高等数学下册期末考试试题及答案-
- 格式:pdf
- 大小:347.16 KB
- 文档页数:6
一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -=,xz F y -=,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为)!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f .(5分) 八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为)(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有x x x x e C e C xe e y --++='2212, x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.4。
高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
大一下高等数学期末试卷篇一:大一下学期高等数学期末考试试题及答案高等数学A(下册)期末考试试题【A卷】院(系)别班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a?b?0,a?2,b?2,则a?b??3z2、设z?xln(xy),则? 2?x?y3、曲面x2?y2?z?9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2?的周期函数,它在[??,?)上的表达式为f(x)?x,则f(x)的傅里叶级数在x?3处收敛于,在x??处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则?(x?y)ds?.L※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)222??2x?3y?z?91、求曲线?2在点M0(1,?1,2)处的切线及法平面方程.22??z?3x?y2、求由曲面z?2x?2y及z?6?x?y所围成的立体体积.3、判定级数2222?(?1)nlnn?1?n?1是否收敛?如果是收敛的,是绝对收敛还是条件收敛?nx?z?2z4、设z?f(xy,)?siny,其中f具有二阶连续偏导数,求.,y?x?x?y5、计算曲面积分dS2222,其中是球面被平面z?h(0?h?a)截出的顶部.x?y?z?a???z?三、(本题满分9分)抛物面z?x2?y2被平面x?y?z?1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)。
高等数学(下册)试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ202013cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。
高等数学(下册)考试试卷(一)一、填空题(每小题3 分,共计 24 分)1 、 log a ( x2 y 2 ) (a 0) 的定义域为 D= 。
z =2、二重积分ln( x 2y 2 ) dxdy 的符号为 。
|x| |y| 13、由曲线 y ln x 及直线 x y e 1, y 1 所围图形的面积用二重积分表示为,其值为。
4 、设曲线 L 的参数方程表示为 x (t ) x),则弧长元素 ds。
y ((t )5 、 设 曲 面 ∑ 为 x 2y 29 介 于 z 0 及 z3间的部分的外侧,则(x 2 y 2 1)ds。
6、微分方程dyytan y的通解为 。
dxxx7、方程 y (4 ) 4 y 0 的通解为 。
8、级数1的和为。
n 1 n(n 1)二、选择题(每小题2 分,共计 16 分)1、二元函数 z f (x, y) 在 ( x 0 , y 0 ) 处可微的充分条件是()(A ) f (x, y) 在 ( x 0 , y 0 ) 处连续;( B ) f x ( x, y) , f y ( x, y) 在 (x 0 , y 0 ) 的某邻域内存在;( C ) z f x ( x 0 , y 0 ) xf y ( x 0 , y 0 ) y 当 () 2 ( y ) 2 0 时,是无穷小;x( D ) limz f x ( x 0 , y 0 ) x f y ( x 0 , y 0 ) y0 。
x ( x)2( y)2y 02、设 u yf ( x ) xf ( y), 其中 f 具有二阶连续导数,则 x2uy2u 等于()yxx 2 y 2( A ) x y ; ( B ) x ;(C) y ;(D)0 。
3、设 : x 2 y 2 z 2 1, z 0, 则三重积分 IzdV 等于()(A )4221 3;( )21 2;ddr sin cos drddr sin dr0 0 0 B( C ) 22 d13sin cos dr ;(D )2d d13 sin cos dr 。
高数高等数学A(下册)期末考试试题一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a、b满足a b0,a2,b2,则a b.3z2、设z xln(xy),则.x y23、曲面x2y2z9在点(1,2,4)处的切平面方程为.4、设f(x)是周期为2的周期函数,它在[,)上的表达式为f(x)x,则f(x)的傅里叶级数在x3处收敛于,在x处收敛于.5、设L为连接(1,0)与(0,1)两点的直线段,则(x y)ds L※以下各题在答题纸上作答并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)2222x3y z91、求曲线2在点M0(1,1,2)处的切线及法平面方程.22z3x y2、求由曲面z2x2y及z6x y所围成的立体体积.3、判定级数2222(1)nlnn1n1是否收敛?如果是收敛的,是绝对收敛还是条件收敛? nz2zx,4、设z f(xy,)siny,其中f具有二阶连续偏导数,求.x x yy 5、计算曲面积分dS2222,x y z a其中是球面被平面z h(0h a)截出的顶部.z三、(本题满分9分)抛物面z x2y2被平面x y z1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.第 1 页共 2 页高数(本题满分10分)计算曲线积分⎰L(exsiny-m)dx+(excosy-mx)dy,其中m为常数,L为由点A(a,0)至原点O(0,0)的上半圆周x2+y2=ax(a>0).四、(本题满分10分) xn求幂级数∑n的收敛域及和函数.n=13⋅n∞五、(本题满分10分)计算曲面积分I=⎰⎰2xdydz+2ydzdx+3(z∑332-1)dxdy,其中∑为曲面z=1-x2-y2(z≥0)的上侧.六、(本题满分6分)设f(x)为连续函数,f(0)=a,F(t)=222z=Ω,其中是由曲面[z+f(x+y+z)]dvt⎰⎰⎰Ωt与z=lim+t→0F(t). t3-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交;不得带走试卷。
2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.(0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin2t在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。
