人教版数学八年级下册《正方形》平行四边形教学
- 格式:pptx
- 大小:804.12 KB
- 文档页数:14
人教版初中数学八年级下册 第十八章 平行四边形第二节 特殊的平行四边形教学设计正方形山东省东营市胜利第一中学 初中数学 张振安一、 教学方法自学探究、小组合作、数学实验(几何画板)这节课本着《数学课程标准》中“动手实践、自主探索与合作交流 是学生学习数学的重要方式”这一理念进行设计,采用引导发现、自学 探究、小组合作、数学实验相结合的方法,同时利用借助现代教育技术 (几何画板、希沃授课助手),让学生看到思维的过程。
二、 教学过程(一)问题引入(5分钟)1、 观看几何画板设计的两个动画,思考平行四边形经历了怎样的图形变化过程?(2分钟)(1)平行四边形—>矩形—>正方形; (2)平行四边形—>菱形—>正方形。
活动目的:利用课件形象演示变化出正方形的过程,激发学习兴趣,引 导学生分析如何由矩形变化出正方形以及如何由菱形变化出正II, 一一 J 变形按钮1 |二 Lj IL-J 变形按钮3L 变形川顺序2个动作 AB = 15.35厘米DC = 15.35厘米 m CAB =53.39°方形,引出本节课题,并为进一步启发学生发现正方形既是特殊的菱形,又是特殊的矩形埋下伏笔。
2、引出课题,板书标题:正方形3、展示生活中的正方形应用,展示本节课学习目标。
(1分钟)(1).理解正方形与平行四边形、矩形、菱形概念之间的联系和区别;(2).能用正方形的定义、性质和判定进行推理与计算。
活动目的:让学生明确学习任务和达成的目标。
(二)概念分析(2分钟)1、回顾小学阶段对正方形的定义:四条边都相等,四个角都是直角的四边形叫做正方形。
2、请你用所学知识重新下定义:既是矩形又是菱形的四边形叫做正方形。
活动目的:让学生从小学定义及本节课开始的动画演示出发重新思考正方形的定义,提高对正方形的认识。
(三)性质探究(5分钟)1、请你们独立思考正方形具有哪些性质,并小组内交流。
(1分钟)2、班内交流展示,总结性质:(4分钟)(1)正方形的四条边都相等;(2)正方形的四个角都是直角;(3)正方形的对角线相等、垂直、互相平分,且平分对角。
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
初中数学《平行四边形》大单元教学设计01引言本课例为人教版八年级下册第十八章平行四边形整个单元的教学设计,基于对新课标的学习和理解,围绕大主题是“如何研究一个四边形”重新设计本单元教学,突出大单元的“整合性”。
平行四边形及特殊的平行四边形(矩形、菱形、正方形)都是常见的四边形,在学习了平行线、全等三角形、轴对称图形等知识的基础上进行的学习,是上述内容的后续和深化。
本单元的基本设计思想是:重视几何图形研究的一般活动经验的总结和应用,通过复习三角形,总结出三角形的研究思路、研究内容、研究方法,把这种经验一般化后,应用到平行四边形的系统研究中,探索平行四边形及其特例——矩形、菱形、正方形的定义、性质和判定,把具体知识的探索发现过程(图形观察、测量、实验与想像、归纳与猜想)与证实过程(演绎推理)融入几何图形研究活动中,让学生明确图形的研究内容(图形的构成要素与相关要素的位置和数量关系),学会几何研究的思路、方法,积累几何图形研究活动经验,发展“四能”以及几何直观、推理能力等数学核心素养。
02大单元教学设计2.1单元内容分析对于教材和学习内容的分析从以下几个方面进行分析:研究对象:平行四边形是特殊的四边形,而矩形、菱形、正方形又属于特殊的平行四边形,正方形还是特殊的矩形或菱形,研究对象从一般到特殊。
研究内容:本章的每一种图形都分别从定义、性质、判定三个方面进行研究。
①定义:都反映了该图形与一般平行四边形相比在某一方面的独特之处;②性质:都包含一般性质与特殊性质两个方面,从组成图形的基本要素(边、角)或相关要素(对角线)之间的数量关系或位置关系、图形整体的对称性这两个维度,由一般到特殊、由静到动、由局部到整体地反映图形的特征;③判定:都反映了能判断一个图形是否属于某图形的最少条件,并且判断的条件都来源于性质,判定与性质互为逆命题。
从定义、性质和判定的逻辑关系看,每一种图形的定义都是它的充要条件,性质都是它的必要条件,判定都是它的充分条件,所以图形的某些特征是图形的充要条件。
《平行四边形》一、内容和内容解析关于平行四边形的概念,在小学,学生已经学过,并不会感到生疏,但对于这个概念的本质属性,理解的并不是十分深刻,所以,本节课的学习,并不是简单的重复。
本节课,平行四边形的定义采用的是内涵定义法,即“种概念+属差=被定义的概念”.在平行四边形的定义中,大前提是“四边形(种概念)”,条件是“两组对边分别平行(属差)”.“两组对边分别平行”是平行四边形独有的、用以区别于一般四边形的本质属性,这也是平行四边形概念的核心之所在。
平行四边形的概念,揭示了平行四边形与四边形的隶属关系、区别与联系,反映了平行四边形的本质属性。
同时,它既是平行四边形的判定,又可以作为平行四边形的一个性质。
关于平行四边形边、角的性质,“平行四边形的对边相等”相对于定义中的“两组对边分别平行”,是由位置关系向数量关系的一种延伸;“平行四边形的对角相等”相对于“两组对边分别平行”,是由“相邻的角互补”产生的思维的一种深化。
同时,两条性质的探究,经历的是“感知、猜想、验证、概括、证明”的认知过程;两条性质的研究,先从边分析,再从角分析,再到下一节课的从对角线分析,提供的是研究几何图形性质的一般思路;两条性质的证明,渗透的是将四边形问题转化为三角形问题的一种转化思想,而添加对角线,介绍的是将四边形问题转化为三角形问题的一种常用的转化手段。
