人教版初一数学模拟考试1
- 格式:doc
- 大小:371.56 KB
- 文档页数:6
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记为2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810× 3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 4. 下列各数中,最小数是( )A. 0B. 153C. ()32−D. 23−5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+6. 下列各组数中,互为相反数是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种 8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )的的A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +>9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 2710. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为( )A. 1−B. 0C. 1D. 2二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 12. 1363−÷×=______. 13. 比较大小:25−______1−(填“>”或“<”). 14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津为的是湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −0.3 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、单选题1. 水位上升2米记2+米,那么水位下降3米记为( )A. 3−米B. 2−米C. 3+米D. 2+米 【答案】A【解析】【分析】本题考查正负数的意义,根据规定方向为正相反方向为负直接求解即可得到答案;【详解】解:∵上升2米记为2+米,∴下降3米记为3−米,故选:A .2. 我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为11800千米,用科学记数法表示为( )A. 51.1810×B. 311.810×C. 211810×D. 41.1810×【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法:10n a ×(110a ≤<,n 为正整数),先确定a 的值,再根据小数点移动的数位确定n 的值即可解答,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:411800 1.1810=×,故选:D .3. 如图,数轴上点P 表示的有理数可能是( )A. 1.6−B. 1.4−C. 0.6−D. 0.4− 【答案】A【解析】【分析】根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点A 在−2与1−之间,且靠近−2,所以点A 表示的数可能是 1.6−.故选:A .为【点睛】本题考查了数轴上的点表示有理数.题目比较简单.原点左边的点表示负数,原点右边的点表示正数.4. 下列各数中,最小的数是( )A. 0B. 153C. ()32−D. 23−【答案】D【解析】【分析】本题考查了有理数的乘方、有理数的比较大小,先计算出()32−、23−,再根据有理数的大小比较法则:正数大于0,负数小于0,正数大于负数,两个负数进行比较,绝对值大的反而小,进行比较即可得出答案,熟练掌握有理数的大小比较法则是解此题的关键.【详解】解:()328−=−,239−=−, 88−= ,99−=,98>,()32305321∴−<<−<,故选:D .5. 在计算11()()23++−时,按照有理数加法法则,需转化成( ) A. 11()23+− B. 11()23++ C. 11()23−− D. 1123 −+【答案】A【解析】【分析】根据有理数的加法法则计算即可求解. 【详解】解:1123 ++− =1123 +− , 故选:A .【点睛】本题考查了有理数的加法,关键是熟练掌握异号两数相加的计算法则.6. 下列各组数中,互为相反数的是( )A. 2与12B. ()21−与1C. 21−与()21−D. 2与|2|− 【答案】C【解析】【分析】本题主要考查相反数以及绝对值,根据相反数以及绝对值的定义解决此题,熟练掌握相反数以及绝对值的定义是解决本题的关键.【详解】解:A 、2与12互为倒数,故此选项不符合题意;B 、()211−= ,()21∴−与1相等,故此选项不符合题意; C 、211−=− ,()211−=,∴21−与()21−互为相反数,故此选项符合题意; D 、|2|2−=,2∴与|2|−相等,故此选项不符合题意; 故选:C .7. 小明和同学们共买了4种标注质量为450g 的食品各一袋,他们对这4种食品的实际质量进行了检测,用正数表示超过标注质量的克数,用负数表示不足标注质量的克数,检测结果如下表:食品种类 第一种 第二种 第三种 第四种检测结果 +10 -20 +15 -15则这四种食品中质量最标准的是( )A. 第一种B. 第二种C. 第三种D. 第四种【答案】A【解析】【分析】求出各种高于或低于标准质量的绝对值,根据绝对值的大小做出判断.【详解】解:∵|+10|<|-15|=|+15|<|20|,∴第1种最接近标准质量.故选:A .【点睛】本题主要考查正数、负数的意义,理解绝对值的意义是正确判断的前提.8. 有理数a ,b 在数轴上的位置如图,那么下列选项正确的是( )A. ||||a b −<−B. 0ab >C. 22a b >D. 0a b +> 【答案】A【解析】【分析】根据原点左边的数为负数,原点右边的数为正数.从图中可以看出01a <<,1b <−,||||b a >,再选择即可.【详解】解:由数轴可得:01a <<,1b <−,||||b a >,∴||||a b <−,故A 符合题意;0ab <,故B 不符合题意;22a b <,故C 不符合题意;0a b +<,故D 不符合题意;故选:A .【点睛】本题考查了数轴,绝对值和有理数的运算,数轴上右边表示的数总大于左边表示的数. 9. 定义一种新运算:*a b ab b =−.例如:1*21220=×−=.则()()4*2*3 −− 的值为( )A. 3−B. 9C. 15D. 27【答案】C【解析】【分析】先求出()2*3−值,再计算()()4*2*3 −− 即可.【详解】解:∵*a b ab b =−,∴()2*3−=()()233×−−−=63−+=3−,∴()()4*2*3 −−=()()4*3−−=()()()433−×−−−=123+=15.故选:C .【点睛】本题考查了新定义下的有理数运算,熟练掌握运算法则是解题的关键.10. 设a 是绝对值最小的数,b 是最小的正整数,c 是最大的负整数,则a 、b 、c 三数之和为()A. 1−B. 0C. 1D. 2【答案】B 的【分析】绝对值最小的数是0,最小的正整数是1,最大的负整数是1−,依此可得a b c 、、,再相加可得三数之和.【详解】解:由题意可知:011a b c ===−,,,∴()0110a b c ++=++−=.故选:B .【点睛】本题主要考查了有理数的加法,此题的关键是知道绝对值最小的数是0,最小的正整数是1,最大的负整数是1−.二、填空题 11. 23−的相反数是__________,23−的绝对值是________. 【答案】 ①. 23−②. 23 【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据负数的绝对值是它的相反数,可得一个负数的绝对值. 【详解】解:2233−=,23的相反数是23−,23−的绝对值是23. 故答案为(1)23−;(2)23. 