解:1cos ,sin ,2cos2t x t y t z '''=-==, 在t 处切向量为{}1cos ,sin ,2cos 2t T t t =-, 已知平面的法向量为{1,1,2n =.且T ∥n ,故2cos 1cos sin 11tt t-==解得π2t=,相应点的坐标为π2⎛- ⎝.且{1T = 故切线方程为π11211x y -+-==法平面方程为π1102x y z -++--=即 π042x y ⎛⎫+-=+⎪⎝⎭.2.当Σ为xOy 面内的一个闭区域时,曲面积分()d d ,,R x y x y z ∑⎰⎰与二重积分有什么关系?解:因为Σ:z =0,在xOy 面上的投影区域就是Σ故()()d d d d ,,,,0R x y R x y x y z x y ∑∑=±⎰⎰⎰⎰当Σ取的是上侧时为正号,Σ取的是下侧时为负号.3.证明:22d d x x y yx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数.证:22x P x y =+,22yQ x y =+,显然G 是单连通的,P 和Q 在G 内具有一阶连续偏导数,并且.()2222∂∂-==∂∂+P Q xy y x x y ,(x ,y )∈G 因此22d d x x y yx y ++在开区域G 内是某个二元函数u (x ,y )的全微分.由()()22222222d d 11ln 22d x y x x y y d x y x y x y ++⎡⎤==+⎢⎥++⎣⎦知()()221ln ,2u x y x y =+.4.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ): (1)(x +2y )d x +(2x +y )d y ; (2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ; (4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y . 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y,2316∂∂=+=∂∂P Q x xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分,()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyy y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分, ()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式d de e e e d e ()e e d xx x x x x x y x c x c x c -----⎰⎡⎤⎰⎡⎤==⋅+=+⋅+⎢⎥⎣⎦⎣⎦⎰⎰ 2(2)32xy y x x '+=++;解:方程可化为 123y y x x x'+=++ 由通解公式得11d d 22e (3) e d 12(3)d 132.32x x x x y x x c x x x x c x x c x x x-⎡⎤⎰⎰=++⋅+⎢⎥⎣⎦⎡⎤=++⋅+⎢⎥⎣⎦=+++⎰⎰ sin (3)cos e ;x y y x -'+=解: cos d cos d sin sin e e ().e e d x xx x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解: 22(4)d (4)d 22e e 4e d 4e d x xx x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰ ()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-;解:方程可化为2d 12()d 2y y x x x x -=-- 11d d 222ln(2)2ln(2)3e 2(2)e d e 2(2)e d (2)2(2)d (2)(2)x x x x x x y x x c x x c x x x c x c x --------⎰⎡⎤⎰=-+⎢⎥⎣⎦⎡⎤=-+⎣⎦⎡⎤=--+⎣⎦=-+-⎰⎰⎰22(6)(1)24.x y xy x '++=解:方程可化为 2222411x x y y x x '+=++ 222222d d 1123ln(1)224e ed 14e 4d 3(1)xxx x x x x x y x c x x c x x c x -++-+⎡⎤⎰⎰=+⎢⎥+⎣⎦+⎡⎤=+=⎣⎦+⎰⎰6.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰,其中Γ为圆周x 2+y 2+z 2= a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向; (2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2= 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向; (4)22d 3d d +-⎰y x x y z z Γ,其中Γ是圆周x 2+y 2+z2= 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d dcos cos cos ddπy x z y x zR Q Q PP Rsy z x yz xssaaΓ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++-⎪⎢⎥⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰(2)记为Σ为平面32x y z++=被Γ所围成部分的上侧,可求得Σ(是一个边长为2的正六边形);Σ的单位法向量为{}cos,cos,cosαβγ==n.由斯托克斯公式()()()(((()222222d d d2222d22d3d232492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡+----=--⎢⎣=++==⋅=-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x 2+y 2+z 2=9,z =0实际就是xOy 面上的圆x 2+y 2=9,z =0,取Σ:z =0,D xy :x 2+y 2≤9由斯托克斯公式得:()()()222d 3d d d d d d d d 000032d d d d π39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyD y x x y z zy z z x x yx yx yΓ∑∑7.计算下列对面积的曲面积分: (1)4d 23s z x y ∑⎛⎫++ ⎪⎝⎭⎰⎰,其中∑为平面1234x y z ++=在第I 卦限中的部分; (2)()2d 22s xy xx z ∑--+⎰⎰,其中∑为平面2x +2y +z =6在第I 卦限中的部分;(3)()d s x y z ∑++⎰⎰,其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; (4)()d s xy yz zx ∑++⎰⎰,其中∑为锥面z =被柱面x 2+y 2=2ax 所截得的有限部分; (5)()222d s R x y ∑--⎰⎰,其中∑为上半球面z =解:(1)4:423z x y ∑=--(如图10-69所示)图10-69d d d s x y x y ==故4d 4d d d d 23331232xy xy D D s x y x y z x y ∑⎛⎫=⋅=++ ⎪⎝⎭=⨯⨯=⎰⎰⎰⎰⎰⎰(2)∑:z =6-2x -2y (如图10-70所示)。
