人教版九年级数学:弧、弦、圆心角
- 格式:doc
- 大小:655.50 KB
- 文档页数:3
人教版九年级数学(上)第24章圆24.1圆的有关性质24.1.3 弧、弦、圆心角教案【教材内容】1.圆心角的概念;2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等;3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等;在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】1.了解圆心角的概念;2.掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.【教学重点】通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【教学难点】弧、弦、圆心角之间的相等关系是论证同圆或等圆中弧相等、角相等、线段相等的主要依据.【教学过程设计】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究知识点一:圆心角 【类型一】圆心角的识别例1 如图所示的圆中,下列各角是圆心角的是( )A .∠ABCB .∠AOBC .∠OABD .∠OCB 解析:根据圆心角的概念,∠ABC 、∠OAB 、∠OCB 的顶点分别是B 、A 、C ,都不是圆心O ,因此都不是圆心角.只有B 中的∠AOB 的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.知识点二:圆心角的性质 【类型一】利用圆心角的性质求角例2 如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE .∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角例3 如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C .因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明例4 如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N .求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD .∵OA =OB .又M ,N 分别是OA ,OB 的中点,∴OM =ON .又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO .∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F .∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON .又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD .由证法1,知CM =DN .又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND .∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.知识点四:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 例5 如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?解析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到AB =CD 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=12AB ,CF=12CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF(2)如果OE=OF ,那么AB=CD ,AB =CD ,∠AOB=∠COD 理由是:∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CDD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD方法归纳:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.三、教学小结师生一起总结本节学习知识要点:1.圆心角的概念;2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.【板书设计】24.1 圆的有关性质24.1.3 弧、弦、圆心角1.圆心角的识别2.圆心角的性质3.弧、弦、圆心角之间的关系4.运用弧、弦、圆心角的关系进行证明与计算【课堂检测】1.(1)在同圆或等圆中,相等的圆心角所对的相等,所对的弦也.在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的弦也.(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的也相等.2. 如图,在⊙O中,AB=AC∠ACB=60 °,求证:∠AOB=∠BOC=∠AOC3. 如图,AB,CD是⊙O的两条弦。
人教版数学九年级上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版数学九年级上册24.1.3《弧、弦、圆心角》是圆的一部分的基础知识,通过本节课的学习,学生能够理解弧、弦、圆心角的定义,掌握它们之间的关系,并能够应用它们解决一些简单的几何问题。
教材从生活实例引入弧、弦、圆心角的概念,通过观察、操作、推理等过程,引导学生探索它们之间的关系,培养学生的几何思维能力。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和操作能力较强。