【点睛】本题考查了相反数、绝对值的定义.a 的相反数是a −,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 12. 1363−÷×=______. 【答案】16− 【解析】【分析】根据有理数的乘除法运算即可. 【详解】解:原式111=236−×=−, 故答案为:16−. 【点睛】本题主要考查有理数的乘除运算,按照乘除为同级运算从左至右求解.13. 比较大小:25−______1−(填“>”或“<”).【解析】【分析】本题考查了有理数的大小比较;根据两个负数比较大小,绝对值大的反而小可得答案. 【详解】解:∵215−<−, ∴215−>−, 故答案为:>.14. 近似数1.35是由数a 四舍五入得到的,那么数a 的取值范围是________.【答案】1.345≤a <1.355【解析】【分析】根据近似数1.35精确到百分位,是从千分位上的数字四舍五入得到的,若干分位上的数字大于或等于5,则百分位上的数字为4;若千分位上的数字小于5,则百分位上的数字为5,即可得出答案.【详解】解:∵近似数1.35是由数a 四舍五入得到的,∴数a 的取值范围是1.345≤a <1.355;故答案为:1.345≤a <1.355.【点睛】本题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度. 15. 已知|x |=2,|y |=6,若x +y <0,则x ﹣y =_____.【答案】8或4##4或8【解析】【分析】先根据绝对值的含义求解,x y 的值,再根据0,x y +< 分两种情况讨论即可.【详解】解:∵|x |=2,|y |=6,∴x =±2,y =±6,∵x +y <0,∴当x =2,y =﹣6时,x ﹣y =2+6=8;当x =﹣2,y =﹣6时,x ﹣y =﹣2+6=4;故答案为:8或4.【点睛】本题考查的是绝对值的含义,有理数加法的符号的确定,代数式的值,根据绝对值的含义求解,x y 的值,再分类是解本题的关键.16. 如图,这是一种数值转换机的运算程序,若输入的数为5,则第2021次输出的数是_____.【答案】4【解析】【分析】由程序图可得第一次输出的数为8,第二次输出的数为4,第三次输出的数为2,第四次输出的数为1,第五次输出的数为4,由此可得规律,进而问题可求解.【详解】解:由程序图可得第一次输出的数为5+3=8,第二次输出的数为1842×=,第三次输出的数为1422×=,第四次输出的数为1212×=,第五次输出的数为1+3=4,第六次输出的数为1422×=,……;由此可得规律为从第二次开始每三次一循环, ∴()202113673.......1−÷=, ∴第2021次输出的数是4;故答案为4.【点睛】本题主要考查有理数的运算及数字规律问题,解题的关键是根据程序图得到数字的一般规律即可.17. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,则22022()a b cd m +−+=__. 【答案】15【解析】【分析】根据题意得到0a b +=,1cd =,216m =,代入代数式计算即可.【详解】解:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为4,0a b ∴+=,1cd =,216m =,22022()a b cd m ∴+−+20220116=×−+0116=−+15=,故答案为:15.【点睛】此题考查了代数式的求值,熟练掌握相反数、倒数、绝对值等知识是解题的关键.18. 已知数轴上的点A ,B 表示的数分别为2−,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.【答案】 2.5−或4.5【解析】【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.三、解答题19. 已知有理数:-0.5,0,2,122−,( 3.5)−−,2−. (1)把以上各数在下列数轴上用点表示出来:(2)把这些数按照从小到大的顺序排列,并用“<”号连接.【答案】(1)见解析 (2)()1220.502 3.52−<−<−<<<−− 【解析】【分析】(1)利用数轴上表示有理数的方法表示即可.(2)根据数轴上有理数的特点即可求解.【小问1详解】解:0.5−,0,2,122−,( 3.5)−−,2−在数轴上表示为:【小问2详解】由(1)数轴可得:()1220.502 3.52−<−<−<<<−−. 【点睛】本题考查了用数轴表示有理数及利用数轴比较有理数的大小,熟练掌握数轴上有理数的特点:左边的数比右边小是解题的关键.20. 计算:(1)()()3996−−−+−;(2)()2023223145−+÷−−−×;(3)115486812 −+×; (4)()()32482233−−−÷×−. 【答案】(1)3−(2)27−(3)22(4)11【解析】【分析】(1)根据有理数加减运算法则计算即可求解;(2)根据有理数的运算法则计算即可求解;(3)利用有理数的乘法分配律进行计算即可求解;(4)根据有理数的运算法则计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【小问1详解】解:原式3996=−+−36=-,3=−;【小问2详解】解:原式()43145=−+÷−−×()4320=−+−−,720=−−,27=−;的【小问3详解】 解:原式1154848486812=×−×+× 8620=−+,220=+,22=;【小问4详解】解:原式()168398=−−−×× ()1639=−−−×,()1627=−−−,1627=−+,11=.21. 阅读下面的解题过程,再解答问题.因为a ÷b 与b ÷a 互为倒数.所以在计算123724348 −÷−+的值时可采用下列方法: 解:因为237134824 −+÷−=()23724348 −+×−=()()()237-24--24+-24348××× =-16+18-21=-19, 所以,原式=119− . 根据上述方法,计算:13511760461512 −÷+−−. 【答案】116−【解析】 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:111()()41535761260+−−÷− 11()(60)415357126=+−−×− 45504435=−−++16=−, 则13511716046151216 −÷+−−=−. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22. 某足球守门员练习折返跑,从初始位置出发,向前跑记作正数,向后跑记作负数,他的练习记录如下(单位:m):+5,-3,+10,-8,-6,+13,-10(1)守门员最后是否回到了初始位置?(2)守门员离开初始位置达到10m 以上(包括10m)的次数是多少?【答案】(1)守门员最后没有回到初始位置;(2)2次【解析】【分析】(1)根据题意可把记录的数据进行相加,然后问题可求解;(2)根据题意分别得出每次离初始位置的距离,进而问题可求解.【详解】解:(1)由题意得:(+5)+(-3)+(+10)+(-8)+(-6)+(+13)+(-10)=1(m).答:守门员最后没有回到初始位置.(2)第一次离开初始位置的距离为5m ,第二次离开初始位置的距离为5-3=2m ,第三次离开初始位置的距离为2+10=12m ,第四次离开初始位置的距离为12-8=4m ,第五次离开初始位置的距离为4-6=-2m ,第六次离开初始位置的距离为-2+13=11m ,第七次离开初始位置的距离为11-10=1m ,∴守门员离开初始位置达到10m 以上(包括10m)的次数是2次.【点睛】本题主要考查有理数加减混合运算的应用,熟练掌握有理数的加减运算是解题的关键. 23. 观察下列三行数:2,-4, 8,-16, 32,-64,… ①0,-6, 6,-18, 30,-66,… ②-1, 2,-4, 8,-16, 32,… ③(1)第①行的第n 个数是_______(直接写出答案,n 为正整数)(2)第②、③行的数与第①行相对应的数分别有什么关系?(3)取每行的第8个数,计算这三个数的和.