点P (2,-5),∴设直线l 的方程为y +5=k (x -2).即kx -y -2k -5=0.∴点A (3,-2)到直线l 的距离d 1=|3k --2-2k -5|k 2+1=|k -3|k 2+1,点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1.∵d 1∶d 2=1∶2, ∴|k -3||3k +11|=12,∴k 2+18k +17=0,∴k 1=-1,k 2=-17. ∴所求直线方程为x +y +3=0和17x +y -29=0. [方法技巧]求解距离问题的注意点解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.[即时演练]1.已知点A (a,2)到直线l :x -y +3=0距离为2,则a 等于( ) A .1 B .±1 C .-3D .1或-3解析:选D ∵点A (a,2)到直线l :x -y +3=0距离为2, ∴|a -2+3|2=2, ∴a +1=±2. 解得a =1或-3.2.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为__________.解析:当直线l 的斜率存在时, 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 答案:x =-1或x +3y -5=0对称问题对称问题是高考常考内容之一,也是考查转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用. 1.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意a =2,P (0,5),设A (x,2x ),B (-2y ,y ),由⎩⎪⎨⎪⎧x -2y =0,2x +y =10,得A (4,8),B (-4,2),所以|AB |=4+42+8-22=10.[方法技巧]点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .角度二:点关于线的对称问题2.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( )A.345B.365C.283D.323解析:选A 由题意可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x-3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345[方法技巧]解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.角度三:线关于线对称问题3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (2)直线l 关于点A (-1,-2)对称的直线l ′的方程.解:(1)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(2)在直线l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上.易得M ′(-3,-5),N ′(-6,-7),再由两点式可得l ′的方程为2x -3y -9=0.[方法技巧]若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.角度四:对称问题的应用4.已知有条光线从点A (-2,1)出发射向x 轴上的B 点,经过x 轴反射后射向y 轴上的C 点,再经过y 轴反射后到达点D (-2,7).(1)求直线BC 的方程;(2)求光线从A 点到达D 点所经过的路程.解:作出草图,如图所示, (1)∵A (-2,1),∴点A 关于x 轴的对称点A ′(-2,-1), ∵D (-2,7),∴点D 关于y 轴的对称点D ′(2,7).由对称性可得,A ′,D ′所在直线方程即为BC 所在直线方程,由两点式得直线BC 的方程为y -7-1-7=x -2-2-2,整理得2x -y +3=0.(2)由图可得,光线从A 点到达D 点所经过的路程即为 |A ′D ′|=-2-22+-1-72=4 5.[方法技巧]解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.1.(2013·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1)解析:选C 法一:如图所示,作出抛物线的准线l 1及点A ,B 到准线的垂线段AA 1,BB 1,并设直线l 交准线于点M .设|BF |=m ,由抛物线的定义可知|BB 1|=m ,|AA 1|=|AF |=3m .由BB 1∥AA 1可知|BB 1||AA 1|=|MB ||MA |,即m 3m =|MB ||MB |+4m ,所以|MB |=2m ,则|MA |=6m .故∠AMA 1=30°,得∠AFx =∠MAA 1=60°,结合选项知选C 项.法二:由|AF |=3|BF |可知AF ―→=3FB ―→,易知F (1,0),设B (x 0,y 0),则⎩⎪⎨⎪⎧1-x A =3x 0-1,-y A =3y 0,从而可解得A 的坐标为(4-3x 0,-3y 0).因为点A ,B 都在抛物线上,所以⎩⎪⎨⎪⎧y 20=4x 0,-3y 02=44-3x 0,解得x 0=13,y 0=±23,所以k l =y 0-0x 0-1=± 3. 2.(2013·全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝⎛⎦⎥⎤1-22,13D.⎣⎢⎡⎭⎪⎫13,12 解析:选B 由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故选B.一、选择题1.如果AB >0,BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 由AB >0,BC <0,可得直线Ax +By +C =0的斜率为-AB<0,直线在y 轴上的截距-C B>0, 故直线不经过第三象限.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析:选B 直线x sin α+y +2=0的斜率为k =-sin α,∵-1≤sin α≤1, ∴-1≤k ≤1,∴直线倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.3.已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则|PM |的最小值为( ) A.12 B .1 C .2D .3解析:选B |PM |的最小值即点P (3,-1)到直线x +3y =2的距离,又|3-3-2|1+3=1,故|PM |的最小值为1.4.