广东省2018中考数学总复习 第三章 函数 第5课时 二次函数(二)备考演练
- 格式:doc
- 大小:47.50 KB
- 文档页数:3
二次函数的图象性质及其应用明确目标〮定位考点二次函数及其图象的有关知识是中考的必考内容,对二次函数的解析式、抛物线的顶点坐标、开口方向、对称轴,函数的最值及抛物线与坐标轴的交点的考查以选择题、填空题为主。
对二次函数综合性问题的考查以解答题为主,尤其二次函数与几何的综合性问题,通常作为中考压轴题呈现。
归纳总结﹒思维升华 一、二次函数的图像和性质1、二次函数的定义一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
其中,x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数和常数项。
(1)二次函数的二次项系数不为0,且二次函数的表达式必须为整式。
(2)二次函数的一次项系数b 和常数项c 均可为零。
若b=0,则y=ax 2+c ; 若c=0,则y=ax 2+bx ; 若b=c=0,则y=ax 2.以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般形式。
2、二次函数的三种形式一般式:)0,,(2≠++=a c b a c bx ax y 为常数,且 顶点式:)0()(2≠+-=a k h x a y ; 交点式:)0)()((21≠--=a x x x x a y . 3、二次函数k h x a y +-=2)(的图像与性质一般地,抛物线k h x a y +-=2)(与2ax y =的形状相同,位置不同。
把抛物线2ax y =向上(下)向左(右)平移,可得到抛物线k h x a y +-=2)(。
平移的方向、距离要根据h ,k 的值来决定。
抛物线k h x a y +-=2)(有如下特点:(1)当0>a 时,开口向上,函数有最小值k ;当0<a 时,开口向下,函数有最大值k ; (2)对称轴是h x =;(3)顶点是),(k h .4、二次函数)0,,(2≠++=a c b a c bx ax y 为常数,且的图像与性质顶点是),(ab ac a b 4422--,对称轴是a b x 2-=,与y 轴的交点是),0(c 。
章节 第三章课题二次函数(二)课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解二次函数与一元二次方程之间的关系;2.会结合方程根的性质、一元二次方程根的判别式,判定抛物线与x 轴的交点情况;3.会利用韦达定理解决有关二次函数的问题。
4.会利用二次函数的图象及性质解决有关几何问题。
教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.二次函数与一元二次方程的关系:(1)一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.(2)二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx +c=0的根.(3)当二次函数y=ax 2+bx+c 的图象与 x 轴有两个交点时,则一元二次方程y=ax 2+bx+c 有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx +c =0有两个相等的实数根;当二次函数y =ax 2+bx+c 的图象与 x 轴没有交点时,则一元二次方程y=ax 2+bx+c 没有实数根 2.二次函数的应用: (1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值; (2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值. 3.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等. (二):【课前练习】1. 直线y=3x —3与抛物线y=x 2-x+1的交点的个数是( ) A .0 B .1 C .2 D .不能确定2. 函数2y ax bx c =++的图象如图所示,那么关于x 的方程20ax bx c ++=的根的情况是( )A .有两个不相等的实数根;B .有两个异号实数根C .有两个相等实数根;D .无实数根3. 不论m 为何实数,抛物线y=x 2-mx +m -2( ) A .在x 轴上方; B .与x 轴只有一个交点 C .与x 轴有两个交点; D .在x 轴下方4. 已知二次函数y =x 2-x —6·(1)求二次函数图象与坐标轴的交点坐标及顶点坐标; (2)画出函数图象;(3)观察图象,指出方程x 2-x —6=0的解;(4)求二次函数图象与坐标轴交点所构成的三角形的面积. 二:【经典考题剖析】1. 已知二次函数y=x 2-6x+8,求:(1)抛物线与x 轴J 轴相交的交点坐标; (2)抛物线的顶点坐标;(3)画出此抛物线图象,利用图象回答下列问题:①方程x 2-6x +8=0的解是什么? ②x 取什么值时,函数值大于0? ③x 取什么值时,函数值小于0?