【答案】(1)2n −−()(2)第②行的数是第①行相对应的数减2;第③行的数是第①行相对应的数乘以0.5−()(3)每行的第8个数的和是386−【解析】【分析】(1)第①行的每个数是2−的乘方的相反数,其幂指数为数的个数n ;(2)将第①行各项的数减2即得第②行的数,第③行数等于第①行数相应的数乘以0.5−(),即可求解;(3)分别找出每行第8个数,进而计算这三个数的和即可.【小问1详解】解:首先2,4,8,16 很显然后者是前者2倍.由各数符号是交替出现,故考虑到数值的变化可以用(2)n −−表示.【小问2详解】解:通过比较第①、②、③的数据可知:第②行数等于第①行数相应的数减去2,第③行数等于第①行数相应的数乘以0.5−(); 【小问3详解】解:每行的第8个数的和是()()()()88822220.5 −−+−−−+−−×−()2562582560.5=−−−×−386=−.【点睛】本题主要考查了探索数字变化规律,找规律时,善于发现数字之间的共同点,或者是隐藏关系,培养学生的数感是解题的关键.24. 在庆祝新中国72周年华诞的重要时刻,电影《长津湖》上映可谓恰逢其时、意义重大.电影《长津湖》讲述了中国人民志愿军第9兵团某部穿插七连参加长津湖战役的过程,展现了人民军队炽烈的爱国情怀、对党和人民的无比忠诚,生动诠释了伟大的抗美援朝精神.昆明市9月30日该电影的售票量为1.3万的张,10月1日到10月7日售票的变化如下表(正数表示售票量比前一天多,负数表示售票量比前一天少):日期1日2日3日4日5日6日7日售票量的变化单位(万张)+0.6 +0.1 −03 −0.2 0.4 −0.2 +0.1(1)这7天中,售票量最多的是10月日,售票量最少的是10月日;(2)若平均每张票价为60元,这7天昆明市《长津湖》的票房共多少万元?【答案】(1)2;4 (2)750万元【解析】【分析】(1)把表格中的数据相加,即可得出结论;(2)根据表格得出1日到7日每天的人数,相加后再乘以60即可得到结果.【小问1详解】10月1日的售票量为:1.3+0.6=1.9(万张);10月2日的售票量为:1.9+0.1=2(万张);10月3日的售票量为:2-0.3=1.7(万张);10月4日的售票量为:1.7-0.2=1.5(万张);10月5日的售票量为:1.5+0.4=1.9(万张);10月6日的售票量为:1.9-0.2=1.7(万张);10月7日的售票量为:1.7+0.1=1.8(万张);所以售票量最多的是10月2日,售票量最少的是10月4日;故答案为:2;4;【小问2详解】由题意得,7天的售票量(单位:万张)分别为:1.9,2.0,1.7,1.5,1.9,1.7,1.8则7日票房:60(1.9+2.0+1.7+1.5+1.9+1.7+1.8)10000=7500000××(元)答:这7天昆明《长津湖》票房共750万元【点睛】本题考查了正数和负数以及有理数的混合运算,掌握正数和负数表示相反意义的量是解答本题的关键..。
七年级数学试卷模拟题人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. 公式D. -公式解析:相反数是指绝对值相等,正负号相反的两个数。
所以 -2的相反数是2,答案为A。
2. 下列式子中,是单项式的是()A. 公式B. 公式C. 公式D. 公式解析:单项式是只有一个项的整式,即由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
A选项公式是多项式;C选项公式是分式;D选项公式是多项式。
而公式是单项式,答案为B。
3. 计算公式的结果是()A. -2B. 2C. 8D. -8解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
公式,所以公式,答案为B。
4. 化简公式的结果是()A. 公式B. 公式C. 公式D. 公式解析:合并同类项,公式,公式,所以结果为公式,答案为A。
5. 方程公式的解是()A. 公式B. 公式C. 公式D. 公式解析:首先将方程公式移项,得到公式,即公式,然后两边同时除以2,解得公式,答案为C。
6. 一个角的度数是公式,则它的余角的度数是()A. 公式B. 公式C. 公式D. 公式解析:如果两个角的和为公式,那么这两个角互为余角。
所以公式,答案为A。
7. 若公式是关于公式的方程公式的解,则公式的值为()A. 2B. -2C. 1D. -1解析:把公式代入方程公式,得到公式,移项可得公式,即公式,解得公式,答案为A。
8. 如图,直线公式、公式相交于点公式,公式,则公式的度数是()A. 公式B. 公式C. 公式D. 公式解析:对顶角相等,公式与公式是对顶角,所以公式,答案为B。
9. 把方程公式变形为用公式表示公式的形式,正确的是()A. 公式B. 公式C. 公式D. 公式解析:首先对原方程公式进行变形,公式,两边同时乘以公式得到公式,答案为B。
10. 下列说法正确的是()A. 近似数公式与公式的精确度一样B. 近似数公式与公式的意义完全一样C. 公式精确到十位D. 公式万精确到百分位解析:A选项,近似数公式精确到百分位,公式精确到十分位,精确度不同;B选项,近似数公式表示的是精确到百位的数,与公式的意义不同;C选项,公式,5后面的0在十位上,所以精确到十位,正确;D选项,公式万公式,精确到百位。
2024年最新人教版初一数学(上册)模拟考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. (a + b) × cB. a + b × cC. a ÷ b + cD. a +b ÷ c5. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 梯形D.菱形二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0是最小的自然数。
()3. 两个负数相乘,积为正数。
()4. 任何数乘以1都等于它本身。
()5. 一条直线上任意两点之间的距离都是相等的。
()三、填空题5道(每题1分,共5分)1. 3x 5 = 7,求解x的值是______。
2. 若a = 3,b = 2,则a + b的值是______。
3. 2的平方根是______。
4. 若一个正方形的边长为a,则它的面积是______。
5. 下列数中,最小的数是______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述平行线的性质。
3. 请简述一元一次方程的解法。
4. 请简述三角形内角和定理。
5. 请简述负整数指数幂的定义。
五、应用题:5道(每题2分,共10分)1. 小明有3个苹果,小红有5个苹果,他们一共有多少个苹果?2. 一个长方形的长是a,宽是b,求它的面积。
3. 一个数加上它的2倍,结果是15,求这个数。
4. 一个数的平方减去它的2倍,结果是8,求这个数。
5. 若a = 3,b = 2,求a b的值。
2024-2025学年七年级上学期人教版数学期中考试模拟试卷一、单选题1.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,其中有“把卖马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6+,那么支出2元记作( )A .2B .2-C .4D .4-2.下列各式正确的是( )A .853--=-B .437a b ab +=C .54x x x -=D .()275---= 3.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3000亿次.将数据3000亿用科学记数法表示为( ) A .8310⨯ B .9310⨯ C .10310⨯ D .11310⨯ 4.已知有理数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论不正确...的是( )A .a b >B .0a c ->C .0bc <D .0a b +>5.如果单项式312m x y +-与432n x y +的和是单项式,那么()2024m n +的值为( ) A .22024 B .0 C .1 D .1-6.