九年级上册数学圆心角知识点总结,初中数学圆心角经典例题讲解及答案解析
- 格式:pdf
- 大小:225.92 KB
- 文档页数:7
圆的根本性质1.半圆或直径所对的圆周角是直角.2.随意一个三角形肯定有一个外接圆.3.在同一平面内,到定点的间隔等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点肯定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
直线及圆的位置关系1.直线及圆有唯一公共点时,叫做直线及圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆及圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形根本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.圆的根本性质1.如图,四边形ABCD内接于⊙O,∠C=80°,那么∠A的度数是 .A. 50°B. 80°C. 90°D. 100°2.:如图,⊙O中, 圆周角∠BAD=50°,那么圆周角∠BCD的度数是 . °°°°3.:如图,⊙O中, 圆心角∠BOD=100°,那么圆周角∠BCD的度数是 . °°°°4.:如图,四边形ABCD内接于⊙O,那么以下结论中正确的选项是 .••CBAO•BOCAD •DBCAOA.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,那么圆心到此弦的间隔 为 . A.3cm B.4cm C.5cm6.:如图,圆周角∠BAD=50°,那么圆心角∠BOD 的度数是 . °°° 7.:如图,⊙O 中,弧AB 的度数为100°,那么圆周角∠ACB 的度数是 . °°° 8. :如图,⊙O 中, 圆周角∠BCD=130°,那么圆心角∠BOD 的度数是 . °°°°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的间隔 为3cm,那么⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.⊙O 的半径为10㎝,假如一条直线和圆心O 的间隔 为10㎝,那么这条直线和这个圆的位置关系为 .2.圆的半径为 6.5cm,直线l 和圆心的间隔 为7cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交3.圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是4.圆的半径为6.5cm,直线l 和圆心的间隔 为4.5cm,那么这条直线和这个圆的公共点的个数是 .5.一个圆的周长为a cm,面积为a cm 2,假如一条直线到圆心的间隔 为πcm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 不能确定6.圆的半径为 6.5cm,直线l 和圆心的间隔 为6cm,那么这条直线和这个圆的位置关系是 .7. 圆的半径为 6.5cm,直线l 和圆心的间隔 为4cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交 8. ⊙O 的半径为7cm,PO=14cm,那么PO 的中点和这个圆的位置关系是 .圆及圆的位置关系1.⊙O 1和⊙O 2的半径分别为3cm 和4cm ,假设O 1O 2=10cm ,那么这两圆的位置关系是 . A. 外离 B. 外切 C. 相交 D. 内切2.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=9cm,那么这两个圆的位置关系是 . A.内切 B. 外切 C. 相交 D. 外离3.⊙O 1、⊙O 2的半径分别为3cm 和5cm,假设O 1O 2=1cm,那么这两个圆的位置关系是 .•BOCAD•BOCAD•D BCAO •DBCAOA.外切B.相交C. 内切D. 内含4.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2==7cm,那么这两个圆的位置关系是 .5.⊙O 1、⊙O 2的半径分别为3cm 和4cm ,两圆的一条外公切线长43,那么两圆的位置关系是 .A.外切B. 内切C.内含D. 相交6.⊙O 1、⊙O 2的半径分别为2cm 和6cm,假设O 1O 2=6cm,那么这两个圆的位置关系是 . A.外切 B.相交 C. 内切 D. 内含公切线问题1.假如两圆外离,那么公切线的条数为 .2.假如两圆外切,它们的公切线的条数为 . A. 1条 B.3.假如两圆相交,那么它们的公切线的条数为 . A. 1条 B.4.假如两圆内切,它们的公切线的条数为 . A. 1条 B.5. ⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=9cm,那么这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条6.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=7cm,那么这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条正多边形和圆1.假如⊙O 的周长为10πcm ,那么它的半径为 . A. 5cm B 10 C.10cm πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B.3 C.1 D.23.,正方形的边长为2,那么这个正方形内切圆的半径为 . A. 2 B. 1 C.2 D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= . °°° D. 120°5.,正六边形的外接圆半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .A.2C π B.π2C C.π22C D.π42C7.正三角形内切圆及外接圆的半径之比为 . A.1:2 B.1:3 C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= .C π B. C π C.π2C D. πC 9.,正方形的边长为2,那么这个正方形外接圆的直径为 .2310.,正三角形的外接圆半径为3,那么这个正三角形的边长为 . A. 3 B.323。
圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
③弧、半圆、优弧、劣弧:,简称弧.,用符号“⌒”表示,弧:圆上任意两点间的部分叫做圆弧..以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。
半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..优弧:大于半圆的弧叫做优弧..。