解:(1)由题意,得x 2-6x+8=0.则(x -2)(x -4)= 0,x 1=2,x 2=4.所以与x 轴交点为(2,0)和(4,0)当x 1=0时,y=8.所以抛物线与y 轴交点为(0,8);(2)∵2643,12214b ac b x y a a--=-=-===-⨯;∴抛物线的顶点坐标为(3,-1)(3)如图所示.①由图象知,x 2-6x+8=0的解为x 1=2,x 2=4.②当x <2或x >4时,函数值大于0;③当2<x <4时,函数值小于0.2. 已知抛物线y =x 2-2x -8,(1)求证:该抛物线与x 轴一定有两个交点;(2)若该抛物线与x 轴的两个交点分别为A 、B ,且它的顶点为P ,求△ABP 的面积.解:(1)证明:因为对于方程x 2-2x -8=0,其判别式△=(-2)2-4×(-8)-36>0,所以方程x 2-2x -8=0有两个实根,抛物线y= x 2-2x -8与x 轴一定有两个交点;(2)因为方程x 2-2x -8=0有两个根为x 1=2,x 2=4,所以AB=| x 1-x 2|=6.又抛物线顶点P 的纵坐标y P =244ac b a-=-9,所以S ΔABP=12 ·AB ·|y P |=273.如图所示,直线y=-2x+2与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90o,过C 作CD ⊥x 轴,垂足为D (1)求点A 、B 的坐标和AD 的长(2)求过B 、A 、D 三点的抛物线的解析式4.如图,在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发,沿BC 边向 点C 以2cm/s 的速度移动,回答下列问题:(1) 设运动后开始第t (单位:s )时,五边形APQCD 的面积为SDO BAC DC Q(单位:cm 2),写出S 与t 的函数关系式,并指出自变量t 的取值范围 (2)t 为何值时S 最小?求出S 的最小值5. 如图,直线334y x k =+(0)k >与x 轴、y 轴分别交于A 、B 两点,点P 是线段AB 的中点,抛物线283y x bx c =-++经过点A 、P 、O (原点)。
广东省2018中考数学总复习第三章函数第4课时二次函数(一)备考演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省2018中考数学总复习第三章函数第4课时二次函数(一)备考演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省2018中考数学总复习第三章函数第4课时二次函数(一)备考演练的全部内容。
第三章函数第4课时二次函数(一)【备考演练】一、选择题1.二次函数y=2(x-1)2+3的图象的顶点坐标是( )A.(1,3) B.(-1,3)C.(1,-3) D.(-1,-3)2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )A.a>0B.当-1<x<3时,y>0C.c<0D.当x≥1时,y随x的增大而增大3.二次函数y=x2-2x-3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,-3)B.顶点坐标是(1,-3)C.函数图象与x轴的交点坐标是(3,0)、(-1,0)D.当x<0时,y随x的增大而减小4.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=-错误!与一次函数y=bx-c在同一坐标系内的图象大致是()A B C D二、填空题1.(2017·广州)当__________时,二次函数y=x2-2x+6有最小值__________.2.抛物线y=x2+2x+3的顶点坐标是__________.3.已知二次函数y=(x-2)2+3,当x__________时,y随x的增大而减小.4.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-错误!(x-4)2+3,由此可知铅球推出的距离是__________m.第4题图第5题图5.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为__________.三、解答题1.若抛物线的顶点为(1,-2),且过点(2,3).求这个二次函数关系式.2。