用四舍五入法,把3.90456精确到百分位,取得近似值为( )A .3.9B .3.90C .3.91D .3.9057.在代数式26x +,1-,234x x -+,π,5x,37x 中,整式的个数有( ) A .2个 B .3个 C .4个 D .5个8.若a 、b 都是有理数且都不为零,则式子a b a b-值为( ) A .0或﹣2 B .2或﹣2 C .0或2 D .0或±2 9.已知实数满足33x x -=-,则x 不可能是( )A .1-B .0C .4D .310.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有(1)n n >个点,每个图形总共的点数是S ,当45n =时,S 的值是( )A .126B .129C .132D .135二、填空题11.23的倒数是. 12.大于 4.6-而小于2.3的整数共有个.13.单项式2335x yz -的系数是. 14.在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为.(用含a 的式子表示)15.绝对值小于2024的所有整数的积等于 .16.当2024x =时,代数式35ax bx ++的值为1,则当2024x =-时,35ax bx ++的值为 .三、解答题17.计算:()()320241252842-+-⨯--÷+-.18.已知:a ,b 互为相反数,c ,d 互为倒数,数m 到原点的距离为2.(1)填空:a b += __________,cd = __________,m = __________;(2)求()2023a b cd m m++--的值. (3)若||ab c d =-,则a =__________,c = __________.19.化简求值:()()22232a ab a ab ---,其中2a =-,3b =.20.如图是一块长方形的空地,长为x 米,宽为120米,现在它分成甲、乙、丙三部分,其中甲和乙是正方形形状.(1)乙地的边长为;(用含x 的代数式表示)(2)若设丙地的面积为S 平方米,求出S 与x 的关系式;(3)当200x =时,求S 的值.21.已知22A a a ab =--,2B a b ab =-+.(1)化简2A B -;(2)若2A B -的值与a 的取值无关,求2A B -的值.22.有理数a ,b ,c 在数轴上的位置如图所示.(1)比较大小:a c - ___0,a b + ___0,a ____0(直接填写“>”“<”或“=”)(2)化简:2a b a a c a --+-+.23.(1)若()2120x y -++=,求()2023x y +的值;(2)已知2320232023a b +++=,求b a -的值;(3)已知()2155a b b +++=+,且211a b --=,求ab 的值.24.我们规定:使得a b ab -=成立的一对数a ,b 为“积差等数对”,记为(),a b .例如:因为1.50.6 1.50.6-=⨯,(2)2(2)2--=-⨯,所以数对()()1.50.6,22,,-都是“积差等数对”. (1)判断下列数对是否是“积差等数对”: ①11,2⎛⎫ ⎪⎝⎭___________(填“是”或者“否”); ②(21),____________(填“是”或者“否”); ③1,12⎛⎫-- ⎪⎝⎭____________(填“是”或者“否”); (2)若数对(),3m 是“积差等数对”,求m 的值;(3)若数对(),a b 是“积差等数对”,求代数式()()2243222326ab a ab a b a -----+⎡⎤⎣⎦的值. 25.如图,1个单位长度表示1cm ,一个点从数轴上的原点开始,先向左移动1cm 到达A 点,再向左移动5cm到达B点,然后向右移动10cm到达C点.(1)请你直接写出A、B、C三点所表示的数,点A表示的数为,点B表示的数为,点C表示的数为;(2)若动点P、Q分别从B、C两点同时向左移动,点P、Q的速度分别为每秒3cm和每秒6cm,设移动时间为t()0t>秒;①当7PQ=时,求t的值;②运动过程中,点M到P、Q两点的距离始终保持相等,试探究43QC AM-的值是否会随着t的变化而改变?请说明理由.。
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。
2. 一个数的立方根是它自己的数是______。
3. 一个数的倒数是它自己的数是______。
4. 一个数的相反数是它自己的数是______。
三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。
x² 5x + 6 = 02. 解答:求出下列不等式的解集。
2x 3 < 73. 解答:求出下列方程组的解。
2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。
2. 证明:两个直角三角形的斜边相等,则它们是全等的。
五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。
问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积和周长。
六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。
x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。
2024年版七年级上学期期中数学模拟考试测试卷(测试范围:七年级上册第一章——第四章)一、单选题(每题3分,共30分)1.如果微信账单中收入100元记作100+元,那么20-元表示( )A .支出80元B .收入80元C .支出20元D .收入20元2.我国的陆地面积约为29600000km ,将9600000用科学记数法表示应为( )A .59.610´B .69.610´C .79.610´D .89.610´3.如果单项式3a x y +与5b xy -是同类项,那么()2024a b +=( )A .1B .1-C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 既不是正数也不是负数,则a b c ++等于( )A . 1-B .0C .1D .25.计算-22的结果为( )A .2-B .4-C .2D .46.实数a ,b 在数轴上的位置如图所示,则( )A .a b >B .a =bC .a b >D .0b >7.若关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,则x y +的值是( )A .6B .7C .8D .98.下面计算正确的是( )A .651a a -=B .2223a a a +=C .()a b a b-+=-+D .()222a b a b+=+9.下列说法中正确的个数是( )(1)﹣a表示负数;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是3;(3)单项式229xy -的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数.A .0个B .1个C .2个D .3个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .6070B .6067C .2023D .2024二、填空题(每题3分,共18分)11.12024-相反数是 ;绝对值是 ;倒数是 .12.如果单项式23m x y +与21n x y -的差是单项式,那么m n +=.13.现规定一种新运算“*”:()*a b a b b a =---.则()2*3-的值为 .14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++-的值为.15.在3-、4、5、6-这四个数中,任取两个数相乘,所得的积最大是 ,所得的积最小是 .16.某出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需要付5元车费),超过3千米后,每增加1千米,加收1.5元.