(2018·郑州质量预测)“a =1”是“直线ax +y +1=0与直线(a +2)x -3y -2=0垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B ∵ax +y +1=0与(a +2)x -3y -2=0垂直, ∴a (a +2)-3=0,解得a =1或a =-3. ∴“a =1”是两直线垂直的充分不必要条件.5.已知点A (1,-2),B (m,2),若线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值为( )A .-2B .-7C .3D .1解析:选C ∵A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,∴1+m2+2×0-2=0, ∴m =3.6.已知直线l 过点P (1,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,则当△AOB 的面积取得最小值时,直线l 的方程为( )A .2x +y -4=0B .x -2y +3=0C .x +y -3=0D .x -y +1=0解析:选A 由题可知,直线l 的斜率k 存在,且k <0,则直线l 的方程为y -2=k (x -1).∴A ⎝⎛⎭⎪⎫1-2k,0,B (0,2-k ), ∴S △OAB =12⎝ ⎛⎭⎪⎫1-2k (2-k )=12⎝ ⎛⎭⎪⎫4-k +4-k ≥12⎣⎢⎡⎦⎥⎤4+2-k ×⎝⎛⎭⎪⎫4-k =4,当且仅当k =-2时取等号.∴直线l 的方程为y -2=-2(x -1),即2x +y -4=0.7.(2018·豫南九校质量考评)若直线x +ay -2=0与以A (3,1),B (1,2)为端点的线段没有公共点,则实数a 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(1,+∞) C.⎝⎛⎭⎪⎫-1,12 D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析:选D 直线x +ay -2=0过定点C (2,0),直线CB 的斜率k CB =-2,直线CA 的斜率k CA =1,所以由题意可得a ≠0且-2<-1a <1,解得a <-1或a >12.8.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点,所以Ax 0+By 0+C =k ,k ≠0. 若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,且k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P ,故选D. 二、填空题9.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79.答案:-13或-7910.与直线2x +3y +5=0平行,且在两坐标轴上截距的和为6的直线方程是________________.解析:由平行关系设所求直线方程为2x +3y +c =0, 令x =0,可得y =-c 3;令y =0,可得x =-c2,∴-c 2-c 3=6,解得c =-365,∴所求直线方程为2x +3y -365=0,化为一般式可得10x +15y -36=0. 答案:10x +15y -36=011.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析:直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案:3212.在平面直角坐标系中,已知点P (-2,2),对于任意不全为零的实数a ,b ,直线l :a (x -1)+b (y +2)=0,若点P 到直线l 的距离为d ,则d 的取值范围是____________.解析:由题意,直线过定点Q (1,-2),PQ ⊥l 时,d 取得最大值1+22+-2-22=5,直线l 过点P 时,d 取得最小值0, 所以d 的取值范围[0,5]. 答案:[0,5] 三、解答题13.已知方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R). (1)求方程表示一条直线的条件;(2)当m 为何值时,方程表示的直线与x 轴垂直;(3)若方程表示的直线在两坐标轴上的截距相等,求实数m 的值.解:(1)由⎩⎪⎨⎪⎧m 2-2m -3=0,2m 2+m -1=0,解得m =-1,∵方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R)表示直线, ∴m 2-2m -3,2m 2+m -1不同时为0,∴m ≠-1. 故方程表示一条直线的条件为m ≠-1. (2)∵方程表示的直线与x 轴垂直,∴⎩⎪⎨⎪⎧m 2-2m -3≠0,2m 2+m -1=0,解得m =12.(3)当5-2m =0,即m =52时,直线过原点,在两坐标轴上的截距均为0;当m ≠52时,由2m -5m 2-2m -3=2m -52m 2+m -1,解得m =-2.故实数m 的值为52或-2.14.已知直线m :2x -y -3=0与直线n :x +y -3=0的交点为P .(1)若直线l 过点P ,且点A (1,3)和点B (3,2)到直线l 的距离相等,求直线l 的方程; (2)若直线l 1过点P 且与x 轴、y 轴的正半轴分别交于A ,B 两点,△ABO 的面积为4,求直线l 1的方程.解:(1)由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得⎩⎪⎨⎪⎧x =2,y =1,即交点P (2,1).由直线l 与A ,B 的距离相等可知,l ∥AB 或l 过AB 的中点. ①由l ∥AB ,得k l =k AB =2-33-1=-12,所以直线l 的方程为y -1=-12(x -2),即x +2y -4=0,②由l 过AB 的中点得l 的方程为x =2, 故x +2y -4=0或x =2为所求.(2)法一:由题可知,直线l 1的斜率k 存在,且k <0. 则直线l 1的方程为y =k (x -2)+1=kx -2k +1. 令x =0,得y =1-2k >0, 令y =0,得x =2k -1k>0,∴S △ABO =12×(1-2k )×2k -1k =4,解得k =-12,故直线l 1的方程为y =-12x +2,即x +2y -4=0.法二:由题可知,直线l 1的横、纵截距a ,b 存在,且a >0,b >0,则l 1:x a +yb=1. 又l 1过点(2,1),△ABO 的面积为4, ∴⎩⎪⎨⎪⎧2a +1b =1,12ab =4,解得⎩⎪⎨⎪⎧a =4,b =2,故直线l 1的方程为x 4+y2=1,即x +2y -4=0.1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△PAB 的面积最大值是( )A .2 5B .5 C.52D. 5解析:选C 由题意可知,动直线x +my =0过定点A (0,0). 