课时训练(十五)二次函数的图象和性质(二)(限时:50分钟)|夯实基础|1.[2018·毕节]将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5B.y=(x+2)2+5C.y=(x-2)2-5D.y=(x-2)2+52.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2018的值为()A.2015B.2016C.2017D.20193.[2017·枣庄]已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大4.若抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A.m≤2B.m<-2C.m>2D.0<m≤25.若二次函数y=x2+mx图象的对称轴是直线x=2,则关于x的方程x2+mx=5的解为()A.x1=1,x2=5B.x1=1,x2=3C.x1=1,x2=-5D.x1=-1,x2=56.二次函数y=ax2+bx的图象如图K15-1,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()图K15-1A.-3B.3C.-6D.97.已知二次函数y=ax2+bx+c的图象如图K15-2所示,则|a-b+c|+|2a+b|=()图K15-2A.a+bB.a-2bC.a-bD.3a8.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.9.[2018·淮安]将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.10.[2017·株洲]如图K15-3,二次函数y=ax2+bx+c图象的对称轴在y轴的右侧,其图象与x轴交于点A(-1,0),点C(x2,0),且与y轴交于点B(0,-2),小强得到以下结论:①0<a<2;②-1<b<0;③c=-1;④当|a|=|b|时,x2>√5-1.以上结论中,正确的结论序号是.图K15-311.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点..(2)若该抛物线的对称轴为直线x=52①求该抛物线所对应的函数表达式;②把该抛物线沿y轴向上平移多少个单位后,得到的抛物线与x轴只有一个公共点?|拓展提升|12.[2018·永州]如图K15-4①,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B,C两点,与y轴交于点E(0,3).(1)求抛物线的表达式.(2)已知点F(0,-3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小?如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图K15-4②,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M,N(点M,N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.图K15-413.[2018·怀化]如图K15-5,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的表达式和直线AC的表达式.(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标.(3)试探究:在抛物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.图K15-5参考答案1.A2.D[解析] ∵抛物线y=x2-x-1与x轴的一个交点为(m,0),∴m2-m-1=0,∴m2-m=1,∴m2-m+2018=1+2018=2019.3.D[解析] 将a=1代入原函数表达式,令x=-1,求出y=2,由此得出A选项不符合题意;将a=-2代入原函数表达式,得y=-2x2+4x-1,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;利用公式法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;利用公式法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.4.A[解析] 由题意可知Δ=4-4(m-1)≥0,∴m≤2,故选A.=2,解得m=-4,∴关于x的方程x2+mx=5可化为5.D[解析] ∵二次函数y=x2+mx图象的对称轴是直线x=2,∴-m2x2-4x-5=0,即(x+1)(x-5)=0,解得x1=-1,x2=5.6.B[解析] ∵抛物线的开口向上,顶点的纵坐标为-3,=-3,即b2=12a.∴a>0,-m24m∵关于x的一元二次方程ax2+bx+m=0有实数根,∴Δ=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m的最大值为3., 7.D[解析] 根据二次函数y=ax2+bx+c的图象可知,a>0,又抛物线过坐标原点,∴c=0.∵抛物线的对称轴为直线x=-m2m <1,解得-2a<b<0,∴|a-b+c|=a-b,|2a+b|=2a+b,∴|a-b+c|+|2a+b|=a-b+2a+b=3a.