(为了区别优弧和劣弧,优弧用三个字劣弧:小于半圆的弧叫做劣弧..母表示。
)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧...⑦圆心角:顶点在圆心的角叫做圆心角...⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。
圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。
圆心角、圆周角知识要点1.圆心角:顶点在圆心的角弧、弦、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
弧、弦、圆心角关系定理:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们其余各组量也相等。
2.圆周角:顶点在圆上,并且两边都与圆相交的角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
推理:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
3.圆内接四边形的性质圆的内接四边形定理:圆的内接四边形的对角互补。
(外角等于它的内对角) 4.四点公圆的证明一个四边形若有一组对角是直角,则这个四边形的四个顶点一定在同一个圆上,即这个四边形一定有一个外接圆。
基础知识测试: (一)圆心角1.下列命题正确的是( C )A 相等圆心角所对的弧相等B 等弧对等弦C 在同圆或等圆中,相等的弦所对的弧相等D 相等的圆心角所对的弦相等2.已知弧AB 、弧CD 是同一圆中的两段劣弧,且弧AB =2弧CD ,则弦AB 与CD 的关系是( B ) A AB =2CD B AB <2CD C AB >2CD D 无法判断3.在⊙O 中,P 为直径AB 上一动点,C 、D 为两半圆上的两动点,CD 交AB 于H ,则以下说法:(1)若弧AC =弧AD ,则∠APC =∠APD ;(2)若PC =PD ,则∠APC =∠APD ;(3)若∠APC =∠APD ,则CH =HD 。
其中正确的个数是( D )A 0个B 1个C 2个D 3个4.如图,A 、B 、C 为⊙O 上三点,D 、E 分别为)AB 、)AC 的中点,连接DE 分别交AB 、AC 于F 、G ,求证:AF =AG .证明:连结OD 、OE ,∵D ,E 分别是)AB 、)AC 的中点,∴OD ⊥AB ,OE ⊥AC , ∴∠D +∠DFB =90°,∠E +∠EGC =90°, ∵OD =OE ,∴∠D =∠E ,41.如图,若AB =B C .则图中与∠ADB 相等的圆周角的个数为 3 .2.如图,直线AB 交圆于点A ,B ,点M 在圆上,点P 在圆外,且点M 、P 在AB 的同则,∠AMB =50°,设∠APB =x °.当点P 移动时,3.(1)如图,AB 为⊙O 的直径,C ,D ,E 是⊙O 上的三点,则∠1+∠2的度数= 90° .(2)如图,A ,B ,C ,D ,E 是同一圆上顺次的五点,∠CAD =80°,则∠ABC +∠AED 等于 260° .4. 如图,⊙O 中,若∠AOB =100°,则∠C = 50° ,∠D = 130° .5. (1)圆的弦长恰好等于该圆的半径,则这条弦所对的圆周角是 60或120 度. (2)△ABC 内接于⊙O ,∠AOB =100°, 则∠ACB = 50或130 度.6.如图,PAB 、PCD 是⊙O 的两条割线,PAB 经过圆心O ,若弧AC =弧CD ,∠P =30°,则∠BDC 的度数是 110°.7.如图,A 、B 、C 、D 为⊙O 上四点,AB、DC 交于点AD 、BC 交于E 点,若∠E =40°,∠F =30°, 则∠A 的度数为 55°.B1.如图,在四边形OABC 中,OA =OB =OC ,若∠ACB =35°,则∠AOB 的度数是 70° .2.如图,在矩形ABCD 中,AB =4,AD =6,E 是A 8边的中点,是线段BC 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB ’F ,连接B 'D ,则B 'D3.如图,△ABC ,△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,求线段BM 长的最小值.解:连结AD 、DG ,根据旋转角相等,旋转前后的对应线段相等,容易发现∠ADG =∠FDC ,DA =DG ,DF =DC ,故∠DFC =∠DCF =∠DAG =∠DG A . 又根据等腰三角形的“三线合一”可知∠FDG =90°,所以∠DFG +∠DGF =90°,即∠DFC +∠CFG +∠DGF =90°.所以∠AMC =∠MGF +∠CFG =∠AGD +∠DGF +∠CFG =∠DFC +∠DGF +∠CFG =90°. 故点M 始终在以AC 为直径的圆上,作出该圆,设圆心为O ,连结BO 与⊙O 相交于点P ,线段BP 的长即为线段BM 长的最小值.BP =AO -OP 1.4.如图,△ABC 中,BC =4,∠BAC =45°,以为半径,过B ,C 两点作⊙O ,连OA ,则线段OA 的最大值综合、提高、创新:【例1】1.如图,BC是⊙O的直径,»AB=»AF,AD⊥BC于D,BF与AD交于E点(1)求证: AE=BE:(2)求证BF=2AD(3)若点A、F把半圆三等分,BC=12,求AE的长度,解:(1)连AC,如图,∵BC为⊙O的直径,∴∠BAC=90°,又∵AD⊥BC,∴∠BAD=∠ACB,又∵»AB=»AF,∴∠ACB=∠ABF,∴∠ABE=∠BAE,∴AE=BE;(2)∵A,F把半圆三等分,∴∠ACB=∠CBF=∠ABF=30°,∴∠BAD=30°,在Rt△ABC中,BC=12,所以AB=12BC=6,在Rt△ABD中,AB=6,所以BD=12AB=3,Rt△BDE中,∠CBF=30°,BD=3,∴DE=BE=AE=2.如图,△ABC内接于⊙O、AD⊥BC,D为垂足,E是»BC中点,求证:∠EAO=∠EA D.证明:(1)连接OB,则∠AOB=2∠ACB,∠OAB=∠OBA,∵AD⊥BC,∴∠OAB=12(180°-∠AOB)=90°-12∠AOB=90°-∠ACB=∠DAC,∵E是弧BC的中点,∴∠EAB=∠EAC,∴∠EAO=∠EAB-∠OAB=∠EAC-∠DAC=∠EA D.(2)连接OE,∵E是»BC的中点,∴弧BE=弧EC,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EA D.1、如图,AB为直径,CD是弦,AB⊥C D.(1) P是弧CAD上一点(不与C、D重合),求证:∠CPD=∠COB .(2)点P’在劣弧CD上(不与C、D重合)时,∠CP’D与∠COB有什么数量关系?请证明你的结论.(1)证明:连接OD,∵AB是直径,AB⊥CD,∴»BC=»BD∴∠COB=∠DOB=12∠CO D.又∵∠CPD=12∠COD,∴∠CPD=∠CO B.(2)解:∠CP′D+∠COB=180°.