动直线mx -y -m +3=0⇒m (x -1)+3-y =0, 因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m,m ,则-1m·m =-1,因此两条直线相互垂直.当|PA |=|PB |时,△PAB 的面积取得最大值. 由2|PA |=|AB |=12+32=10, 解得|PA |= 5. ∴S △PAB =12|PA |2=52.综上可得,△PAB 的面积最大值是52.2.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,即(4,-2).∴直线BC 所在方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4).3.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又∵k BD =5--11-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,即M (2,4).答案:(2,4) 高考研究课(二)圆的方程命题3角度——求方程、算最值、定轨迹 [全国卷5年命题分析]考点 考查频度 考查角度圆的方程 5年4考 求圆的方程及先求圆的方程再考查应用与圆有关的最值问题 5年1考 求范围 与圆有关的轨迹问题未考查圆的方程圆的方程的求法,应根据条件选用合适的圆的方程,一般来说,求圆的方程有两种方法: 1几何法,通过研究圆的性质进而求出圆的基本量. 2代数法,即设出圆的方程,用待定系数法求解.[典例] 求经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程. [解] 法一:用“几何法”解题由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=5-22+2-12=10.∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:用“代数法”解题设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,5-a 2+2-b 2=r 2,3-a 2+-2-b 2=r 2,解得⎩⎨⎧a=2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10. 法三:用“代数法”解题设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0. [方法技巧]求圆的方程的方法(1)方程选择原则若条件中圆心坐标明确时,常设为圆的标准方程,不明确时,常设为一般方程. (2)求圆的方程的方法和步骤确定圆的方程的主要方法是代数法,大致步骤如下:①根据题意,选择标准方程或一般方程;②根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; ③解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. [即时演练]根据下列条件,求圆的方程.(1)已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2. 由题意可得⎩⎪⎨⎪⎧-62-6E +F =0,12+-52+D -5E +F =0,D -E -2=0,解得⎩⎪⎨⎪⎧D =6,E =4,F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0. 法二:因为A (0,-6),B (1,-5), 所以线段AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫12,-112,直线AB 的斜率k AB =-5--61-0=1,因此线段AB 的垂直平分线的方程是y +112=-⎝⎛⎭⎪⎫x -12,即x +y +5=0.则圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3,y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=0+32+-6+22=5,所以圆的方程为(x +3)2+(y +2)2=25.(2)法一:如图,设圆心坐标为(x 0,-4x 0),依题意得-2--4x 03-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =1-32+-4+22=22,故圆的方程为(x -1)2+(y +4)2=8.法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,3-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.与圆有关的最值问题与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想. 常见的命题角度有: (1)斜率型最值问题; (2)截距型最值问题; (3)距离型最值问题; (4)距离和(差)的最值问题; (5)三角形的面积的最值问题. 1.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y x的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3, 解得k =± 3.所以y x的最大值为3,最小值为- 3.角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值为( ) A .6 B .25 C .26D .36解析:选D (x -5)2+(y +4)2表示点P (x ,y )到点(5,-4)的距离的平方,又点(5,-4)到圆心(2,0)的距离d =5-22+-42=5,则点P (x ,y )到点(5,-4)的距离最大值为6,从而(x -5)2+(y +4)2的最大值为36. 角度四:距离和(差)的最值问题4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:选A 圆心C 1(2,3),C 2(3,4),作C 1关于x 轴的对称点C 1′(2,-3),连接C 1′C 2与x 轴交于点P ,此时|PM |+|PN |取得最小值,为|C 1′C 2|-1-3=52-4.角度五:三角形的面积的最值问题5.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )。