高等数学(下)模拟试卷一一、 填空题(每空3分,共15分) (1)函数11z x y x y =++-的定义域为(2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()L x y ds +=⎰ (5)已知微分方程230y y y '''+-=,则其通解为 二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( )A. L 平行于πB. L 在π上C. L 垂直于πD. L 与π斜交 (2)设是由方程2222xyz x y z +++=确定,则在点(1,0,1)-处的dz =( )A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy -(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( )A.2253000d r dr dzπθ⎰⎰⎰ B. 24530d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.2252d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. 2(5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A . B.()x ax b xe + C.()x ax b ce ++ D.()xax b cxe ++1 2 nn nn x ∞= ∑三、计算题(每题8分,共48分) 1、求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程2、已知22(,)z f xy x y =,求zx ∂∂, z y∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin )()y Lxy x dx xe dy++-⎰, 其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程 xxy y xe '+=满足 11x y ==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò,其中∑由圆锥面z =与上半球面z =所围成的立体表面的外侧(10)'2、(1)判别级数111(1)3n n n n∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数(6')高等数学(下)模拟试卷二一.填空题(每空3分,共15分)(1)函数2224ln(1)x y z x y -=--的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ; (3)交换积分次序,ln 1(,)e xdx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则Lyds =⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( ); A. 0 B. 2πC.3πD.4π(2)设是由方程333z xyz a -=确定,则z x ∂=∂();A. 2yzxy z - B. 2yzz xy - C. 2xz xy z - D. 2xy z xy- (3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( ); A.2()x ax b e + B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( );A2220sin ad d r drππθϕϕ⎰⎰⎰B220ad d rdrππθϕ⎰⎰⎰C20ad d rdrππθϕ⎰⎰⎰D.220sin a d d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D.三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰.8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)xx Ley y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n nn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、 {(,)|0,0}x y x y x y +>->2、22y x y -+ 3、4102(,)xdx f x y dy⎰⎰45、312x xy C e C e -=+二、选择题:(每空3分,共15分) 1.C 2.D 3.C 4A 5.D 三、计算题(每题8分,共48分) 1、解: 12(1,2,3){1,0,1}{2,1,1}A s s →→=-=2'121013211ij kn s s i j k →→→→→→→→→=⨯=-=-+ 6'∴平面方程为 320x y z -++=8'2、解: 令22u xy v x y == 2'2122z z u z v f y f xy x u x v x ∂∂∂∂∂''=⋅+⋅=⋅+⋅∂∂∂∂∂ 6' 2122z z u z v f xy f x y u y v y ∂∂∂∂∂''=⋅+⋅=⋅+⋅∂∂∂∂∂ 8' 3、解::0202D r θπ≤≤≤≤, 3'22232230cos cos DDx dxdy r drd d r drπθθθθ∴==⎰⎰⎰⎰⎰⎰4π= 8'4.解:222(,)(2241)0(,)(22)0xx x y f x y e x y y f x y e y ⎧=+++=⎪⎨=+=⎪⎩ 得驻点1(,1)2-4'2222(,)(4484),(,)(44),(,)2x x xxx xy yy A f x y e x y y B f x y e y C f x y e ==+++==+== 6'2220,40A e AC B e =>-=>∴Q 极小值为11(,1)22f e -=-8' 5.解:223sin ,yP xy x Q x e =+=-,有2,P Q x y x ∂∂==∴∂∂曲线积分与路径无关 2'积分路线选择:1:0,L y x =从0π→,2:,L x yπ=从02→4'122(23sin )()y LL L xy x dx x e dy Pdx Qdy Pdx Qdy++-=+++⎰⎰⎰222203sin ()27y xdx e dy e πππ=+-=-+⎰⎰8'6.解:11,x x y y e P Q e x x '+=⇒== 2'∴通解为11()()[()][]dx dx P x dxP x dxx x x y e Q x e dx C e e e dx C --⎰⎰⎰⎰=+=+⎰⎰ 4'11[][(1)]x x e xdx C x e C x x =⋅+=-+⎰ 6'代入11x y ==,得1C =,∴特解为1[(1)1]x y x e x =-+8'四、解答题 1、解:22(22)xzdydz yzdzdx z dxdy z z z dv zdv ∑ΩΩ+-=+-=⎰⎰⎰⎰⎰⎰⎰⎰Ò4'3cos sin r drd d ϕϕθϕΩ=⎰⎰⎰6'方法一:原式=234cos sin 2d d dr πππθϕϕϕ=⎰⎰⎰10'方法二: 原式=211202(1)2rd rdr zdz r r dr ππθπ=-=⎰⎰⎰⎰10'2、解:(1)令11(1)3n n n n u --=-1111131lim lim 1333n n n n n n n n u n n u n -∞+-→∞→∞=+=⋅=<∴∑收敛, 4'111(1)3n n n n∞--=∴-∑绝对收敛。