理由如下:连接OD,∵∠CPD+∠CP′D=180°,∠COB=∠DOB=12∠COD,又∵∠CPD=12∠COD,∴∠COB=∠CPD,∴∠CP′D+∠COB=180°.2、如图,AB是⊙O的直径,弦CD⊥AB于H,P是AB延长线上一动点,CP交⊙O于Q,DQ交AB于E.试问:当P点在AB延长线上运动时,∠OPC与∠ODQ是否保持某种特定的关系?证明你的结论.∠OPC=∠ODQ,理由简要如下:延长DO交圆O于F,①圆外角∠P=1/2(弧AC-弧BD)②OC=OD,OB⊥CD,∴∠COB=∠DOB=∠AOF,∴弧AF=弧BC,∴弧AC=弧BF,∴弧AC-弧BD=弧BF-弧BD=弧FQ=1/2∠QDF,∴∠OPC=∠ODQ1、如图1,锐角△ABC的三个顶点都在⊙O上,高AD、BE所在直线交⊙O于H,AD所在直线交⊙O于G. (1)求证:DH=DG;(2)将“锐角△ABC”改为“钝角△ABC,∠BAC为钝角”其他条件不变,完成图2,试问(1)中的结论是否仍成立?证明你的结论.图1 图2证明:连接BG∵BE⊥AC,AD⊥BC∴∠BEC=90,∠ADC=90∵∠ACB+∠DHE+∠BEC+∠ADC=360∴∠ACB+∠DHE=180∵∠DHE+∠BHG=180∴∠ACB=∠BHG∵∠ACB、∠AGB所对应圆弧都为劣弧AB∴∠ACB=∠AGB∴∠AGB=∠BHG∵AD⊥BC∴DG=DH(等腰三角形中垂线)证明:连接BG∵BE⊥AC,AD⊥BC∴∠BEA=90,∠ADB=90∵∠EBD+∠EAD+∠BEA+∠ADB=360∴∠EBD+∠EAD=180∵∠EAD+∠GAC=180∴∠EBD=∠GAC∵∠GAC、∠GBC所对应圆弧都为劣弧GC∴∠GAC=∠GBC∴∠GBC=∠EBD∵AD⊥BC,BD=BD,∴△BDG全等于△BDH,∴DG=DH2如图,已知△ABC的三个顶点都在⊙O上,过圈心O作BC的垂线交⊙O于P、Q,交BC于D,QP、CA的延长线交于点E,求证:∠BAO=∠E.证明:作直径AM,连接BM,∵∠C和∠M都对弧AB,∴∠C=∠M,∵OQ⊥BC,∴∠EQC=90°,∴∠C+∠E=90°,【例4】如图,在直角坐标系中,M为x轴上一点,⊙M交x轴于A、B,交y轴于C、D,P为»BC上的一个动点,CQ平分∠PCD,交AP于点Q,A(-1,0),M(1,0).(1)求C点的坐标;(2)当P点运动时,线段AO的长度是否会改变?若不变,请证明并求其值:若改变,请说明理由解:(1)由勾股定理易得C(0;(2)当P点运动时,线段AO的长度不会改变,由垂径定理知,»»,AC AD=∴∠P=∠ACD,∵CQ平分∠PCD,∴∠P+∠PCQ=∠ACD+∠DCQ,即∠ACQ=∠AQC,∴AQ=A C.在Rt△OCA中,OC OA=1,∴AC=2∴线段AO的长度不会改变,为2.【例5】在⊙O中,AB为直径,点C为圆上一点,将劣弧»AC沿弦AC翻折AB点于点D,连接C D. (1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O重合,∠BAC=25°,请直接写出∠DCA的度数.解答:(1)如图:过O作OE⊥AC于E,则AE=11,2AC=∴OE=1,2r在Rt△AOE中,OE=1,2r,AE=1,得r(2)连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=65°,根据翻折性质,»AC所对的圆周角为∠B,¼ABC所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠B=∠CDB=65°,∴∠DCA=∠CDB-∠A=40°【例6】在⊙O 中,AB 为直径,弦CD ⊥AB 于E ,E 是AO 的中点, P 是»BC上的动点,求PC PD PA+ 的值。
小班辅导教案知识点一圆心角定理1.概念填空:(1)把圆绕旋转任意一个角度,所得的图形都和原图形重合.圆是中心对称图形,就是它的对称中心.(2)顶点在的角叫做圆心角.(3)圆心角定理:在同圆会等圆中,相等的圆心角所对的相等,所对的也相等.(4)我们把1°圆心角所对的弧叫做,则n°的圆心角所对的弧就是 .2.把一个圆分成相等的6段弧,每段弧所对的圆心角的度数是 >3.如图,MN为⊙○的弦,∠M=50°,则圆心角∠MON等于()A.50°B.55°C.65°D.80°̂= .4.如图,在⊙○中,∠AOB=∠COD,则AC= ,AĈ的度数5.如图,两个同心圆的圆心为O,大圆半径OA,OB分别交小圆于A′,B′两点,如果AB̂的度数是60°,那么A′B′为()A.60°B.大于60°C.小于60°D.不能确定题型一利用圆心角定理证明角(弧)度、线段间的等量关系例1:如图,O为等腰三角形ABC的底边AB上的中点,以AB为直径的半圆分别交AC,BC于点D,E,连结OD,OE.求证:(1)∠AOE=∠BOD;̂=BÊ.(2)AD巩固练习1:如图,在⊙○中,弦AB=CD.求证:AC=BD.题型二利用圆心角定理计算弧的度数̂的度数为40°,例2:如图,AB,DF是⊙○的两条直径,C是⊙○的直径AB上一点,过点C作弦DE,使CD=CO.若AD̂的度数.求BE巩固练习2:如图,以Rt△ABC的直角顶点为圆心,以BA为半径的圆分别交AC于点D,交BC于点E.若∠C=31°,̂的度数.求AD知识点二圆心角定理的逆定理1.在同圆或等圆中,如果、、、中有一对量相等,那么它们所对应的其余各对量都相等.2.下列命题中,真命题是()A.相等的圆心角所对的弧相等B.相等的弦所对的弧相等C.度数相等的弧是等弧D.在同心圆中,同一圆心角所对的两条弧的度数相等3.在⊙○中,弦AB=2cm,圆心角∠AOB=60°,则⊙○的直径为 cm.4.已知AB,CD是⊙○的两条弦,且AB=CD,OE⊥AB于点E,OF⊥CD于点F.若OE=3,则OF= .̂=BĈ.若AB=3,则CD= .5.如图,在⊙○中,AD题型一:利用圆心角、弧、弦、弦心距之间的关系进行相关证明例1:如图,⊙○的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.̂=BD̂.求巩固练习1:如图所示,⊙○的两条弦AB,CD互相垂直且相交于点P,OE⊥AB,OF⊥CD,垂足分别为E,F,AC证:四边形OEPF是正方形.例2:如图,P为⊙○的直径EF延长线上一点,PA交⊙○于点B,A,PC交⊙○于点D,C,∠1=∠2.求证:PB=PD.巩固练习2:如图,P为⊙○外一点,∠APC的两边分别交⊙○于点A,B和点C,D.如果PA=PC,求证:AB=CD.知识点三圆周角定理及其推论1.顶点在圆上,的角,叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的度数的一半.圆周角定理的推论1:半径(或直径)所对的圆周角是;90°的圆周角所对的弦是 .3.如图,A,C,B是⊙○上三点,若∠AOC=40°,则∠ABC的度数是 .4.已知一条弧的度数为80°,则这条弧所对的圆心角和圆周角分别是和 .5.在⊙○中,一条6cm长的弦所对的圆周角为90°,则⊙○的直径是 cm.6.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为 cm.