第4节 直线与圆、圆与圆的位置关系考试要求 1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.初步了解用代数方法处理几何问题的思想.1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎨⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r2.圆与圆的位置关系设两圆的半径分别为R ,r (R >r ),两圆圆心间的距离为d ,则两圆的位置关系可用下表表示: 位置关系 外离外切相交内切内含图形量的关系d >R +rd =R +rR -r <d <R +rd =R -rd <R -r公切线条数432101.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x +y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出x M+x N和x M·x N,则|MN|=1+k2·(x M+x N)2-4x M·x N.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)若直线平分圆的周长,则直线一定过圆心.()答案(1)×(2)×(3)×(4)√解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.(2021·绍兴一模)设m∈R,则“1≤m≤2”是“直线l:x+y-m=0和圆C:x2+y 2-2x -4y +m +2=0有公共点”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 圆C :(x -1)2+(y -2)2=3-m ,圆心为(1,2),半径r =3-m (m <3).若直线l 与圆C 有公共点,则圆心(1,2)到直线l 的距离d =|3-m |2≤3-m ,解得1≤m <3. 因为{m |1≤m ≤2}{m |1≤m <3},所以“1≤m ≤2”是“直线l :x +y -m =0和圆C :x 2+y 2-2x -4y +m +2=0有公共点”的充分不必要条件.3.(2022·全国百校联盟质检)已知直线l :x -2y +6=0与圆C :x 2+y 2-4y =0相交于A ,B 两点,则CA →·CB →=( ) A.165 B.-165 C.125 D.-125 答案 D解析 由圆的一般方程x 2+y 2-4y =0得标准方程为x 2+(y -2)2=4,故可得圆心C (0,2),半径r =2, 联立得⎩⎪⎨⎪⎧x -2y +6=0,x 2+y 2-4y =0,解得⎩⎪⎨⎪⎧x =-2,y =2或⎩⎪⎨⎪⎧x =65,y =185.不妨设A (-2,2),B ⎝ ⎛⎭⎪⎫65,185,则CA →=(-2,0),CB →=⎝ ⎛⎭⎪⎫65,85,所以CA →·CB →=-2×65+0×85=-125.4.(2021·洛阳模拟)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆方程作差得公共弦所在直线方程为a 2+ay -6=0,原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a -a .∵公共弦长为23, ∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a -a 2,∴a 2=4,a =±2.5.(易错题)若半径为r ,圆心为(0,1)的圆和定圆(x -1)2+(y -2)2=1相切,则r 的值等于________. 答案2+1或2-1解析 由题意,定圆(x -1)2+(y -2)2=1的圆心为A (1,2),半径R =1,半径为r 的圆的圆心为B (0,1), 所以|AB |=(1-0)2+(2-1)2= 2.因为两圆相切,所以|AB |=|R -r |或|AB |=|R +r |, 即|1-r |=2或 |1+r |=2, 解得r =1±2或r =-1±2. 因为r >0,所以r=2+1或r=2-1.6.(易错题)过点A(3,5)作圆O:x2+y2-2x-4y+1=0的切线,则切线的方程为________________.答案5x-12y+45=0或x-3=0解析化圆x2+y2-2x-4y+1=0为标准方程得(x-1)2+(y-2)2=4,其圆心为(1,2),半径为2.∵|OA|=(3-1)2+(5-2)2=13>2,∴点A(3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x-3=0.当切线斜率存在时,可设所求切线方程为y-5=k(x-3),即kx-y+5-3k=0.又圆心为(1,2),半径r=2,而圆心到切线的距离d=|3-2k|k2+1=2,即|3-2k|=2k2+1,∴k=512,故所求切线方程为5x-12y+45=0或x-3=0.考点一直线与圆的位置关系1.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞)答案 C解析由题意可得,圆的圆心为(a,0),半径为2,∴|a-0+1|12+(-1)2≤2,即|a+1|≤2,解得-3≤a ≤1.2.(2022·成都诊断)直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交 B.相切 C.相离D.不确定答案 A解析 法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0,因为Δ=16m 2+20>0,所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1), 把点(1,1)代入圆的方程有1+0<5, ∴点(1,1)在圆的内部,故直线l 与圆C 相交.3.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.感悟提升判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆的弦长问题例1 (1)(2022·河南名校联考)已知圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆C与直线x-y-4=0相交所得弦长为()A.1B. 2C.2D.2 2(2)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4答案(1)D(2)B解析(1)根据题意,圆C:(x-a)2+y2=4的半径r=2.圆C:(x-a)2+y2=4(a≥2)与直线x-y+22-2=0相切,则圆心C到直线x-y+22-2=0的距离为2,即|a+22-2|2=2,解得a=2或a=2-42(舍去),所以圆C的方程为(x-2)2+y2=4,则圆心C(2,0)到直线x-y-4=0的距离d=|2-4|2=2,所以圆C与直线x-y-4=0相交所得弦长为222-d2=2 2.(2)圆的方程可化为(x-3)2+y2=9,故圆心的坐标为C(3,0),半径r=3.如图,记点M(1,2),则当MC与直线垂直时,直线被圆截得的弦的长度最小,此时|MC |=22, 弦的长度l =2r 2-|MC |2=29-8=2.感悟提升 弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长. (2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.训练1 (2022·南昌摸底测试)若直线x +ay -a -1=0与圆C :(x -2)2+y 2=4交于A ,B 两点,当|AB |最小时,劣弧AB 的长为( ) A.