∴0<-m2m8.m>1[解析] 根据抛物线y=x2+2x+m与x轴没有公共点可知,方程x2+2x+m=0没有实数根,∴判别式Δ=22-4×1×m<0,∴m>1. 9.y=x 2+210.①④ [解析] 由图象可知抛物线开口向上,∴a>0,由抛物线经过A (-1,0),B (0,-2),对称轴在y 轴的右侧可得{m -m +m =0,m =−2,-m 2m >0,由此可得a-b=2,b<0,故a=2+b<2,综合可知0<a<2.将a=b+2代入0<a<2中,得0<b+2<2,可得-2<b<0. 当|a|=|b|时,因为a>0,b<0,故有a=-b.又a-b=2,可得a=1,b=-1,故原函数为y=x 2-x-2,当y=0时,即有x 2-x-2=0,解得x 1=-1,x 2=2,x 2=2>√5-1. 故答案为①④.11.解:(1)证明:y=(x-m )2-(x-m )=x 2-(2m+1)x+m 2+m , ∵Δ=(2m+1)2-4(m 2+m )=1>0,∴不论m 为何值,该抛物线与x 轴一定有两个公共点.(2)①∵x=--(2m +1)2=52,∴m=2,∴抛物线所对应的函数表达式为y=x 2-5x+6.②设抛物线沿y 轴向上平移k 个单位后,得到的抛物线与x 轴只有一个公共点,则平移后抛物线所对应的函数表达式为y=x 2-5x+6+k.∵抛物线y=x 2-5x+6+k 与x 轴只有一个公共点, ∴Δ=25-4(6+k )=0,∴k=14,即把该抛物线沿y 轴向上平移14个单位后,得到的抛物线与x 轴只有一个公共点.12.解:(1)设所求二次函数的表达式为y=a (x-1)2+4,∵抛物线与y 轴交于点E (0,3),∴a (0-1)2+4=3,解得a=-1,∴所求二次函数的表达式为y=-(x-1)2+4,即y=-x 2+2x+3.(2)存在一点G ,使得EG+FG 最小. ∵抛物线的顶点A 的坐标为(1,4),∴与点E (0,3)关于抛物线对称轴x=1成轴对称的点为E'(2,3).如图①,连接E'F ,设直线E'F 的函数表达式为y=kx+b , ∴{2m +m =3,m =−3,解得{m =3,m =−3,即y=3x-3, 当x=1时,y=0,即点G (1,0),使得EG+FG 最小.(3)如图②,连接AN ,BN ,过点N 作NT ∥y 轴交AB ,x 轴分别于点S ,T. 在y=-x 2+2x+3中,当y=0时,x 1=-1,x 2=3, 则B (3,0).∵A (1,4),B (3,0),∴AB=2√5. 设直线AB 的函数表达式为y=mx+t ,∴{m +m =4,3m +m =0,解得{m =−2,m =6,即y=-2x+6. 设N (n ,-n 2+2n+3),则S (n ,-2n+6),∴NS=-n 2+4n-3. ∵S △ABN =S △ANS +S △BNS ,∴12AB ·MN=12NS ·(3-1),∴MN=√55(-n 2+4n-3)=-√55(n 2-4n+3)=-√55(n-2)2+√55,∴当n=2,即N (2,3)时,MN 最大,为√55.∵PN ⊥AB ,∴设直线PN 的函数表达式为y=12x+c ,且N (2,3),∴c=2,则y=12x+2, ∴点P (0,2),∴S △OPN =12OP ·x N =12×2×2=2.13.[解析] (1)利用待定系数法求抛物线和直线的表达式.(2)根据轴对称确定最短路线问题,作点D 关于y 轴的对称点D 1,连接BD 1,BD 1与y 轴的交点即为所求的点M ,然后求出直线BD 1的表达式,再求解即可.(3)可分两种情况(①以C 为直角顶点,②以A 为直角顶点)讨论,然后根据两直线垂直的关系求出P 点所在直线的表达式,将直线和抛物线的表达式联立求出点P 的坐标.解:(1)将点A (-1,0)和B (3,0)的坐标代入抛物线y=ax 2+2x+c 中,可得{m -2+m =0,9m +6+m =0,解得{m =−1,m =3,∴抛物线的表达式为y=-x 2+2x+3. 令x=0,则y=3,∴点C 的坐标为(0,3). 设直线AC 的表达式为y=kx+b , 则{-m +m =0,m =3,解得{m =3,m =3.∴直线AC 的表达式为y=3x+3.(2)如图,作点D 关于y 轴的对称点D 1,连接BD 1交y 轴于点M ,则点M 即为所求.由抛物线表达式可得D 点的坐标为(1,4),则D 1的坐标为(-1,4). 设直线BD 1的表达式为y=k 1x+b 1,则{3m 1+m 1=0,-m 1+m 1=4,解得{m 1=−1,m 1=3,则直线BD 1的表达式为y=-x+3,令x=0可得y=3,则点M 的坐标为(0,3). (3)存在.如图①,当△ACP 以点C 为直角顶点时,易得直线CP 的表达式为y=-13x+3. 由{m =−13m +3,m =−m 2+2m +3,得{m 1=0,m 1=3(舍去){m 2=73,m 2=209, ∴P 点坐标为73,209.如图②,当△ACP 是以点A 为直角顶点时,易得直线AP 的表达式为y=-13x-13.由{m =−13m -13,m =−m 2+2m +3,得{m 1=−1,m 1=0(舍去){m 2=103,m 2=−139, ∴P 点坐标为103,-139. 综上,符合条件的点P 的坐标为73,209或103,-139.。