题型一与圆周角定理有关的计算例1:如图,A,B,C,D四个点均在⊙○上,∠AOD=70°,AO//DC,求∠B的度数.巩固练习1:如图,A,B,C是⊙○上三点,AB=2,∠ACB=30°,求⊙○的半径.题型二利用圆周角定理的推理1进行计算与证明例2:如图AB,AC是⊙○的两条弦,且AB=AC.延长CA到点D,使AD=AC,连结DB并延长,交⊙○于点E.求证:CE是⊙○的直径.巩固练习2:如图,△ABC是⊙○的内接三角形,AD是⊙○的直径.若∠ABC=50°,求∠CAD的度数.知识点四圆周角定理的推理21.圆周角定理的推理2:在同圆或等圆中,所对的圆周角相等;的圆周角所对的弧也相等.2.如图,点A,B,C,D在⊙○上,若∠BDC=30°,则∠BAC= .3.如图,∠DBC=20°,∠APB=80°,则∠D= .4.若⊙○的弦AB所对的弧的度数是180°,则AB必是⊙○.5.如图,AB是⊙○的直径,∠CAB=60°,则∠D= .题型一:利用圆周角定理及其推论进行计算例1:如图,已知在⊙○中,直径AB=10cm,弦AC为6cm,∠ACB的平分线交⊙○于点D,求BC,AD,BD的长.巩固练习1:如图,点A,B,C,D都在⊙○上,AD是⊙○的直径,且AD=6cm.若∠ABC=∠CAD,求弦AC的长.题型二:利用圆周角定理及其推论进行证明例2:如图,已知在△ABC中,∠BAC与∠ABC的平分线AE,BE交于点E,延长AE交△ABC的外接圆于点D,连结BD,CD,CE且∠BDA=60°.(1)求证:△BDE是等边三角形;(2)若∠BDC=120°,猜想四边形BDCE是怎样的四边形?并证明你的猜想.巩固练习2:如图,过圆内一点P作弦AB和CD,且AP=CP.求证:PB=PD.1.如图,点O 是两个同心圆的圆心,大圆半径OA,OB 交小圆于点C,D ,下列结论中正确的个数有( )①∠OCD=∠OAB ;②AB=CD;③AB̂=CD ̂. A.0个 B.1个 C.2个 D.3个2.如图,BE 是半径为6的⊙D 的14圆周,C 点是BÊ上的任意一点,△ABD 是等边三角形,则四边形ABCD 的周长P 的取值范围是( )A.12<P ≤18B. 18<P ≤24C. 18<P ≤18+6√2D. 12<P ≤12+6√23.已知AB 是⊙○的直径,AC,AD 是弦,且AB=2,AC=√2,AD=1,则圆周角∠CAD 的度数是( )A.45°和60°B.60°C.105°D.15°或105°4.如图,AB 是⊙○的直径,点C 在⊙○上,弦BD 平分∠ABC ,则下列结论错误的是( )A.AD=DCB.AD̂=DC ̂ C.∠ADB=∠ACB D.∠DAB=∠CBA5.如图,已知AB 是⊙○的直径,PA=PB ,∠P=60°,则CD̂所对的圆心角等于 度.6.如图,AB,CD 是⊙○的两条互相垂直的弦,圆心角∠AOC=130°,AD,CB 的延长线相交于点P ,则∠P 的度数为 .7.如图,∠A 的两边交⊙○于点B,C,D,E ,若BD̂:BC ̂:CE ̂:DE ̂=1:3:4:4,则∠A 的度数为 .8.如图为⊙○的部分图形,OA,OB 是⊙○的两条互相垂直的半径,M 是弦AB 的中点,过点M 作MC//OA ,交AB̂于点C.求证:AC ̂=13AB ̂.9.已知:如图,A 点是半圆上一个三等分点,B 点是AN̂的中点,P 是直径MN 上一动点,⊙○的半径为1,则AP+BP 的最小值为多少?1.若⊙○内的一条弦与直径相交成30°的角,并把直径分成2cm 和6cm 两端,则这条弦的弦心距为( )A.1cmB. 2cmC. 3cmD. 4cm2.如图,用四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形的顶点,⊙○的半径为1,P是⊙○上的一点,且位于右上方的小正方形内,则∠APB的度数为()A.30°B.45°C.60°D.15°或105°3.如图,MN是半圆O的直径,点A是MN延长线上一点,AP交半圆于点Q,P.若∠A=20°,∠PMQ=40°,则∠MQP等于()A.30°B.35°C.40°D.50°4.如图,AB为⊙○的一固定直径,它把⊙○分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙○于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变̂ D.随C点移动而移动C.等分BD(第4题)(第5题)(第7题)5.如图,已知A,B,C三点在⊙○上,AC⊥BO于点D,∠B=55°,则∠BOC的度数是 .6.圆内的一条弦把圆分成5:1两部分,如果圆的半径是2cm,那么这条弦的长是 cm.7.如图,CD是半圆的直径,点O是圆心,点A在CD的延长线上,点E在半圆上,EA与半圆相交于点B.若AB=OC,̂的度数为 .∠DAE=15°,则DE8.如图,在⊙○中,AB是直角,CD是弦,AB⊥CD.̂上一点(不与C,D重合).求证:∠CPD=∠COB.(1)P是CAD̂上(不与C,D重合)时,∠C P′D与∠COD有什么数量关系?请证明你的结论.(2)点P′在CD9.如图,AB ̂是⊙○的14圆周,半径OA ⊥OB ,C,D 是AB ̂的三等分点,AB 分别交OC,OD 于点E,F.求证:AE=BF=CD.。
圆心角--知识讲解(基础)【学习目标】1.了解圆心角的概念;2.掌握弧、弦和圆心角定理及其推论,并能解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆心角与弧的定义1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,∠AOB就是一个圆心角.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)圆心角∠AOB所对的弦为线段AB,所对的弧为弧AB.2.1°的弧的定义.如下图,1°的圆心角所对的弧叫做1°的弧(1)圆心角的度数和它所对的弧的度数相等. 注意不是角与弧相等.即不能写成圆心角∠AOB=.(2)在同圆或等圆中,能够互相重合的弧叫等弧.等弧的长度相等,所含度数相等(即弯曲程度相等).要点二、圆心角定理及推论1.圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.要点诠释:(1)圆心到圆的一条弦的距离叫做弦心距.(2)在同圆或等圆中,相等的圆心角所对两条弦的弦心距相等.(3)注意定理中不能忽视“同圆或等圆”这一前提.2.圆心角定理的推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各对应量都相等.要点诠释:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等).*如果它们中间有一组量不相等,那么其它各组量也分别不等.【典型例题】类型一、圆心角的概念1. 判别下列各图中的角是不是圆心角,并说明理由.【思路点拨】根据圆心角的定义进行判断.【答案与解析】解:①不是,因为顶点在圆内非圆心的位置;②不是,因为顶点在圆外,没有在圆心;③不是,因为顶点在圆上,而不是在圆心;④是,满足圆心角定义.