π2 B.πC.2πD.3π答案 B解析 圆C :(x -2)2+y 2=4的圆心为C (2,0),半径r =2.直线的方程可化为x -1+a (y -1)=0,可知直线恒过点D (1,1). 因为点D (1,1)的坐标满足(1-2)2+12<4, 所以点D (1,1)恒在圆C 内,且|CD |=2,易知,当CD ⊥AB 时,|AB |取得最小值,且最小值为2r 2-|CD |2=2 2.此时,劣弧AB 对应的圆心角为π2,所以劣弧AB 对应的弧长为π2×2=π. 考点三 圆的切线问题例2 (经典母题)过点P (2,4)引圆C :(x -1)2+(y -1)2=1的切线,则切线方程为________________.答案 x =2或4x -3y +4=0解析 当直线的斜率不存在时,直线方程为x =2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y +4-2k =0.∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k -1+4-2k |k 2+(-1)2=|3-k |k 2+1=1,解得k =43,∴所求切线方程为43x -y +4-2×43=0, 即4x -3y +4=0.综上,切线方程为x =2或4x -3y +4=0.迁移1 在例2中,若点P 坐标变为⎝ ⎛⎭⎪⎫22+1,22+1,其他条件不变,求切线方程.解 易知点P ⎝ ⎛⎭⎪⎫22+1,22+1在圆C :(x -1)2+(y -1)2=1上,则k PC =22+1-122+1-1=1,∴所求切线方程的斜率为-1,则切线方程为y -⎝ ⎛⎭⎪⎫22+1=-⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫22+1,即x +y -2-2=0.迁移2 在例2中,已知条件不变,设两个切点为A ,B ,求切点弦AB 所在的直线方程.解 由题意得,点P ,A ,C ,B 在以PC 为直径的圆上,此圆的方程为(x -2)(x -1)+(y -4)(y -1)=0,整理得x 2+y 2-3x -5y +6=0.①圆C :(x -1)2+(y -1)2=1展开得x 2+y 2-2x -2y +1=0,② 由②-①得x +3y -5=0,即为直线AB 的方程.感悟提升 求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.训练2 (1)过直线y =2x +3上的点作圆C :x 2+y 2-4x +6y +12=0的切线,则切线长的最小值为( )A.19B.2 5C.21D.555(2)(2021·晋中模拟)过点P (2,3)作圆C :x 2+y 2-2x =0的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 (1)A (2)32解析 (1)圆的方程可化为(x -2)2+(y +3)2=1,要使切线长最小,只需直线y =2x +3上的点和圆心之间的距离最短,此最小值即为圆心(2,-3)到直线y =2x +3的距离d ,d =|2×2+3+3|5=25,故切线长的最小值为d 2-r 2=19.(2)由x 2+y 2-2x =0得(x -1)2+y 2=1,所以圆心C (1,0),半径为1,所以|PC |=2,|P A |=|PB |=3,∠APB =60°, 所以P A →·PB →=|P A →||PB →|cos 60°=32. 考点四 圆与圆的位置关系例3 已知两圆x 2+y 2-2x -6y -1=0,x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)当m =45时,求两圆的公共弦所在直线的方程和公共弦的长. 解 因为两圆的标准方程分别为 (x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m ,(1)当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2)当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m -11=5,解得m=25-1011.(3)由(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,得两圆的公共弦所在直线的方程为4x+3y-23=0,故两圆的公共弦的长为2(11)2-(|4×1+3×3-23|42+32)2=27.感悟提升 1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.训练3 (1)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2022·东北三省三校联考)圆x2-4x+y2=0与圆x2+y2+4x+3=0的公切线共有()A.1条B.2条C.3条D.4条答案(1)B(2)D解析(1)由题意得圆M的标准方程为x2+(y-a)2=a2,圆心(0,a)到直线x+y=0的距离d=a2,所以2a2-a22=22,解得a=2.圆M,圆N的圆心距|MN|=2小于两圆半径之和1+2,大于两圆半径之差1,故两圆相交.(2)x2-4x+y2=0⇒(x-2)2+y2=22,圆心坐标为(2,0),半径为2;x2+y2+4x+3=0⇒(x+2)2+y2=12,圆心坐标为(-2,0),半径为1,圆心距为4,两圆半径和为3.因为4>3,所以两圆的位置关系是外离,故两圆的公切线共有4条.阿波罗尼斯圆公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆.如图,点A ,B 为两定点,动点P 满足|P A |=λ|PB |.则λ=1时,动点P 的轨迹为直线;当λ>0且λ≠1时,动点P 的轨迹为圆,后世称之为阿波罗尼斯圆.证明:设|AB |=2m (m >0),|P A |=λ|PB |,以AB 的中点为原点,直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系(图略),则A (-m ,0),B (m ,0).又设P (x ,y ),则由|P A |=λ|PB |得(x +m )2+y 2=λ(x -m )2+y 2, 两边平方并化简整理得(λ2-1)x 2-2m (λ2+1)x +(λ2-1)y 2=m 2(1-λ2).当λ=1时,x =0,轨迹为线段AB 的垂直平分线;当λ>0且λ≠1时,⎝ ⎛⎭⎪⎪⎫x -λ2+1λ2-1m 2+y 2=4λ2m 2(λ2-1)2,轨迹为以点⎝ ⎛⎭⎪⎪⎫λ2+1λ2-1m ,0为圆心,⎪⎪⎪⎪⎪⎪2λm λ2-1为半径的圆. 例1 如图所示,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =x -1,y =2x -4,得圆心为C (3,2). 由题意知切线的斜率存在,设切线方程为y =kx +3,圆心C 到切线的距离d =|3k +3-2|1+k2=r =1,得k =0或k =-34. 