第三章函数第5课时二次函数(二)【备考演练】一、选择题1.抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为( )A.3 B.9 C.15 D.-152.将抛物线y=x2-4x-4向左平移三个单位,再向上平移五个单位,得到抛物线为( ) A.y=(x+1)2-13 B.y=(x-5)2-3C.y=(x-5)2-13 D.y=(x+1)2-33.在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后,再沿y轴向下平移1个单位长度,得到图象的顶点坐标是( )A.(-1,1) B.(1,-2)C.(2,-2) D.(1,-1)二、填空题1.二次函数的图象如图所示.当y<0时,自变量x的取值范围是__________.2.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x三、解答题1.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?2.(2017·龙东) 如图,已知抛物线y =-x 2+mx +3与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线y =-32x +3交于C 、D 两点.连接BD 、AD.(1)求m 的值.(2)抛物线上有一点P ,满足S △ABP =4S △ABD ,求点P 的坐标.四、能力提升(2017·广州) 已知抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4. 1.求y 1的解析式;2.若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式.答案:一、1.C 2.D 3.B二、1.x <-1,x >3 2.0<x <4三、1.解:(1)设y 与x 满足的函数关系式为:y =kx +b.由题意可得:⎩⎪⎨⎪⎧36=24k +b21=29k +b解得⎩⎪⎨⎪⎧k =-3b =108故y 与x 的函数关系式为:y =-3x +108.(2)每天获得的利润为:P =(-3x +108)(x -20)=-3x 2+168x -2 160=-3(x -28)2+192.故当销售价定为28元时,每天获得的利润最大. 2.解:(1)抛物线y =-x 2+mx +3过(3,0),0=-9+3m +3,m =2(2)解方程组⎩⎪⎨⎪⎧y =-x 2+2x +3y =32x +3,得⎩⎪⎨⎪⎧x 1=0y 1=3 ,⎩⎪⎨⎪⎧x 2=72y 2=-94,∴D(72,-94), ∵S △ABP =4S △ABD ,∴12AB ×||y P =4×12AB ×94,∴||y P =9,y P =±9,当y =9时,-x 2+2x +3=9,无实数解,当y =-9时,-x 2+2x +3=-9,x 1=1+13,x 2=1-13, ∴P(1+13,-9)或P(1-13,-9)四、解:1.∵抛物线y 1=-x 2+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4.∴B(-1,1)或(-1,9),∴-m 2×(-1)=-1,4×(-1)n -m24×(-1)=1或9,解得m =-2,n =0或8,∴y 1的解析式为y 1=-x 2-2x 或y 1=-x 2-2x +8;2.当y 1的解析式为y 1=-x 2-2x 时,抛物线与x 轴得交点为顶点(-1,0),不合题意;当y 1=-x 2+2x +8时,解-x 2+2x +8=0得x =-4或2, ∵y 2随着x 的增大而增大,且过点A(-1,5),∴y 1与y 2都经过x 轴上的同一点(-4,0),把(-1,5),(-4,0)代入得⎩⎪⎨⎪⎧-k +b =5-4k +b =0,解得⎩⎪⎨⎪⎧k =53b =203;∴y 2=53x +203.。
第三章函数
第5课时二次函数(二)
【备考演练】
一、选择题
1.抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为( )
A.3 B.9 C.15 D.-15
2.将抛物线y=x2-4x-4向左平移三个单位,再向上平移五个单位,得到抛物线为( ) A.y=(x+1)2-13 B.y=(x-5)2-3
C.y=(x-5)2-13 D.y=(x+1)2-3
3.在同一平面直角坐标系内,将函数y=2x2+4x+1的图象沿x轴方向向右平移2个单位长度后,再沿y轴向下平移1个单位长度,得到图象的顶点坐标是( )
A.(-1,1) B.(1,-2)
C.(2,-2) D.(1,-1)
二、填空题
1.二次函数的图象如图所示.