在本章的后续学习中,对于几种特殊的四边形,其定义均采用的是内涵定义法,并且矩形和菱形的定义,均以平行四边形作为种概念,所以平行四边形的概念作为“核心概念”当之无愧.关于平行四边形的性质,也是后续学习矩形、菱形、正方形等知识的基础,这些特殊平行四边形的性质,都是在平行四边形性质基础上扩充的,它们的探索方法,也都与平行四边形性质的探索方法一脉相承,因此,平行四边形的性质,在后续的学习中,也是处于核心地位。
二、教学目标1、使学生掌握平行四边形的概念,掌握平行四边形的对边相等,对角相等的性质,会根据概念或性质进行有关的计算和证明.2、通过有关的证明及应用,教给学生一些基本的数学思想方法.使学生逐步学会分别从题设或结论出发,寻求论证思路,学会用综合法证明问题,从而提高学生分析问题解决问题的能力.3、通过四边形与平行四边形的概念之间和性质之间的联系与区别,使学生认识特殊与一般的辩证关系,个性与共性之间的关系等.使学生体会到事物之间总是互相联系又相互区别的,进一步培养辩证唯物主义观点.4、通过对平行四边形性质的探究,使学生经历观察、分析、猜想、验证、归纳、概括的认知过程,培养学生良好的个性思维品质.三、教学重点平行四边形的概念和性质。
八年级数学教案:《平行四边形》(最新7篇)平行四边形教案篇一课型:新授课。
教学分析:本节课是在学生已经认识长方形、正方形的基础上进行教学。
重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教学目标:(一)知识与技能:引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。
会在方格纸上画长方形、正方形,并认识平行四边形。
(二)过程与方法:学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的特点,积累感性认识,初步认识平行四边形。
(三)情感态度价值观:培养学生积极参与的学习品质,使学生获得成功的`体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略:创设情景、动手实践、交流合作。
教具学具:多媒体课件、长方形、正方形、格子纸、三角板。
教学流程:一、创设情景,提出问题。
今天,我们的好朋友智慧星要带领大家到图形王国去参观。
参观之前提一个小小的要求,请你仔细观察、多动脑筋。
(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。
引出课题)二、协作探索,研究问题。
1、教学长方形、正方形。
(1)多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?(2)教学对边的概念:在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。
(多媒体演示)(3)小组合作研究长方形、正方形的特点。
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说。
长方形的对边和正方形的边有什么特点,角有什么特点?(4)指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5)在方格纸上画出长方形、正方形2、教学平行四边形。
(1)多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?我们把这样的四边形叫做平行四边形。
《正方形》这节课是人教版数学教材八年级下册第十八章第二节的内容。
纵观整个初中平面几何教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识,并且具备有初步的观察、操作等活动经验的基础上出现的。
本节教材首先从平行四边形出发,给出正方形的定义,然后由正方形的定义导出正方形与菱形、矩形的关系,接着出了正方形的性质;通过设置“思考”栏目,探索四边形成为正方形的条件,最后由例题具体说明正方形的判定方法。
这一节课既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
2、教育教学目标根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:⑴知识与技能①、理解正方形的概念,了解正方形与平行四边形、菱形、矩形的关系.②、掌握正方形的判定方法.③、能运用正方形的性质解决有关计算和证明问题.⑵过程与方法①、通过观察、实验、归纳、类比获得数学猜想,发展学生的合情推理能力,进一步提高学生逻辑思维能力.②、通过四边形从属关系的教学,渗透集合思想.⑶情感态度与价值观①、经历探索正方形有关性质和四边形成为正方形的条件过程,培养学生动手操作的能力、主动探究的习惯和合作交流的意识.②、通过理解特殊的平行四边形之间的内在联系,培养学生辩证观点.3、教学重点、难点学生在小学学过正方形,他们知道正方形的四个角都是直角,四条边相等,正方形的面积等于它的边长的平方。
现在的教学是加深学生的理论知识,拓宽他们的知识面。
本节课虽然是学习正方形的性质和判定,实际上应起到对平行四边形、菱形、矩形性质的复习、归纳和总结的作用。
所以正方形的定义和性质是本章教学的重点。
怎样判定一个四边形是正方形,这是本章教学的一个难点。