故所求切线方程为y =3或3x +4y -12=0.(2)设点M (x ,y ),由|MA |=2|MO |, 知x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4,即点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 也在圆C 上,故圆C 与圆D 的关系为相交或相切,故1≤|CD |≤3,其中|CD |=a 2+(2a -3)2, 解得0≤a ≤125. 即圆心C 的横坐标a 的取值范围是⎣⎢⎡⎦⎥⎤0,125. 例2 在平面直角坐标系xOy 中,设点A (1,0),B (3,0),C (0,a ),D (0,a +2),若存在点P ,使得|P A |=2|PB |,|PC |=|PD |,则实数a 的取值范围是________. 答案 [-22-1,22-1]解析设P(x,y),则(x-1)2+y2=2·(x-3)2+y2,整理得(x-5)2+y2=(22)2,即动点P在以(5,0)为圆心,22为半径的圆上运动. 另一方面,由|PC|=|PD|知动点P在线段CD的垂直平分线y=a+1上运动,因而问题就转化为直线y=a+1与圆(x-5)2+y2=(22)2有交点.所以|a+1|≤2 2.故实数a的取值范围是[-22-1,22-1].1.(2022·兰州质检)“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若直线l与圆相切,则有|2k|k2+1=1,解得k=±33,所以“k=33”是“直线l:y=k(x+2)与圆x2+y2=1相切”的充分不必要条件.2.(2021·福州调研)已知圆x2+y2+2x-2y+a=0截直线x+y+2=0所得的弦的长度为4,则实数a的值是()A.-2B.-4C.-6D.-8答案 B解析将圆的方程化为标准方程为(x+1)2+(y-1)2=2-a,所以圆心为(-1,1),半径r=2-a,圆心到直线x+y+2=0的距离d=|-1+1+2|2=2,故r2-d2=4,即2-a-2=4,所以a=-4.3.圆x2+2x+y2+4y-3=0上到直线x+y+1=0的距离为2的点共有()A.1个B.2个C.3个D.4个答案 C解析圆的方程可化为(x+1)2+(y+2)2=8,圆心(-1,-2)到直线的距离d=|-1-2+1|=2,半径是22,结合图形(图略)可知有3个符合条件的点.24.(2021·南昌模拟)已知圆O:(x-1)2+(y-1)2=1,则下列选项所对应的图形中,与圆O相切的是()A.x2+y2=1B.(x-4)2+(y-5)2=16C.x+y=1D.x-y=2答案 B解析圆O:(x-1)2+(y-1)2=1的圆心坐标为(1,1),半径r=1.对于选项A,x2+y2=1表示的是圆心坐标为(0,0),半径r1=1的圆,此圆与圆O的圆心距为12+12=2<r+r1=2,所以两圆不相切,不符合题意.对于选项B,(x-4)2+(y-5)2=16表示的是圆心坐标为(4,5),半径r2=4的圆,此圆与圆O的圆心距为(4-1)2+(5-1)2=5=r+r2=5,所以两圆相切.对于选项C,圆心(1,1)到直线x+y=1的距离为22<1,故直线x+y=1与圆O 相交.对于选项D,圆心(1,1)到直线x-y=2的距离为2>1,故直线x-y=2与圆O 相离.5.过点P(1,-2)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则AB 所在直线的方程为()A.y=-34 B.y=-12C.y=-32 D.y=-14答案 B解析由题意知,点P,A,C,B在以PC为直径的圆上,易求得这个圆为(x-1)2+(y+1)2=1,此圆的方程与圆C的方程作差可得AB所在直线的方程为y=-12.6.(2022·宜宾诊断)已知直线l:y=3x+m与圆C:x2+(y-3)2=6相交于A,B 两点,若∠ACB=120°,则实数m的值为()A.3+6或3- 6B.3+26或3-2 6C.9或-3D.8或-2答案 A解析由题意知圆心C(0,3)到直线l的距离d=|0-3+m|3+1=|m-3|2.因为∠ACB=120°,所以|m-3|2×2=6,解得m=3±6.7.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2 5解析根据题意画出图形,可知A(-2,-1),C(0,m),B(0,3),则|AB|=(-2-0)2+(-1-3)2=25,|AC|=(-2-0)2+(-1-m)2=4+(m+1)2,|BC |=|m -3|.∵直线2x -y +3=0与圆C 相切于点A ,∴∠BAC =90°,∴|AB |2+|AC |2=|BC |2.即20+4+(m +1)2=(m -3)2,解得m =-2.因此r =|AC |=4+(-2+1)2= 5.8.(2021·长春模拟)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则实数k 的取值范围是________.答案 ⎝⎛⎭⎪⎫-233,233 解析 因为C :x 2+y 2+kx +2y +k 2=0为圆, 所以k 2+4-4k 2>0,解得-233<k <233.又过点P 作圆C 的切线有两条,所以点P 在圆的外部,故1+4+k +4+k 2>0,解得k ∈R ,综上可知-233<k <233.故k 的取值范围是⎝⎛⎭⎪⎫-233,233. 9.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为______.答案 10 2解析 圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,圆心(1,3)与E (0,1)距离(1-0)2+(3-1)2=5.由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.10.已知圆M :x 2+y 2-2ax +10ay -24=0,圆N :x 2+y 2+2x +2y -8=0,且圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上.(1)求圆M 的方程;(2)证明圆M 和圆N 相交,并求两圆公共弦的长度l .(1)解 圆M :x 2+y 2-2ax +10ay -24=0的圆心为M (a ,-5a ),∵圆M 上任意一点关于直线x +y +4=0的对称点都在圆M 上,∴直线x +y +4=0经过M ,则a -5a +4=0,解得a =1.∴圆M 的方程为x 2+y 2-2x +10y -24=0.(2)证明 ∵圆M 的圆心M (1,-5),半径r 1=52,圆N 的圆心N (-1,-1),半径r 2=10,∴|MN |=(1+1)2+(-5+1)2=2 5.∵52-10<25<52+10,∴圆M 和圆N 相交.由圆M ,圆N 的方程左右两边分别相减,得x -2y +4=0,∴两圆公共弦的直线方程为x -2y +4=0.∵M 到直线x -2y +4=0的距离d =|1+10+4|5=35, ∴公共弦长度l =2h 2-d 2=2 5.11.