【总结升华】掌握与圆有关的概念:弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧、圆心角等. 类型二、圆心角定理及推论2.(2016•台湾)如图,圆O通过五边形OABCD的四个顶点.若=150°,∠A=65°,∠D=60°,则的度数为何?()A.25 B.40 C.50 D.55【思路点拨】连接OB,OC,由半径相等得到三角形OAB,三角形OBC,三角形OCD都为等腰三角形,根据∠A=65°,∠D=60°,求出∠1与∠2的度数,根据的度数确定出∠AOD度数,进而求出∠3的度数,即可确定出的度数.【答案】B【解析】解:连接OB、OC,∵OA=OB=OC=OD,∴△OAB、△OBC、△OCD,皆为等腰三角形,∵∠A=65°,∠D=60°,∴∠1=180°﹣2∠A=180°﹣2×65°=50°,∠2=180°﹣2∠D=180°﹣2×60°=60°,∵=150°,∴∠AOD=150°,∴∠3=∠AOD﹣∠1﹣∠2=150°﹣50°﹣60°=40°,则=40°.故选B【总结升华】此题考查了圆心角、弧、弦的关系,弄清圆心角、弧、弦的关系是解本题的关键.举一反三:【变式】如图,AB是⊙O的直径,BC CD DE==,∠COD=35°,求∠AOE的度数.【答案】解:∵BC CD DE==,∠COD=35°,∴∠BOC=∠EOD=∠COD=35°,∴∠AOE=180°-∠EOD-∠COD-∠BOC=75°.3.如图,在⊙O中,弦AD、BC相交于点E,连结OE,已知AD=BC,AD⊥CB.(1)求证:AB=CD;(2)如果⊙O的半径为5,DE=1,求AE的长.【答案与解析】(1)证明:如图,∵AD=BC,∴=,∴﹣=﹣,即=∴AB=CD;(2)解:如图,过O作OF⊥AD于点F,作OG⊥BC于点G,连接OA、OC.则AF=FD,BG=CG.∵AD=BC,∴AF=CG.在Rt△AOF与Rt△COG中,,∴Rt△AOF≌Rt△COG(HL),∴OF=OG,∴四边形OFEG是正方形,∴OF=EF.设OF=EF=x,则AF=FD=x+1,在直角△OAF中.由勾股定理得到:x2+(x+1)2=52,解得x=3.则AF=3+1=4,即AE=AF+3=7.【总结升华】本题考查了勾股定理,垂径定理以及圆心角、弧、弦间的关系.注意过圆心作弦的垂线是圆中常见的辅助线.举一反三:【变式】已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B D C D B D -=-,即AD BC =,∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .4.如图所示,AB 是⊙O 的弦,C 、D 为弦AB 上两点,且OC=OD ,延长OC 、OD ,分别交⊙O 于点E 、F. 试证: =A E B F .【思路点拨】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE =∠BOF.【答案与解析】证明: ∵OC =OD ,∴∠OCD =∠ODC.∵AO =OB ,∴∠A =∠B.∴∠OCD -∠A =∠ODC -∠B ,即∠AOC=∠BOD,即∠AOE=∠BOF.AE BF.∴=【总结升华】本题利用了在同圆或等圆中,等弧对等弦及等弦对等弧求解.举一反三:=. 【变式】如图,BC为⊙O的直径,OA是⊙O的半径,弦BE∥OA. 求证:AC AEA【答案】证明:连接OE,∵BE∥OA,∴∠B=∠COA,∠E=∠AOE,∵OE=OB,∴∠B=∠E,∴∠COA=∠AOE,=.∴AC AE。
OA BE FCD课前回顾1、垂径定理的概念及其推论:2、回顾练习:如图:AB 是的直径,CD 是弦,过A 、B 两点作CD 的垂线,垂足分别为E 、F ,若AB=10,AE=3,BF=5,求EC 的长。
知识点一、圆心角1、圆心角的定义:顶点在圆心的角叫做圆心角。
2、圆心角的度数与它所对的弧的度数之间的关系:圆心角的度数等于它所对弧的度数。
3、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4、圆心角定理推论:在同圆或等圆中,两个圆心角、两条弦、两条弧、两条弦的弦心距中有一组量相等,其余各组量都相等。
例题讲练例题一、概念理解1.______________的______________叫做圆心角. 2.如图,若长为⊙O 周长的nm,则∠AOB =____________.与圆有关的角——圆心角、圆周角3.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _____________________.4.在圆中,圆心与弦的距离(即自圆心作弦的垂线段的长)叫做弦心距,不难证明,在同圆或等圆中,如果两条弦相等,那么它们的弦心距也______.反之,如果两条弦的弦心距相等,那么_____________________.5. 求证:在同圆或等圆中,两条弦相等,那么它们的弦心距也相等。
例题二、基础应用6.已知:如图,A、B、C、D在⊙O上,AB=CD.求证:∠AOC=∠DOB.7.已知:如图,P是∠AOB的角平分线OC上的一点,⊙P与OA相交于E,F点,与OB 相交于G,H点,试确定线段EF与GH之间的大小关系,并证明你的结论.8.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,求∠ACO的度数.例题三:综合应用9.⊙O中,M为的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AMC.AB<2AM D.AB与2AM的大小不能确定10.如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想与之间的关系,并证明你的猜想.11.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.CAB1、圆周角的定义:顶点在圆上,两条边与圆相交的角叫做圆周角.2、圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等;都等于这条弧所对的圆心角的一半。