某人乘这种出租车从甲地到乙地共支付车费29元,设此人从甲地到乙地的路程为x 千米,则x 的最大值是 .三、解答题17.计算(1)()()()3524---+-+(2)221232éùæöæö-+-+-ç÷ç÷êúèøèøëû18.先化简,再求值()()22342223a b a b ---+,其中21a b ==-,19.请画出数轴,将下列各数:0, 3.5-,3-,4,113,4.5,表示在数轴上,并用“<”连接起来.20.小明从家A 出发,向西走了300米到超市B ,继续向西走了150米到文具店C ,又向东走了700米到达快递超市D ,最后回到家.(1)用一个单位长度表示100米,以东为正方向,家A 为原点,画出数轴并在数轴上标明A B C D ,,,的位置;(2)小明家A 到快递超市D 多远?(3)小明一共行走了多少米?21.某果园老板从果园里随机摘取了取部分水果样品,检测抽取样品每个的质量是否符合标准,超过的部分用正数来表示,不足的部分用负数来表示,准确记录如下表:与标准质量的差值/克4-―20135个数235453(1)这批水果样品的总质量比按标准质量计算的总质量多还是少?多或少几克?(2)若每个水果的标准质量为50克,成本为0.5元/克,则抽取样品的总成本是多少元?(3)在(2)的条件下,该水果正常情况下按每克加价50%后,按克称重出售.但这批水果是抽检过的样品,所以在出售时打八折,并且在售出过程中还会有10%的质量损耗,求这批抽检的水果的总利润是多少元?22.已知:b 是最小的正整数,且a 、b 满足()230c a b -++=,请回答问题(1)请直接写出a ,b ,c 的值:a =________;b =________;c =________;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即02x ££时),请化简式子:1123x x x +--++(请写出化简过程)23.如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用p 表示)(1)求窗户的面积;(2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.24.把四张形状大小完全相同的小长方形卡片(如图1),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图2,3),盒子底面未被卡片覆盖的部分用阴影表示.设图2中阴影部分图形的周长为1l ,图3中两个阴影部分图形的周长的和为2l ,(1)用含m ,n 的式子表示图2阴影部分的周长1l (2)若1254l l =,求m ,n 满足的关系?1.C【分析】本题考查了正数和负数的应用.用正数和负数可以表示一对相反的量,如果收入记作正,则支出则记作负.【详解】解:若收入100元记作100+元,则20-元可表示为支出20元,故选:C .2.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将9600000用科学记数法表示应为69.610´.故选:B .3.A【分析】本题考查了同类项的定义:所含字母相同,相同字母的指数也相同的项叫同类项.根据同类项的定义列出方程,再求解即可.【详解】解:∵单项式3a x y +与5b xy -是同类项,∴311a b +==,,解得2a =-,1b =,∴()()()2024202420242111a b +=-+=-=.故选:A .4.B【分析】本题考查了正整数、负整数、有理数的加减法.先分别根据正整数、负整数的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】解:由题意得:1a =,1b =-,0c =,则1(1)00a b c ++=+-+=,故选:B .5.B【分析】根据有理数乘方法则计算即可得答案.【详解】-22=-4,故选:B .【点睛】本题考查有理数乘方,熟练掌握运算法则是解题关键.6.A【分析】观察数轴得:0,b a b a <<>,即可求解.【详解】解:观察数轴得:0,b a b a <<>,故B ,C ,D 选项错误,不符合题意;A 选项正确,符合题意.故选:A【点睛】本题主要考查了有理数与数轴,绝对值的意义,有理数的大小比较,观察数轴得到0,b a b a <<>是解题的关键.7.A【分析】本题考查了同类项,单项式522x a b +与36y a b --的和仍是单项式,说明两个单项式是同类项,相同字母的指数相等,所以得到53x +=,62y -=,解出2x =-,8y =,最后得到x y +的值.理解两个单项式的和仍是单项式,说明这两个单项式是同类项是解答本题的关键.【详解】解:∵关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,∴53x +=,62y -=,∴2x =-,8y =,∴286x y +=-+=,故选:A .8.D【分析】根据合并同类项的法则判断A 、B ;根据乘法分配律判断C 、D .【详解】解:A 、65-=a a a ,故错误,不符合题意;B 、a 与2a 不是同类项,不能合并,故错误,不符合题意;C 、()a b a b -+=--,故错误,不符合题意;D 、()222a b a b +=+,故正确,符合题意;故选:D .【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.9.B【分析】根据小于0的数为负数判断①,根据多项式的次数是最高次项的次数可判断②,根据单项式的系数是单项式中的数字因数可判断③,根据0的绝对值等于0可判断④,根据有理数包含整数和分数可判断⑤.【详解】解:①当a <0时,-a 是正数,故说法错误;②多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是4,故说法错误;③单项式229xy -的系数为29-,故说法错误;④若|x |=﹣x ,则x ≤0,故说法错误;⑤一个有理数不是整数就是分数,故说法正确,综上,正确的说法有一个,故选:B .【点睛】本题考查负数、多项式的次数、单项式的系数、绝对值以及有理数的分类,理解各自的概念是解答的关键.10.A【分析】本题考查了图形的变化类.根据图形的变化,后一个图形的正方形的个数都比前一个图形的正方形的个数多3个,第n 个图形的正方形的个数为()324n -+即可求解.【详解】解:观察图形可知:图②中共有4个正方形,即304´+;图③中共有7个正方形,即314´+;图④中共有10个正方形,即324´+;……图n 中共有正方形的个数为()324n -+;所以第2024个图中共有正方形的个数为:()32024246070-+=.故选:A .11.12024 120242024-【分析】本题主要考查相反数,倒数和绝对值的定义.相反数:只有符号不同的两个数互为相反数, 倒数:如果两个数的乘积等于1,那么这两个数就叫做互为倒数,绝对值:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,根据定义解题即可.【详解】解:12024-的相反数是12024,12024-的绝对值是:1120242024-=,12024-的倒数是2024-,故答案为:12024,12024,2024-.12.2【分析】本题考查了合并同类项,同类项的定义;所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出m n ,的值,代入计算即可.【详解】解:∵23m x y +与21n x y -的差是单项式,∴23m x y +与21n x y -是同类项,∴22m +=,11n -=,解得:0m =,2n =,∴022m n +=+=,故答案为:2.13.10-【分析】本题主要考查了有理数的加减运算和化简绝对值,根据已知()*a b a b b a =---,代入数值运算求出即可.【详解】解:∵()*a b a b b a =---,∴()()()2*323325510-=-----=--=-.故答案为:10-.14.7-【分析】根据相反数的定义得出0m n +=,根据倒数的定义得出1cd =,即可求解.