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由;②若OM →·ON →=12(O 为坐标原点),求直线l 的方程.解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2,依题意,得⎩⎪⎨⎪⎧(2-a )2+(4-b )2=r 2,(1-a )2+(3-b )2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1.(2)①AM →·AN →为定值,理由如下:过点A (0,1)作直线AT 与圆C 相切,切点为T ,易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos 0°=|AT |2=7.根据圆的弦切角定理及相似三角形,∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2, ∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8=12,即4k (1+k )1+k 2=4,解得k =1.又当k =1时,Δ>0,∴k =1,∴直线l 的方程为y =x +1.12.(2022·宝鸡模拟)过点P (x ,y )作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -2)2=1的切线,切点分别为A ,B ,若|P A |=|PB |,则x 2+y 2的最小值为( )A. 2B.2C.2 2D.8 答案 B解析 由(x 2+y 2-1)-(x 2+y 2-4x -4y +7)=0得x +y -2=0,则P 点在直线l :x +y -2=0上,原点到直线l 的距离d =2,所以(x 2+y 2)min =d 2=2.13.(2022·南阳联考)阿波罗尼斯(约公元前262~公元前190年)证明过这样一个命题:平面内到两定点距离之比为常数k (k >0,且k ≠1)的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A ,B 间的距离为4,动点P 满足|P A ||PB |=3,则动点P 的轨迹所围成的图形的面积为________;P A →·PB →的最大值是________. 答案 12π 24+16 3解析 以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系, 则A (-2,0),B (2,0).设P (x ,y ),∵|P A ||PB |=3,∴(x +2)2+y 2(x -2)2+y 2=3,得x 2+y 2-8x +4=0,即(x -4)2+y 2=12,所以点P 的轨迹为圆,其面积为12π.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=|OP |2-4,如图,当P 位于点D 时,|OP |2最大,|OP |2的最大值为(4+23)2=28+163, 故P A →·PB →的最大值是24+16 3.14.(2021·北京海淀区模拟)已知A (2,0),直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,且P 为圆C 上任意一点.(1)求|P A |的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径. 解 (1)∵直线4x +3y +1=0被圆C :(x +3)2+(y -m )2=13(m <3)所截得的弦长为43,∴圆心到直线的距离d =|-12+3m +1|5=(13)2-(23)2=1.∵m <3,∴m =2,∴|AC |=(-3-2)2+(2-0)2=29, ∴|P A |的最大值与最小值分别为29+13,29-13.(2)由(1)可得圆C 的方程为(x +3)2+(y -2)2=13,令x =0,得y =0或4; 令y =0,得x =0或-6,∴圆C 与坐标轴相交于三点M (0,4),O (0,0),N (-6,0),∴△MON为直角三角形,斜边|MN|=213,∴△MON内切圆的半径为4+6-2132=5-13.。
高考达标检测(三十五) 圆的方程命题3角度——求方程、算最值、定轨迹一、选择题1.原点位于圆x 2+y 2-2ax -2y +(a -1)2=0(a >1)的( ) A .圆内 B .圆上 C .圆外D .均有可能解析:选C 把原点坐标代入圆的方程得(a -1)2>0(a >1),所以点在圆外,故选C. 2.已知圆C 与直线y =x 及x -y -4=0都相切,圆心在直线y =-x 上,则圆C 的方程为( )A .(x +1)2+(y -1)2=2 B .(x +1)2+(y +1)2=2 C .(x -1)2+(y -1)2=2D .(x -1)2+(y +1)2=2解析:选D 由题意知x -y =0 和x -y -4=0之间的距离为|4|2=22,所以r = 2.又因为y =-x 与x -y =0,x -y -4=0均垂直, 所以由y =-x 和x -y =0联立得交点坐标为(0,0), 由y =-x 和x -y -4=0联立得交点坐标为(2,-2), 所以圆心坐标为(1,-1),所以圆C 的标准方程为(x -1)2+(y +1)2=2.3.(2018·广州测试)圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为( ) A .(x -2)2+(y -1)2=1 B .(x +1)2+(y -2)2=1 C .(x +2)2+(y -1)2=1D .(x -1)2+(y +2)2=1解析:选A ∵圆心(1,2)关于直线y =x 对称的点为(2,1),∴圆(x -1)2+(y -2)2=1关于直线y =x 对称的圆的方程为(x -2)2+(y -1)2=1. 4.一束光线从点(-1,1)出发,经x 轴反射到圆C :(x -2)2+(y -3)2=1上的最短路径长度是( )A .4B .5C .3D .2解析:选A 由题意可得圆心C (2,3),半径为r =1, 点A 关于x 轴的对称点为A ′(-1,-1),求得|A ′C |=5, 故要求的最短路径的长为 |A ′C |-r =5-1=4.5.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 因为圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线3x +4y -2=0的距离d =|-3-4-2|5=95,所以点N 到点M 的距离|MN |的最小值为95-1=45.6.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是( )A .(4,6)B .[4,6]C .[4,6)D .(4,6]解析:选A 易求圆心(3,-5)到直线4x -3y =2的距离为5. 