《圆》经典例题分析总结经典例题透析1.垂径定理及其应用在圆这一章中,涉及垂径定理的有关知识点很多,如弓形中的有关计算、切线的性质、判定定理等,也是在各地中考中经常出现的一个考点.应用垂径定理可以进行线段的垂直、平分以及弓形面积的计算等.1.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(2)若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.总结升华:在解答有关圆的问题时,常需要运用图中已知条件寻找线段之间、角之间、弧之间的关系,从中探索出如等腰三角形、直角三角形等信息,从而达到解决问题的目的,此题还可以进一步求出阴影部分的周长或面积等.举一反三:【变式1】“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸B.13寸C.25寸D.26寸2.圆周角及其应用圆周角与圆心角是本章中最常用的角,在中考中经常出现,一般单独考查它的题目不多,都是隐含在其他题目中.2.如图所示,△ABC内接于⊙O,点D是CA延长线上一点,若∠BOC=120°,∠BAD等于( )A.30°B.60°C.75°D.90°举一反三:【变式1】如图所示,⊙O的内接四边形ABCD中,AB=CD,则图中与∠1相等的角有________________.【变式2】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,BC=4cm.(1)说明AC⊥OD;(2)求OD的长.3.切线的性质及判定涉及圆的切线的问题在各地中考中以各种题型出现,主要考查切线的识别方法、切线的特征以及对切线的应用能力,所以应认真理解有关切线的内容,并能用来解答实际问题.3.如图所示,直线MN是⊙O的切线,A为切点,过A的作弦交⊙O于B、C,连接BC,证明∠NAC=∠B.举一反三:【变式1】如图所示,DB切⊙O于点A,∠AOM=66°,则∠DAM=________________.【变式2】如图所示,AB是⊙O的直径,是⊙O的切线,C是切点,过A、B分别作的垂线,垂足分别为E、F,证明EC=CF.4.如图所示,EB、BC是⊙O是两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,那么∠A的度数是________________.答案:99°.解析:由EB=EC,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°,在⊙O中,∠BCD与∠A互补,所以∠A=180°-81°=99°.举一反三:【变式1】如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心、OB为半径的圆与AB交于点E,与AC切于点D.求证:DE∥OC;4.两圆位置的判定在各地中考试题中,单独考查点与圆、直线与圆、圆与圆的位置关系的题目一般多以选择题、填空题为主,在解答题、探究题中也经常作为主要考查目标,这部分内容不仅考查基础知识,而且考查综合运用能力.5.填空题(1)已知圆的直径为13 cm,圆心到直线的距离为6cm,那么直线和这个圆的公共点的个数是______.(2)两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______________.【变式2】已知两圆的圆心距为3,的半径为1.的半径为2,则与的位置关系为________.【变式3】在平面直角坐标系中如图所示,两个圆的圆心坐标分别是(3,0)和(0,-4),半径分别是和,则这两个圆的公切线有( )A.1条B.2条C.3条D.4条5.弧长的计算及其应用6.如图所示,在正方形铁皮下剪下一个圆形和扇形,使之恰好围成图中所示的一个圆锥模型,设圆的半径为r,扇形半径为R,则圆的半径与扇形半径之问的关系为( )A. B. C. D.6.图形面积的计算及其应用与圆有关的图形面积计算问题有圆的面积、扇形面积、圆柱及圆锥的侧面积与全面积.考查题型以选择题、填空题、解答题为主,考查重点是对有关公式的灵活运用.其中是不规则图形面积的计算,应首先将其转化为规则图形,然后再进行.7.沈阳市某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( )A. B.72 C.36 D.727.圆与其他知识的综合运用8.如图所示,已知灯塔A的周围7海里的范围内有暗礁,一艘渔船在B处测得灯塔A在北偏东60°的方向,向正东航行8海里到达C处后,又测得该灯塔在北偏东30°的方向,渔船如果不改变方向,继续向东航行,有没有触的礁危险?思路点拨:若渔船在向东航行的过程中的每一位置到A点的距离都大于7海里,则不会进入危险区域,所以只要计算航线上到A点最近的点与A点的距离.解:过点A作AD⊥BC交直线BC于D,设AD=x海里.∵∠ABD=90°-60°=30°,∠ACD=90°-30°=60°,∴AB=2x,AC=2CD.∴,,∴,.∵,∴,.即.这就是说当渔船航行到点D时,在以A为圆心、以7海里为半径的圆形暗礁内.所以,若不改变航向继续向正东航行,有触礁的危险.总结升华:解这类实际问题,只需求其最小值或最大值,与已知数据进行比较,从而得出正确的结论.9.小明要在半径为1 m、圆心角为60°的扇形铁皮中剪取一块面积尽可能大的正方形铁皮,小明在扇形铁皮上设计如图1和图2所示的甲、乙两种剪取方案,请你帮小明计算一下,按甲、乙两种方案剪取所得的正方形的面积,并估算哪个正方形的面积较大.(估算时取1.73,结果保留两个有效数字).思路点拨:要比较甲、乙两方案剪取的正方形的面积大小,关键在于求出边长.解:方案甲:如图,连接OH,设EF=x,则OE=2OF,,∴.在Rt△OGH中,OH2=GH2+OG2,即,解得.方案乙:如图所示,作于M,交于N,则M、N分别是和的中点,,连接.设,则,在中,,即,∴.若取,则,.∴x2>y2,即按甲方案剪得的正方形面积较大.总结升华:此类问题是生活中的一个实际问题,解决此类问题时,应先将实际问题转化为数学问题.10.已知射线OF交⊙O于B,半径OA⊥OB,P是射线OF上的一个动点(不与O、B重合),直线AP交⊙O于D,过D作⊙O的切线交射线OF于E.(1)如图所示是点P在圆内移动时符合已知条件的图形,请你在图中画出点P在圆外移动时符合已知条件的图形.(2)观察图形,点P在移动过程中,△DPE的边、角或形状存在某些规律,请你通过观察、测量、比较写出一条与△DPE的边、角或形状有关的规律.(3)点P在移动过程中,设∠DEP的度数为x,∠OAP的度数为y,求y与x的函数关系式,并写出自变量x的取值范围.思路点拨:如图所示,连接OD,因为DE是⊙O的切线,故∠ODE=90°,又OA=OD,故∠A=∠ODA,∠OAP+∠OPD=90°,∠ODA+∠ADC=90°,故∠OPD=∠ADC=∠EDP,△DEP是等腰三角形.解:(1)在BF上取点P,连AP交⊙O于点D,过D作⊙O切线,交OF于E,如图即为所求.(2)∠EDP=∠DPE,或ED=EP或△PDE是等腰三角形.(3)根据题意,得△PDE是等腰三角形,∴∠EDP=∠DPE,∴,在Rt△OAP中,,∴,自变量x的取值范围是且.。