当y<0时,自变量x的取值范围是__________.
2.已知二次函数y=ax2+bx
则当y<5时,x的取值范围是____________.
三、解答题
1.在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.
(1)求y与x满足的函数关系式(不要求写出x的取值范围);
(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?
2.(2017·龙东) 如图,已知抛物线y =-x 2
+mx +3与x 轴交于点A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),抛物线与直线y =-3
2
x +3交于C 、D 两点.连接BD 、AD.
(1)求m 的值.
(2)抛物线上有一点P ,满足S △ABP =4S △ABD ,求点P 的坐标.
四、能力提升
(2017·广州) 已知抛物线y 1=-x 2
+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点B 的距离是4. 1.求y 1的解析式;
2.若y 2随着x 的增大而增大,且y 1与y 2都经过x 轴上的同一点,求y 2的解析式.
答案:
一、1.C 2.D 3.B
二、1.x <-1,x >3 2.0<x <4
三、1.解:(1)设y 与x 满足的函数关系式为:y =kx +b.
由题意可得:⎩
⎪⎨⎪⎧36=24k +b
21=29k +b
解得⎩
⎪⎨⎪⎧k =-3b =108
故y 与x 的函数关系式为:y =-3x +108.
(2)每天获得的利润为:P =(-3x +108)(x -20)=-3x 2+168x -2 160=-3(x -28)2
+192.故当销售价定为28元时,每天获得的利润最大.
2.解:(1)抛物线y =-x 2
+mx +3过(3,0),
0=-9+3m +3,m =2
(2)解方程组⎩⎪⎨⎪⎧y =-x 2
+2x +3y =32
x +3,得⎩⎪⎨⎪⎧x 1=0
y 1=3 ,
⎩
⎪⎨⎪⎧x 2=
72y 2=-
9
4
,∴D(72,-9
4),
∵S △ABP =4S △ABD ,∴12AB ×||y P =4×12AB ×9
4,∴||y P =9,y P =±9,
当y =9时,-x 2
+2x +3=9,无实数解,
当y =-9时,-x 2
+2x +3=-9,x 1=1+13,x 2=1-13, ∴P(1+13,-9)或P(1-13,-9)
四、解:1.∵抛物线y 1=-x 2
+mx +n ,直线y 2=kx +b ,y 1的对称轴与y 2交于点A(-1,5),点A 与y 1的顶点
B 的距离是4.∴B(-1,1)或(-1,9),∴-m 2×(-1)=-1,4×(-1)n -m
2
4×(-1)
=1或9,解得m =-2,
n =0或8,∴y 1的解析式为y 1=-x 2-2x 或y 1=-x 2
-2x +8;
2.当y 1的解析式为y 1=-x 2-2x 时,抛物线与x 轴得交点为顶点(-1,0),不合题意;当y 1=-x 2
+2x +8
时,解-x 2
+2x +8=0得x =-4或2,
∵y 2随着x 的增大而增大,且过点A(-1,5),
∴y 1与y 2都经过x 轴上的同一点(-4,0),把(-1,5),(-4,0)代入得⎩⎪⎨⎪⎧-k +b =5
-4k +b =0
,
解得⎩
⎪⎨⎪⎧k =53b =
20
3
;∴y 2=53x +20
3.。