【详解】解:∵m 、n 互为相反数,c 、d 互为倒数,∴0m n +=,1cd =,∴310031107m n cd ++-=+´-=-,故答案为:7-.【点睛】本题主要考查了相反数和倒数的定义,解题的关键是掌握相反数相加的0,乘积为1的两个数互为倒数.15. 20 30-【分析】本题考查有理数的乘法法则和有理数的大小比较.根据两数相乘,同号得正、异号得负求两数的积,再由正数大于负数,即可求解.【详解】解:∵()36=184520-´-<´=,∴积最大是20,∵()()()()56465343´-<´-<´-<´-,∴积最小是()5630´-=-,故答案为:20,30-.16.19【分析】本题考查了一元一次不等式的应用.已知从甲地到乙地共需支付车费29元,从甲地到乙地经过的路程为x 千米,从而根据题意列出不等式,从而得出答案.【详解】解:因支付车费为29元,所以x 肯定大于3千米,故有()1.53529x -+£,解得:19x £.可求出x 的最大值为19千米.故答案为:19.17.(1)0(2)156-【分析】本题主要考查了有理数的混合运算,按照混合运算法则计算即可.(1)有理数加减运算,从左向右计算即可;(2)先算乘方,再算乘除,最后再算加减.【详解】(1)解:()()()3524---+-+3524=-++-0=;(2)解:221232éùæöæö-+-+-ç÷ç÷êúèøèøëû43466æö=--+ç÷èø674=--156=-.18.21612a b -,76【分析】本题考查了整式的加减-化简求值.先将多项式去括号,再合并同类项,然后将a 和b 的值代入计算即可得出答案.【详解】解:()()22342223a b a b ---+2212646a b a b =-+-21612a b =-,当2a =,1b =-时,原式()2162121=´-´-6412=+76=.19.数轴见解析,13.530144.53-<-<<<<.【分析】本题考查了有理数的大小比较,在数轴上表示有理数.先在数轴上标记各个数,根据数轴上的点表示的数:右边的数总比左边的数大,可得答案.【详解】解:如图,在数轴上表示各数如下:∴13.530144.53-<-<<<<.20.(1)见解析(2)小明家A 到快递超市D 距离为250米;(3)小明一共行走了1400米.【分析】本题主要考查有理数加减法在实际中的运用,掌握数轴表示有理数的方法,数轴上求两点之间距离的方法,有理数加减法的运算等知识是解题的关键.(1)根据数轴表示有理数的方法即可求解;(2)运用数轴求两点之间的距离的方法即可求解;(3)运用有理数的加减法运算即可求解.【详解】(1)解:小明从家A 出发,用一个单位长度表示100米,以东为正方向,∴以小明家A 为原点,根据题意,小明到各点的位置如图所示,;(2)解:由(1)中数轴图示可知,小明家A 到快递超市D 距离为250米;(3)解:小明行走的路程为3001507502501400+++=米.答:小明一共行走了1400米.21.(1)这批样品的总质量比按标准质量计算的总质量多,多22克(2)抽取样品的总成本是560元(3)全部销售完这批抽检的袋装商品的总利润是44.8元【分析】本题考查正负数的意义,有理数混合运算的实际应用.理解题意和正负数的意义,正确列出算式是解题关键.(1)计算出超过和不足的质量和,如果是正数,即多,如果是负数,即少;(2)先求出抽取样品的总质量,再乘以0.5元/克即可;(3)求出售出的总质量和售价,再根据总利润=售价×总质量求解即可.【详解】(1)解:()()24325041533520´-+´-+´+´+´+´=,答:这批样品的总质量比按标准质量计算的总质量多,多22克.(2)解:()23545350201120+++++´+=克,11200.5560´=元,答:抽取样品的总成本是560元.(3)解:()1120110%1008´-=克,()0.50.550%0.80.6+´´=元,10080.656044.8´-=元,答:全部销售完这批抽检的袋装商品的总利润是44.8元.22.(1)1a =-,1b =,3c =;(2)46x +或28x +.【分析】本题考查了数轴与绝对值:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定1x +,1x -,3x +的符号,然后根据绝对值的意义即可化简.【详解】(1)解:∵b 是最小的正整数,∴1b =.∵()230c a b -++=∴300c a b -=ìí+=î,∴1a =-,1b =,3c =;(2)解:∵02x ££,∴10x +>,30x +>,当01x ££时,10x -£,当12x <£时,10x ->,∴当01x ££时,1123x x x +--++()1123x x x =++-++1126x x x =++-++46x =+;当12x <£时,1123x x x +--++()()1123x x x =+--++1126x x x =+-+++28x =+.综上所述,1125x x x +--+-的值为46x +或28x +.23.(1)()2214m 2a p æö+ç÷èø(2)()()15m a p +(3)制作这种窗户需要的费用是654002p æö+ç÷èø元【分析】本题考查了列代数式表示实际问题,解题的关键是分清数量关系,抓住关键词语,正确的列出代数式.(1)窗户的面积4=个小正方形的面积+半圆的面积;(2)窗框用料的总长度为所有小正方形的边长之和+半个圆的弧长3+条半径;(3)总费用为:玻璃的费用+窗框的费用.【详解】(1)解:窗户的面积21222a a a p =+´,22142a a p æö=+ç÷èø2m ;(2)窗框的总长123842a a a a p =´+++,15a a p =+,(15)(m)a p =+;(3)21425(15)202a a p p æö+´++´ç÷èø214125(15)1202p p æö=+´´++´´ç÷èø25100(20300)2p p æö=+++ç÷èø654002p =+(元).\制作这种窗户需要的费用是654002p +元.24.(1)22m n+(2)23m n =【分析】本题考查整式加减的应用:(1)观察图形,可知,阴影部分的周长等于长方形ABCD 的周长,计算即可;(2)设小卡片的宽为x ,长为y ,则有2y x m +=,再将两阴影部分的周长相加,通过合并同类项即可求解2l ,根据1254l l =,即可求m 、n 的关系式.【详解】(1)解:由图可知,阴影部分的周长等于长方形ABCD 的周长,故()1222m n m n l =+=+;(2)设小长形卡片的宽为x ,长为y ,则2y x m +=,∴2y m x =-,所以两个阴影部分图形的周长的和为:()()2222m n y n x +-+-()()22222m n m x n x =+-++-222424m n m x n x =+-++-4n =,即2l 为4n ∵1254l l =,∴52244m n n+=´整理得:23m n =.。
七年级上册数学人教版期中模拟试卷(第一至四章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.一个物体做左右方向的运动,规定向右运动4m记作+4m,那么向左运动4m记作()A.-4mB.4mC.8mD.-8m2.在有理数12,-(-3),-|-4|,0,-2²,+(-1)中,正整数一共有()A.1个B.2个C.3个D.4个3.下列有关近似数的结论不正确的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.50(精确到百分位)D.0.100(精确到0.1)4.小夏同学捡卖废品既保护了环境,又积攒了零花钱.下表是他某个月的部分收支情况(单位:元):日期收入(+)或支出(-)结余备注2日 3.58.5卖废品3日-4.5 4.0买圆珠笔、铅笔芯4日-1.2买科普期刊,不够部分同学代付但由于保存不当,4日的收入(+)或支出(-)被墨水涂污了,则4日的收入(+)或支出(-)以及1日的结余分别是()A.5.2元,5元B.-5.2元,5元C.-5元,-5元D.-5.2元,-5元5.按如图所示的运算程序,下列能使输出的结果为32的是()A. x=2,y=4B. x=2,y=-4C. x=4,y=2D. x=-4,y=26.