但是,对于弧、弦、圆心角这些概念的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,我将以学生为主体,注重启发式教学,引导学生通过观察、操作、推理等活动,自主探索弧、弦、圆心角之间的关系,提高学生的几何思维能力。
三. 说教学目标1.知识与技能:学生能够理解弧、弦、圆心角的定义,掌握它们之间的关系,并能够应用它们解决一些简单的几何问题。
2.过程与方法:学生通过观察、操作、推理等过程,探索弧、弦、圆心角之间的关系,培养学生的几何思维能力。
3.情感态度与价值观:学生通过对弧、弦、圆心角的学习,增强对数学的兴趣和信心,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.重点:学生能够理解弧、弦、圆心角的定义,掌握它们之间的关系。
2.难点:学生能够通过观察、操作、推理等过程,探索弧、弦、圆心角之间的关系,并能够应用它们解决一些简单的几何问题。
五. 说教学方法与手段1.教学方法:我将以学生为主体,采用启发式教学方法,引导学生通过观察、操作、推理等活动,自主探索弧、弦、圆心角之间的关系。
2.教学手段:我将利用多媒体课件和实物模型等教学手段,帮助学生直观地理解弧、弦、圆心角的概念,并提供丰富的练习题,让学生在实践中巩固知识。
六. 说教学过程1.引入新课:通过生活实例引入弧、弦、圆心角的概念,激发学生的学习兴趣。
2.讲解与演示:讲解弧、弦、圆心角的定义,并通过多媒体课件和实物模型进行演示,帮助学生直观地理解它们的概念。
弧、弦、圆心角、圆周角之间的关系解题技巧:1、顶点在圆心的角叫圆心角,顶点在圆周上的角叫圆周角2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等(知道一组相等,就可以推出其它三组相等)3、圆周角定理:同弧所对圆周角是圆心角的一半4、直径所对圆周角等于90°,90°的圆周角所对的弦是直径例1、下列说法正确的是_________________①相等的圆周角所对的弧相等②相等的弦所对的弧相等③等弦对等弧④等弧对等弦例2、如图,点A、B、C在⊙O上,OC、OB是半径,∠COB=100°,则∠A的度数等于()A、20°B、40°C、50°D、100°例3、如图所示,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A、30°B、45°C、60°D、75°例4、如图,AB是⊙O的直径,BD=BC,∠A=25°,则∠BOD的度数为()A、12.5°B、30°C、40°D、50°例5、如图所示,AB是⊙的直径,AC=CD=BD,E是⊙O上一点,连接CE、DE,则∠CED的度数为()A、25°B、30°C、40°D、60°例6、如图,⊙O的直径是AB,∠C=35°,则∠DAB的度数是()A、60°B、55°C、50°D、45°例7、如图,经过原点的⊙P与x轴,y轴分别交于A(3,0)、B(0,4)两点,点C是OB上一点,且BC=2,则AC=____1、如图,AB和CD都是⊙O的直径,∠AOC=52°,则∠C的度数是()A、22°B、26°C、38°D、48°2、如图,AB为⊙O直径,∠ABC=25°,则∠D的度数为()A、70°B、75°C、60°D、65°3、如图,AB是⊙O的直径,若∠BDC=30°,则∠AOC的度数为()A、80°B、100°C、120°D、无法确定4、如图,⊙O中弦AB等于半径OA,点C在优弧AB上运动,则∠ACB的度数是()A、30°B、45°C、60°D、无法确定5、如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()A、60°B、45°C、30°D、22.5°6、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAB的度数是()A、35°B、55°C、65°D、70°7、如图,AB是⊙O的直径,CD是⊙O的弦。
人教版九年级数学上册24.1.3《弧、弦、圆心角》说课稿一. 教材分析人教版九年级数学上册第24章《圆》的第三节“弧、弦、圆心角”是整个章节的重要组成部分。
本节内容主要介绍了弧、弦、圆心角的定义及其相互关系,旨在让学生理解和掌握圆的基本概念和性质,为后续学习圆的周长、面积等知识打下基础。
教材从生活实例出发,引出弧、弦、圆心角的概念,并通过观察、操作、猜想、证明等环节,让学生体会圆的性质。
教材注重培养学生的空间想象能力、逻辑思维能力和动手操作能力,使其能够运用所学知识解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和观察能力有一定的提高。
但是,对于弧、弦、圆心角的定义和相互关系,学生可能还存在一定的模糊认识。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生从生活实际出发,理解并掌握弧、弦、圆心角的性质。
三. 说教学目标1.知识与技能:理解和掌握弧、弦、圆心角的定义及其相互关系,能够运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、证明等环节,培养学生的空间想象能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:弧、弦、圆心角的定义及其相互关系。
2.教学难点:圆心角、弧、弦之间的数量关系。
五. 说教学方法与手段1.教学方法:采用问题驱动、观察猜想、证明验证的教学方法,引导学生主动探究,提高其思维能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,增强学生的直观感受。
六. 说教学过程1.导入:从生活实例出发,引出弧、弦、圆心角的概念,激发学生的学习兴趣。
2.新课讲解:讲解弧、弦、圆心角的定义,通过观察、操作、猜想、证明等环节,让学生理解并掌握其相互关系。
3.例题讲解:分析并解决典型例题,让学生运用所学知识解决实际问题。