初三数学圆心角试题答案及解析1.如图,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP,则MP+NP的最小值是 cm.【答案】5【解析】作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,再根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点可求出∠MON′的值,再由勾股定理即可求出MN′的长.解:作N关于AB的对称点N′,连接MN′交AB于点P,则点P即为所求的点,∵M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,∴∠MOB==60°,∠BON′==30°,∴∠MON′=90°,∵AB=10cm,∴OM=ON′=5cm,∴MN′===5cm,即MP+NP的最小值是cm.故答案为:5.点评:本题考查的是最短路线问题及圆心角、弧、弦的关系,根据M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,求出∠MON′=90°是解答此题的关键.2.如图,AB是⊙O的直径,AC是弦,D是AC弧的中点,若∠BAC=30°,则∠DCA= .【答案】30°【解析】根据直径所对的圆周角是直角,得∠ACB=90°,从而求得∠B的度数,再根据圆内接四边形的对角互补,得到∠D的度数,根据等弧对等弦及等边对等角即可得到则∠DAC=∠DCA,根据内角和公式即可求得其度数.解:连接BC.∵AB是半圆O的直径,∴∠ACB=90°;∵∠BAC=30°,∴∠B=60°,∴∠D=120°;∵D是弧AC的中点,∴DA=DC,∴∠DCA=∠DAC=(180°﹣120°)÷2=30°.点评:此题综合运用了圆周角定理的推论、圆内接四边形的性质、等弧对等弦以及等边对等角的知识.3.一条弦把圆分成1:5两部分,则这条弦所对的圆周角的度数是.【答案】30°或150°【解析】根据题意画出图形,得出两种情况,求出两段弧的度数,即可求出答案.解:连接OA、OB,∵一条弦AB把圆分成1:5两部分,如图,∴弧AC′B的度数是×360°=60°,弧ACB的度数是360°﹣60°=300°,∴∠AOB=60°,∴∠ACB=∠AOB=30°,∴∠AC′B=180°﹣30°=150°,故答案为:30°或150°.点评:本题考查了圆周角定理的应用,注意:在同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半.4.如图,AB,AC,BC是⊙O的三条弦,OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF,则弧AC=弧 =弧,∠ABC= °,△ABC是三角形.【答案】弧AC=弧AB=弧BC,∠ABC=60°,等边三角形【解析】由垂径定理得BE=EC,BD=AD;若连接OB、OC、OA,则可证得△OCE≌△OBE≌△OBD,再得△ABC是等边三角形,然后运用圆周角定理可解.解:连接OB,OC,OA∵OD⊥AB,OE⊥BC,由垂径定理知,BE=EC,BD=AD,∵OB=OC,∴△OCE≌△OBE≌△OBD,∴BE=EC=BD=AD,同理,AD=AF=CF=CE,∴AB=BC=AC,即△ABC是等边三角形,∴∠ABC=60°,弧AC=弧AB=弧BC.点评:本题利用了垂径定理,全等三角形的判定和性质,圆周角定理求解.5.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.【答案】60°【解析】由于等于半径,得到等边三角形,然后根据等边三角形的性质求解.解:如图,AB=OA=OB,所以△ABC为等边三角形,所以∠AOB=60°.故答案为60°.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.6.如图,已知AD是⊙O的直径,AD垂直于弦BC,垂足为点E.AB=AC吗?为什么?【答案】AB=AC【解析】由AD是⊙O的直径,AD垂直于弦BC,根据垂径定理即可得,则可证得AB=AC.解:AB=AC.理由:∵AD⊥BC,AD是⊙O的直径,(已知)∴,(垂直于弦的直径平分弦所对的弧)…(4分)∴AB=AC.(在同圆中,如果弧相等,那么弧所对的弦也相等)点评:此题考查了垂径定理.此题比较简单,解题的关键是注意数形结合思想的应用.7.如图,AB是⊙O的直径,点C、D在圆上,且=.(1)求证:AC∥OD.(2)若∠AOD=110°,求的度数.【答案】(1)见解析(2)40°【解析】(1)如图,连接AD.由圆心角、弧、弦间的关系,圆周角定理推知同位角∠CAB=∠DOB=2∠DAB,则易证得结论;(2)由邻补角的定义、圆心角、弧、弦的关系求得∠COD=∠DOB=70°,则∠AOC=∠AOD﹣∠COD=110°﹣70°=40°.(1)证明:如图,连接AD.∵=,∴=2∴∠CAB=2∠DAB.又∵∠DOB=2∠DAB,∴∠CAB=∠DOB,∴AC∥OD;(2)解:如图,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD﹣∠COD=110°﹣70°=40°,∴=40°.点评:本题考查了圆心角、弧、弦间的关系.三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.8.如图,在⊙O中,与相等,OD⊥BC,OE⊥AC,垂足分别为D、E,且OD=OE,那么△ABC是什么三角形,为什么?【答案】等边三角形【解析】根据圆心角、弧、弦的关系由=得到AB=BC,再由OD⊥BC,OE⊥AC,根据垂径定理和垂直的定义得到CE=AC,CD=BC,∠ODC=∠OEC=90°利用三角形全等的判定方法可得到Rt△ODC≌Rt△OEC(HL),则CD=CE,于是有BC=AC,则AB=AC=CB,即可得到△ABC为等边三角形.解:△ABC为等边三角形.理由如下:连OC,∵=,∴AB=BC,∵OD⊥BC,OE⊥AC,∴CE=AC,CD=BC,∠ODC=∠OEC=90°∵在Rt△ODC和Rt△OEC中,,∴Rt△ODC≌Rt△OEC(HL)∴CD=CE,∴BC=AC,∴AB=AC=CB,∴△ABC为等边三角形.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中两个圆心角、两条弧、两条弦中有一组量相等,那么其余各组量也分别相等.也考查了垂径定理和等边三角形的判定.9.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:BE=DE.【答案】见解析【解析】先连接BC、AD,由AB=CD可知=,故可得出=,故可得出BC=AD,由全等三角形的判定定理可得出△BEC≌△DEA,根据三角形的对应边相等即可得出结论.证明:先连接BC、AD,∵AB=CD,∴=,∵=,∴BC=AD,在△BEC与△DEA中,∵,∴△BEC≌△DEA(ASA),∴BE=DE.点评:本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,根据题意构造出全等三角形是解答此题的关键.10.已知:如图,AB、CD是⊙O的两条弦,AB=CD.求证:∠OBA=∠ODC.【答案】见解析【解析】过点O分别作OE⊥AB于点E,OF⊥CD于点F.先由圆心角、弧、弦的关系,得出OE=OF,再根据HL证明Rt△BOE≌Rt△DOF,进而得出∠OBA=∠ODC.证明:过点O分别作OE⊥AB于点E,OF⊥CD于点F.∵AB=CD,∴OE=OF.又∵BO=DO,∴Rt△BOE≌Rt△DOF(HL),∴∠OBA=∠ODC.点评:本题主要考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,本题还可以运用全等证明.11.如图,在⊙O中,AD=BC.(1)比较与的长度,并证明你的结论;(2)求证:DE=BE.