若aᵐ⁺⁴b³与23a2b n的和仍是单项式,则m n为()A.-8B.8C.-6D.67.如图,下列结论正确的是()A. c>a>bB.1b >1cC.|a|<|b|D. abc>08.多项式A与多项式B=2x²−3xy−y²的和是多项式C=x²+xy+y²,则A等于()A.3x²−2xyB.x²−4xy−2y²C.3x²−2xy−2y²D.−x²+4xy+2y²9.已知a-b=3,b-c=4,c-d=5,则(a-c)(d-b)的值为()A.7B.9C.-63D.1210.如图所示,圆的周长为4个单位长度,在圆的4等分点处依次标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向无滑动滚动,那么数轴上的数-2024将与圆周上的哪个数字重合()A.0B.1C.2D.3二、填空题11. 94的倒数是12.数18500…0用科学记数法表示是1.85×10⁹,则这个数中0有个.13.对于有理数a,b,定义一种新运算“※”,即a※b=3a+2b,则式子[(x+y)※(x-y)]※3x化简后得到 .14.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第4个图案中所贴剪纸“◯”的个数为个,第n个图案中所贴剪纸“◯”的个数为个.三、解答题(本大题共8个小题,满分75分)15.(12分)计算:(1)(29−16+118)÷(−118);(2)(−3)2−(112)3×29−6÷|−23|;(3)3a²−2a+4a²−7a;(4)9m²−4(2m²−3mn+n²)+4n².16.(6分)有理数x,y在数轴上的对应点如图所示:(1)在数轴上表示-x, |y|;(2)试把x,y,0,-x,|y|这五个数按从小到大的顺序排列,并用“<”连接;(3)化简:|x+y|−|y−x|+|y|.17.(7分)先化简,再求值: 7x3−2l(x3−13x y2r)+3(19x y2−32x3r),其中x,y满足(x+1)2²+|y+3|=0.18.(9分)某粮库6天内粮食进、出库的数量如下(单位:1.“+”表示进库,“-”表示出库): +24,-31,-10,+36,-39,-25,(1)经过这6天,仓库里的粮食是增加了还是减少了?(2)经过这6天,仓库管理员结算时发现仓库里还存有480t粮,那么6天前仓库里存粮多少吨?(3)如果进、出仓库的装卸费都是每吨4元,那么这6天要付多少装卸费?19.(10分)某种窗户的形状如图所示,其上部是半圆形,下部是边长相同的四个小正方形.已知下部的小正方形的边长为 am,计算:(1)窗户的面积;(2)窗框(实线部分)的总长;(3)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作一个这种窗户需要的费用是多少元(π≈ 3.14,结果保留整数).20. (10分)某兴趣小组为探究被3整除的数的规律,提出了以下问题:(1)在312,465,522,458中不能被3整除的数是 .(2)abc表示百位、十位、个位上的数字分别是a,b,c(a,b,c为0~9之间的整数,且a ≠0)的三位数,那么abc=100a+10b+ c.如果a+b+c是3的倍数,那么abc能被3整除吗? 如果能,请写出计算过程;如果不能,请说明理由.(3)若一个能被3整除的两位正整数ab(a,b为1~9之间的整数),交换其个位上的数字与十位上的数字得到一个新数,新数减去原数等于54,求这个正整数ab.21.(10分)某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法少于200元不予优惠低于500元但不低于200元全部给予九折优惠不低于500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500但不小于200时,他实际付款元;当x大于或等于500时,他实际付款元.(用含x的代数式表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a<300),用含a 的代数式表示王老师两次购物实际付款合计多少元.22.(11分)如图,已知数轴上的点A表示的数为6,点B表示的数为-4,C到A,B两点的距离相等,动点P从点B出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为xs(x⟩0).(1)当x= s时,点P到达点A;(2)运动过程中点P表示的数是 (用含x的代数式表示);(3)当P,C两点之间的距离为2个单位长度时,求x的值.。
20232024学年全国初中七年级下数学人教版模拟考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 2/3D. 1.52.下列各数中,是负数的是()A. 3B. 4C. 5/6D. 03.下列各数中,是正数的是()A. 3B. 0C. 2/3D. 44.下列各数中,是分数的是()A. 0B. 2C. 3/4D. 15.下列各数中,是正整数的是()A. 3B. 0C. 2/3D. 56.下列各数中,是负整数的是()A. 4B. 5C. 2/3D. 07.下列各数中,是正分数的是()A. 3/4B. 0C. 5/6D. 28.下列各数中,是负分数的是()A. 3/4B. 0C. 2/3D. 59.下列各数中,是零的是()A. 3B. 0C. 2/3D. 510.下列各数中,是自然数的是()A. 3B. 0C. 2/3D. 5二、填空题(每题2分,共20分)1.下列各数中,是整数的是__________。
2.下列各数中,是负数的是__________。
3.下列各数中,是正数的是__________。
4.下列各数中,是分数的是__________。
5.下列各数中,是正整数的是__________。
6.下列各数中,是负整数的是__________。
7.下列各数中,是正分数的是__________。
8.下列各数中,是负分数的是__________。
9.下列各数中,是零的是__________。
10.下列各数中,是自然数的是__________。
三、解答题(每题5分,共20分)1.解方程:2x + 3 = 7。
2.解方程:3x 2 = 5。
3.解方程:4x + 5 = 9。
4.解方程:5x 3 = 7。
四、应用题(每题10分,共20分)1.小明有5个苹果,小红有7个苹果,小华有3个苹果。
他们一共有多少个苹果?2.小明有3个苹果,小红有5个苹果,小华有7个苹果。
他们一共有多少个苹果?五、简答题(每题5分,共20分)1.简述整数的概念。
初一上册数学试卷模拟题人教版一、选择题(每题3分,共6题)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)解析:相反数是指绝对值相等,正负号相反的两个数,所以 -2的相反数是2,答案是A。
2. 下列式子中,结果为负数的是()A. (-2)B. -(-2)C. (-2)^2D. - -2解析:A. (-2)= -2,是负数;B. -(-2)=2,是正数;C. (-2)^2 = 4,是正数;D. - -2=-2,是负数。
所以答案是AD。
3. 若数轴上点A表示的数是 -3,将点A向右移动7个单位长度,那么终点表示的数是()A. 4B. -4C. 10D. -10.解析:向右移动是做加法,-3+7 = 4,所以终点表示的数是4,答案是A。
4. 单项式 -(3x^2y)/(5)的系数和次数分别是()A. -(3)/(5),3B. -(3)/(5),2C. (3)/(5),3D. (3)/(5),2.解析:单项式的系数是数字因数,所以系数为 -(3)/(5);次数是所有字母的指数和,x的指数是2,y的指数是1,所以次数是2 + 1=3,答案是A。
5. 化简:3(x - y)+2y =()A. 3x - yB. 3x - 5yC. 3x - 3y + 2yD. 3x + y.解析:先运用乘法分配律,3(x - y)=3x - 3y,再加上2y,得到3x - 3y+2y = 3x - y,答案是A。