4.课堂练习:布置针对性的练习题,巩固所学知识。
24.1.3弧、弦、圆心角●情景导入(1)观察图片,我们会发现圆绕着圆心旋转任意一个角度,所得的图形与原图形重合.(2)如图①,∠AOB的顶点在圆心上,我们把顶点在圆心的角叫做圆心角.(3)如图②,连接AB,圆心角∠AOB所对的弦为弦AB,所对的弧为AB,那么圆心角与它所对的弧、弦这三个量之间有什么关系呢?【教学与建议】教学:通过实验操作,探索圆的旋转不变性与“如果两个圆心角相等,那么它们所对的弧、弦是不是相等”,激发学生的学习兴趣.建议:尽量让学生自己动手操作,引导学生得出等量关系.●归纳导入(1)圆是中心对称图形吗?它的对称中心在哪里?【归纳】圆是中心对称图形,对称中心是O点.(2)如图,将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,我们发现∠AOB__=__∠A′OB′,弦AB__=__A′B′,AB__=__A′B′.【教学与建议】教学:通过归纳中心对称图形的定义,引入圆这个中心对称图形和圆的旋转性质,得出圆心角、弧、弦之间的关系.建议:让学生操作试验,得出圆心角、弧、弦的等量关系.命题角度1利用弧、弦、圆心角之间的关系进行计算在同圆或等圆中,两个相等圆心角,它们所对的弧、弦、弦心距对应相等.【例1】(1)如图,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(D)A.CE=DE B.BC=BDC.∠BAC=∠BAD D.AC>AD[第(1)题图][第(2)题图](2)如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M,N,BA,DC的延长线交于点P.连接OP.下列四个说法中:①AB=CD;②OM=ON;③PB=PD;④∠BPO=∠DPO,其中正确的是__①②③④__.(填序号)命题角度2利用弧、弦、圆心角之间的关系进行证明在同圆或等圆中,利用弧、弦、圆心角之间的关系定理证明圆心角、弧、弦相等.【例2】(1)如图,AB为⊙O的直径,C,D是⊙O上的两点,且BD∥OC.求证:AC=CD.证明:∵OB=OD,∴∠D=∠B.∵BD∥OC,∴∠D=∠COD,∠AOC=∠B,∴∠AOC=∠COD,∴AC=CD.(2)如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.证明:如图,连接OC.∵OD∥BC,∴∠1=∠B,∠2=∠3.又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.高效课堂教学设计1.能识别圆心角.2.探索并掌握弧、弦、圆心角的关系,了解圆的中心对称性和旋转不变性.3.能用弧、弦、圆心角的关系解决圆中的计算题、证明题.▲重点探索圆心角、弧、弦之间的关系定理并利用其解决相关问题.▲难点圆心角、弧、弦之间关系定理中的“在同圆或等圆中”条件的理解及定理的证明.◆活动1新课导入1.你能举出生活中的圆形商标的实例吗?(至少三个)宝马车商标:星巴克标志:曼秀雷敦标志:2.把这些圆形图案绕圆心旋转一定的角度,你有什么发现?旋转前后圆中的弧、弦会有变化吗?答:图案绕圆心旋转一定的角度后能与自身重合,旋转前后圆中的弧、弦不会有变化.◆活动2探究新知1.材料P83探究.提出问题:(1)把圆绕圆心旋转180°,所得图形与原图形重合吗?由此你得到什么结论?(2)圆是中心对称图形吗?对称中心是什么?(3)把圆绕圆心旋转任意一个角度,所得图形与原图形重合吗?学生完成并交流展示.2.教材P84思考.提出问题:(1)我们把∠AOB连同AB绕圆心O旋转,使OA与OA′重合,旋转前后你能发现哪些等量关系?(2)若∠AOB和∠A′OB′分别在两个相等的圆中,上述等量关系还存在吗?(3)总结你所发现的规律;(4)反过来,在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角、所对的弦有什么关系?如果两条弦相等,那么它们所对的圆心角、所对的弧有什么关系?◆活动3知识归纳1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的的图形重合,这就是圆的__旋转不变__性.2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.◆活动4例题与练习例1教材P84例3.例2下列说法正确吗?为什么?(1)如图,因为∠AOB=∠A′OB′,所以AB=A′B′;(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么AB=A′B′.解:(1)(2)都是不对的.在图中,因为不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.例3如图,AD=BC.求证:AB=CD.证明:∵AD=BC,∴AD=BC.∵AC=AC,∴AC+AD=AC+BC.∴DC=AB.∴AB=CD.练习1.教材P85练习第1,2题.2.如图,在⊙O中,已知弦AB=DE,OC⊥AB,OF⊥DE,垂足分别为C,F,则下列说法中正确的有(D)①∠DOE=∠AOB;②AB=DE;③OF=OC;④AC=EF.A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,AC=CD,∠COD=60°.(1)△AOC是等边三角形吗?请说明理由;(2)求证:OC∥BD.解:(1)△AOC是等边三角形.理由如下:∵AC=CD,∴∠AOC=∠COD=60°.又∵OA=OC,∴△AOC是等边三角形;(2)∵AC=CD,∴OC⊥AD.∵∠AOC=∠COD=60°,∴∠BOD=180°-(∠AOC+∠COD)=60°.∵OD=OB,∴△ODB为等边三角形.∴∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD.◆活动5课堂小结弧、弦、圆心角之间的关系是证明圆中等弧、等弦、等圆心角的常用方法.1.作业布置(1)教材P89习题24.1第2,3题;(2)对应课时练习.2.教学反思。