令 r =4,可知圆上只有一点到已知直线的距离为1; 令r =6,可知圆上有三点到已知直线的距离为1, 所以半径r 取值范围在(4,6)之间符合题意.7.已知圆C 关于x 轴对称,经过点(0,1),且被y 轴分成两段弧,弧长之比为2∶1,则圆的方程为( )A .x 2+⎝ ⎛⎭⎪⎫y ±332=43 B .x 2+⎝⎛⎭⎪⎫y ±332=13C.⎝ ⎛⎭⎪⎫x ±332+y 2=43 D.⎝⎛⎭⎪⎫x ±332+y 2=13 解析:选C 设圆的方程为(x ±a )2+y 2=r 2(a >0),圆C 与y 轴交于点A (0,1),B (0,-1),由弧长之比为2∶1,易知∠OCA =12∠ACB =12×120°=60°,则tan 60°=|OA ||OC |=1|OC |=3,所以a =|OC |=33,即圆心坐标为⎝ ⎛⎭⎪⎫±33,0,r 2=|AC |2=12+⎝ ⎛⎭⎪⎫±332=43.所以圆的方程为⎝⎛⎭⎪⎫x ±332+y 2=43.8.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0).若圆C 上存在点P ,使得 ∠APB =90°,则 m 的最大值为( )A .7B .6C .5D .4解析:选B 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C上的点P 到原点O 的最大距离.因为|OC |= 32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.二、填空题9.在平面直角坐标系内,若圆C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第四象限内,则实数a 的取值范围为____________.解析:圆C 的标准方程为(x +a )2+(y -2a )2=4, 所以圆心为(-a,2a ),半径r =2,故由题意知⎩⎪⎨⎪⎧a <0,|-a |>2,|2a |>2,解得a <-2,故实数a 的取值范围为(-∞,-2). 答案:(-∞,-2)10.当方程x 2+y 2+kx +2y +k 2=0所表示的圆的面积取最大值时,直线y =(k -1)x +2的倾斜角α=________.解析:由题意知,圆的半径r =12 k 2+4-4k 2=12 4-3k 2≤1,当半径r 取最大值时,圆的面积最大,此时k =0,r =1, 所以直线方程为y =-x +2,则有tan α=-1, 又α∈[0,π),故α=3π4.答案:3π411.已知圆C :x 2+y 2+2x -4y +1=0的圆心在直线ax -by +1=0上,则ab 的取值范围是__________.解析:把圆的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心坐标为(-1,2), 根据题意可知,圆心在直线ax -by +1=0上,把圆心坐标代入直线方程得,-a -2b +1=0,即a =1-2b ,则ab =(1-2b )b =-2b 2+b =-2⎝ ⎛⎭⎪⎫b -142+18≤18,当b =14时,ab 有最大值18,故ab 的取值范围为⎝ ⎛⎦⎥⎤-∞,18. 答案:⎝⎛⎦⎥⎤-∞,1812.已知圆O :x 2+y 2=1,直线x -2y +5=0上的动点P ,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.解析:过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线PA ,连接OA , 易知此时|PA |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|12+-22= 5. 又|OA |=1,所以|PA |=|OP |2-|OA |2=2. 答案:2 三、解答题13.(2018·湖南六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -1,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB , 则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0⇒k x 1-1x 1-t +k x 2-1x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0 ⇒2k 2-4k 2+1-2k 2t +1k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使x 轴平分∠ANB .14.在△OAB 中,已知O (0,0),A (8,0),B (0,6),△OAB 的内切圆的方程为(x -2)2+(y -2)2=4,P 是圆上一点.(1)求点P 到直线l :4x +3y +11=0的距离的最大值和最小值; (2)若S =|PO |2+|PA |2+|PB |2,求S 的最大值和最小值.解:(1)由题意得圆心(2,2)到直线l :4x +3y +11=0的距离d =|4×2+3×2+11|42+32=255=5>2,故点P 到直线l 的距离的最大值为5+2=7,最小值为5-2=3.(2)设点P 的坐标为(x ,y ),则S =x 2+y 2+(x -8)2+y 2+x 2+(y -6)2=3(x 2+y 2-4x -4y )-4x +100=-4x +88, 而(x -2)2≤4,所以-2≤x -2≤2,即0≤x ≤4,所以-16≤-4x ≤0,所以72≤S ≤88, 即当x =0时,S max =88,当x =4时,S min =72.1.已知圆O :x 2+y 2=1,圆B :(x -3)2+(y -4)2=4,P 是平面内一动点,过点P 作圆O ,圆B 的切线,切点分别为D ,E ,若|PE |=|PD |,则点P 到坐标原点O 的距离的最小值为__________.解析:设P (x ,y ),因为|PE |=|PD |,|PD |2+|OD |2=|PO |2,|PE |2+|BE |2=|PB |2, 所以x 2+y 2-1=(x -3)2+(y -4)2-4, 整理得:3x +4y -11=0,点P 到坐标原点O 的距离的最小值就是点O 到3x +4y -11=0的距离, 所以点P 到坐标原点O 的距离的最小值为1132+42=115. 答案:1152.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ ―→·MQ ―→的最小值. 解:(1)设圆心C (a ,b ),由已知得M (-2,-2),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2,PQ ―→·MQ ―→=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以PQ ―→·MQ ―→=x +y -2=2(sin θ+cos θ)-2=2sin ⎝ ⎛⎭⎪⎫θ+π4-2, 又⎣⎢⎡⎦⎥⎤sin ⎝⎛⎭⎪⎫θ+π4min =-1,所以PQ ―→·MQ ―→的最小值为-4.。