6. 若方程2x + a = 3与方程3x + 1 = 7的解相同,则a的值为()A. -2B. -1C. 1D. 2.解析:先解方程3x + 1 = 7,3x=7 - 1,3x = 6,x = 2。
把x = 2代入2x + a = 3中,2×2+a = 3,4 + a = 3,a = 3 - 4=-1,答案是B。
二、填空题(每题3分,共6题)7. 比较大小:-3___-4(填“>”或“<”)。
20232024学年全国初一上数学人教版模拟考试试卷一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 2/3B. 5C. 3.14D. 0.252. 下列数中,绝对值最大的是()A. 7B. 5C. 0D. 33. 下列数中,既是正数又是整数的是()A. 4B. 0C. 3.5D. 24. 下列数中,互为相反数的是()A. 3和3B. 2和2C. 0和0D. 5和55. 下列数中,既是偶数又是合数的是()A. 2B. 3C. 4D. 56. 下列数中,既是质数又是偶数的是()A. 2B. 3C. 4D. 57. 下列数中,既是奇数又是质数的是()A. 2B. 3C. 4D. 58. 下列数中,既是正数又是质数的是()A. 2B. 3C. 4D. 59. 下列数中,既是负数又是合数的是()A. 2B. 3C. 4D. 510. 下列数中,既是零指数幂又是正数的是()A. 2^0B. 3^0C. 4^0D. 5^0二、填空题(每题3分,共30分)1. 绝对值是指一个数与0的距离,因此,绝对值永远是非负数。
这个说法正确吗?请给出你的理由。
2. 有理数是指可以表示为两个整数比的数,因此,所有的整数都是有理数。
这个说法正确吗?请给出你的理由。
3. 质数是指除了1和它本身以外,没有其他因数的自然数。
那么,1是质数吗?请给出你的理由。
4. 偶数是指能被2整除的数,那么,所有的偶数都是合数吗?请给出你的理由。
5. 零指数幂是指任何数的0次幂,那么,0的0次幂等于多少?请给出你的理由。
6. 分数是指一个整数除以另一个非零整数,那么,所有的分数都是有理数吗?请给出你的理由。
7. 相反数是指一个数与它的相反数的和为0的数,那么,0的相反数是多少?请给出你的理由。
8. 绝对值是指一个数与0的距离,那么,一个数的绝对值可以是负数吗?请给出你的理由。
9. 质数是指除了1和它本身以外,没有其他因数的自然数,那么,所有的质数都是奇数吗?请给出你的理由。
人教版初一数学模拟考试(下) 一、选择题
1、下列各图中,∠1与∠2是对顶角的是 ( )
2.如图,一扇窗户打开后,有窗钩AB 可将其固定,这里所运用的数学道理是
A .三角形的稳定性
B .两点之间线段最短
C .两点确定一条直线
D .垂线段最短
3、已知点P (2-4m ,m-2)在第三象限,则m 的取值范围是 ( )
A .m >12)
B .m <2
C .2
1<m <2 D .m >2
4、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,
则另一个为 ( )
A .正三边形
B .正四边形
C .正五边形
D .正六边形
5、地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )
A 、⎩
⎨
⎧=-=+128465836
y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x
6、一个多边形的每一个外角都等于30°,则这个多边形的边数为
( )
A .9
B .10
C .11
D .12
7、我市南部山区某中学为了解本校七年级学生的体能情况,随机抽查其中30名学生,测试了1分钟仰卧起坐的
次数,并绘制成如图所示的频数分布直方图,请根据图示,仰卧起坐次数在25~30次的人数为 ( )
A .3
B .5
C .10
D .12
5
4D
3E
21
C B A
8、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 A .(1,-8) B .(1, -2) C .(-6,-1 ) D .( 0,-1)
9、如右图,下列能判定AB ∥CD 的条件有( )个.
(1) ︒=∠+∠180BCD B (2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B .
A .1
B .2
C .3
D .4 10、下列调查适合作普查的是
A .了解在校大学生的主要娱乐方式
B .了解阳泉市居民对废电池的处理情况
C .日光灯管厂要检测一批灯管的使用寿命
D .对甲型H1N1流感患者的同一车厢乘客进行医学检查
二、填空题
1、如图,将三角板的直角顶点放在直尺的一边上,∠1=300
,
∠2=500
,则∠3等于 度.
2、一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成 组.
3、足球联赛得分规定胜一场得3分,平一场得1分,负一场得0分,大地足球队在足球联赛的5场比赛中得8分,则这个队比赛的胜、平、负的情况是 .
4、如图,一面小红旗其中∠A=60°,∠B=30°,则∠BCD= 。
5、如图所示,请你添加一个条件,使得AD ∥
BC 。
(4) (5) (6)
6、如图是某校九年级(1)班50名学生的一次数学测验成绩的扇形统计图,按图中划分的分数段次测验成绩中,分数在85分以上的有 人。
7、为保护生态环境,某地相应国家“退跟还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面
积共有180平方千米,耕地面积是林地面积的25%,要求改变后耕地面积和林地面积各有多少平方千米,设改变后耕地面积x 平方千米,林地面积y 平方千米,则可列方程组为 。
三、解答题
1、解下列方程组 (每小题4分,共8分)
(1)⎩⎨⎧=+=-82302y x y x (2)3()4()4
12
6x y x y x y x y +--=⎧⎪+-⎨+=⎪⎩
2、解不等式 并把解集在数轴上表示出来.
3、求不等式组3(1)2531342
x x x x x -+<+⎧⎪
⎨-+≥-⎪⎩的自然数解.
4、如图,∠1=30°,∠B =60°,AB ⊥AC 。
(1)∠DAB +∠B 等于多少度? (2)试证明:AD ∥BC 。
3
1
21215-≥++x x
5、(本题8分)在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P 只能向上或向右运动,请回答下列问题:
(1)填表:
(2)当P点从点O出发10秒,可得到的整数点的个数是个.
(3)当P点从点O出发秒时,可得到整数点(10 ,5).
6、中央商城在五一期间搞优惠促销活动,商场将29英寸和25英寸彩电共96台,分别以8折和7折出售,共得
184400元,已知29英寸彩电原价3000元/台,25英寸彩电原价2000元/台,问出售29寸和25寸彩电各多少台?
7、(本题12分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同. (1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
8、四边形ABCD 中,E 是BC 的中点,DE 平分︒
=∠∠55CDE ADC 、, (1)若︒
=∠=∠90C B 时,求EAB ∠的度数;
(2)若,90,90︒
︒
≠∠≠∠C B 探究C B ∠∠,满足何数量关系时,可保持EAB ∠的度数与(1)题求得的相同,说明理由。
9、已知如23-①图,线段AB、CD相交于点O,连接AD、CB,我们把形如23-①图的图形称之为“8字形”。
如
23-②图,在23-①图的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N。
试解答下列各题:
(1)在23-①中,证明:∠A+∠D=∠B+∠C;
(2)仔细观察,在23-②中“8字形”的个数有个;
(3)在23-②中,若∠D=40°,∠B=36°,试求∠P的度数;
(4)如果23-②中,∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在怎样的数量关系。
(直接写出结论即可)。