【答案】见解析【解析】(1)由AD=BC可得出=,进而可得到=;(2)由(1)的结论可得出AB=CD,根据全等三角形的判定定理可得出△ADE≌△CBE,故DE=BE,进而可求出答案.证明:(1)∵AD=BC,∴=,∴=;(2)∵=,∴AB=CD,在△ADE与△CBE中,∵∠DAB=∠BCD,AD=BC,∠ADC=∠ABC,∴△ADE≌△CBE,∴DE=BE,∵AB=CD,∴DE=BE.点评:本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质、圆周角定理,涉及面较广,难易适中.12.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为()度.A.30B.45C.50D.60【答案】A【解析】根据已知条件“过圆心O作OD⊥BC交弧BC于点D、,∠ABC=30°”、及直角三角形OBE的两个锐角互余求得∠BOE=60°;然后根据同弧BD所对的圆周角∠DCB是所对的圆心角∠DOB的一半,求得∠DCB的度数.解:∵OD⊥BC,∠ABC=30°,∴在直角三角形OBE中,∠BOE=60°(直角三角形的两个锐角互余);又∵∠DCB=∠DOB(同弧所对的圆周角是所对的圆心角的一半),∴∠DCB=30°;故选A.点评:本题主要考查了圆周角定理,圆心角、弧、弦的关系.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.13.下列命题中为真命题的是()A.有一个角是40°的两个等腰三角形相似B.三点一定可以确定一个圆C.圆心角的度数相等,则圆心角所对的弧相等D.三角形的内心到三角形三边距离相等【答案】D【解析】A、不知道40°的角是底角还是顶角,无法判断相似;B、三点共线不能确定圆;C、要有在同圆或等圆中的条件;D、根据三角形内心的性质进行判断.解:当一个等腰三角形的顶角等于40°而另一个等腰三角形的底角是40°,则这两个三角形不相似,所以A错;只有不共线的三点才确定一个圆,所以B错;只有在同圆或等圆中,圆心角的度数相等,则圆心角所对的弧相等,所以C错;内心就是三角形角平分线的交点,则它到三角形三边的距离相等,所以D对.故选D.点评:有两个角对应相等的三角形相似.记住三点不共线确定一个圆;只有在同圆或等圆中,圆心角的度数相等,则圆心角所对的弧相等.14.下列说法正确的是()A.平分弦的直径垂直于弦B.三角形的外心到这个三角形的三边距离相等C.相等的圆心角所对的弧相等D.等弧所对的圆心角相等【答案】D【解析】利用三角形的外接圆与外心、垂径定理及圆心角、弧、弦之间的关系分别判断后即可得到正确的答案.解:A、平分弦(不是直径)的直径垂直于弦,故错误;B、三角形的外心大三角形三顶点的距离相等,故错误;C、同圆或等圆中,相等的圆心角所对的弧相等,故错误;D、等弧所对的圆心角相等,故正确,故选D.点评:本题考查了三角形的外接圆与外心、垂径定理及圆心角、弧、弦之间的关系,属于基础定理,应重点掌握.15.如图,在⊙O中,=,∠AOB=122°,则∠AOC的度数为()A.122°B.120°C.61°D.58°【答案】A【解析】直接根据圆心角、弧、弦的关系求解.解:∵,=,∴∠∠AOB=∠AOC=122°.故选A.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.下列命题正确的是()A.垂直于弦的直径平分弦B.相等的圆心角所对的弧相等C.任何一条直径都是圆的对称轴D.过三点可以作一个圆【答案】A【解析】根据垂径定理,圆幂性质以及确定圆的条件对各选项分析判断后利用排除法求解.解:A、垂直于弦的直径平分弦,正确,故本选项正确;B、应为在同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;C、应为任何一条直径所在直线都是圆的对称轴,故本选项错误;D、应为过不在同一直线上的三点可以作一个圆,故本选项错误.故选A.点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.17.如图,直线l交圆O于A、B两点,且将圆O分成3:1两段.若圆O半径为2cm,则△OAB的面积为()A.1cm2B.cm2C.2cm2D.4cm2【答案】C【解析】先用“等弧对等角”得出∠AOB=90°,又有半径,故可解.解:如图,由题意知,弦AB把圆周分为3:1两段弧,则弦AB所为的圆心角∠AOB=90°,∴△AOB是等腰直角三角形,∴AO=OB=2cm,∴S=×2×2=2cm2,△AOB故选C.点评:本题利用了一个周角为360°及等腰直角三角形的性质和面积公式求解.18.下列命题中:①平分弦的直径垂直于弦;②等弧所对弦相等;③一个数的绝对值不小于本身;④三角形的外心到三边的距离相等;⑤直径是圆的对称轴;⑥侧面展开图为半圆的圆锥,其轴截面是等边三角形.其中正确的是()A.①②③B.①③④C.②③⑥D.②④⑥【答案】C【解析】由平面图形的折叠及立体图形的表面展开图的特点以及数学知识的定理进行解题.解:①主要考查垂径定理推论的内容,平分弦的直径垂直于弦,这条弦不能是直径;④中三角形的外心是三角各边的垂直平分线的交点,它到三角形的三个顶点的距离相等;⑤直径是圆的对称轴不对,因为对称轴是直线,而直径是线段.正确的是:②③⑥,故选C.点评:本题主要考查学生对于常用的几个重要定理,三角形的外心的识记及理解.19.下列命题中,真命题的个数是()①等弧所对弦相等②平分弦的直径,垂直于这条弦③平移后对应点所连的线段平行且相等④用正三角形和正六边形两种图形可以实现镶嵌.A.1B.2C.3D.4【答案】B【解析】根据题意,对选项进行一一分析,选择正确答案.解:①等弧所对弦相等,正确;②平分弦(非直径)的直径,垂直于这条弦,错误;③平移后对应点所连的线段有可能在同一直线上,错误;④用正三角形和正六边形两种图形可以实现镶嵌.正六边形的每个内角是120°,正三角形的每个内角是60°.2×120°+2×60°=360°或120°+4×60°=360°,正确.故选:B.点评:本题需注意垂径定理中的弦是非直径的弦.两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.20.已知弧CD是⊙O的一条弧,点A是弧CD的中点,连接AC,CD.则()A.CD=2ACB.CD>2ACC.CD<2ACD.不能确定.【答案】C【解析】首先根据题意画出图形,然后由在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,即可求得AC=AD,然后利用三角形三边关系,即可求得答案.解:如图,∵点A是弧CD的中点,即=,∴AC=AD,∵CD<AC+AD,∴CD<2AC.故选C.点评:此题考查了圆心角、弧、弦的关系以及三角形三边关系.此题难度不大,注意掌握数形结合思想的应用是解此题的关键,注意掌握两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等定理的应用.。
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。