因为教学难点:四边形成为正方形的条件教学关键:正方形与平行四边形、菱形、矩形的关系二、说教学方法1、教法分析针对本节课的特点,采用“创设情境—合作交流—应用迁移—整理反思”为主线的探究式教学方法。
第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。
初二数学特殊的平行四边形——正方形人教实验版【本讲教育信息】一、教学内容:特殊的平行四边形——正方形1. 掌握正方形的定义,弄清楚正方形和平行四边形、矩形、菱形的关系.2. 掌握正方形的性质和判定方法.二、知识要点: 1. 正方形(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. (2)正方形的性质:正方形具有平行四边形、矩形和菱形的所有性质. ①正方形各边的性质:四条边相等,对边平行. ②正方形各角的性质:四个角都是直角.③正方形对角线的性质:正方形的对角线互相平分、互相垂直、相等,且每一条对角线平分一组对角.④正方形的对称性:正方形是轴对称图形,对边中点所在直线和对角线所在直线都是正方形的对称轴.B(3)正方形的识别:①有一组邻边相等的矩形是正方形; ②对角线互相垂直的矩形是正方形; ③一个内角是直角的菱形是正方形; ④对角线相等的菱形是正方形;⑤有一组邻边相等且互相垂直的平行四边形是正方形; ⑥对角线相等且互相垂直的平行四边形是正方形. 2. 平行四边形、矩形、菱形、正方形之间的关系平行四边形三、重点难点:本讲重点是正方形的性质,难点是平行四边形、矩形、菱形、正方形之间的共性,特性及从属关系.【典型例题】例1. 如图所示,已知正方形ABCD ,点E 是AB 延长线上一点,连结EC ,作AG ⊥EC 于G ,AG 交BC 于F ,求证:AF =CE.ABC DEFG分析:AF 、CE 分别在R t △ABF 与R t △CBE 中,可考虑证明它们全等,而四边形ABCD 为正方形,有相等的直角和相等的边,为证全等提供了条件.证明:因为四边形ABCD 是正方形, 所以AB =BC ,∠ABC =∠CBE =90°. 因为AG ⊥CE ,所以∠CGF =90°,所以∠BCE +∠CFG =90°,∠BCE +∠E =90°, 所以∠CFG =∠E ,又因为∠CFG =∠AFB , 所以∠E =∠AFB.所以△ABF ≌△CBE (SAS ). 所以AF =CE.例2. 把一X 矩形纸片像图中那样折一下,再沿CD 剪下,则纸片ABCD 是什么样的四边形?说明理由.分析:根据矩形的性质和图形折叠前后的变化规律判断四边形ABCD 的形状. 解:正方形. 理由如下:因为这是一X 矩形纸片,所以∠BAD =∠B =90°. △ADC 是△ABC 折叠得到的,即△ABC ≌△ADC. 所以∠ADC =∠B =90°, 所以四边形ABCD 是矩形. 又AB =AD ,所以纸片ABCD 是正方形.例3. 如图所示,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G. 试说明AE =FG .A BC DEFG分析:由EF ⊥BC ,EG ⊥CD 可得矩形EFCG ,则FG =EC ,再证△ABE ≌△CBE ,得AE =EC ,即可得到AE =FG .解:连结EC ,因为四边形ABCD 是正方形, EF ⊥BC ,EG ⊥CD ,所以四边形EFCG 为矩形. 所以FG =CE.因为BD 是正方形ABCD 的对角线. 所以∠ABE =∠CBE. 又BE =BE ,AB =CB , 所以△ABE ≌△CBE. 所以AE =EC , 所以AE =FG .评析:用CE 沟通AE 和FG 之间的联系.例4. (1)下列命题中正确的是( )A. 两条对角线互相平分的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直的四边形是菱形D. 两条对角线互相垂直且平分的四边形是正方形(2)如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是__________(只填一个条件即可).A DC BO第(2)题 (3)如图所示,在四边形ABCD 中,AD ∥BC ,∠D =90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是__________. (写出一种情况即可)AB CD分析:(1)这个问题可以这样考虑:对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相垂直平分的四边形是菱形;对角线互相垂直平分且相等的四边形是正方形. 故选A. (2)这个问题实际上是问什么样的菱形是正方形?有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,考虑角可补充的条件是∠BAD =90°或AD ⊥AB ;考虑对角线补充:AC =BD. (3)本题应考虑和角相关的矩形的识别方法,有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形. 可添加的条件是∠A =90°或∠B =90°,AD =BC ,AB ∥CD 等.解:(1)A (2)∠BAD =90°(或AD ⊥AB ,AC =BD 等)(3)∠A =90°或AD =BC 或AB ∥CD例5. 如图所示,正方形ABCD ,对角线AC 、BD 相交于点O ,菱形AEFC ,EH ⊥AC ,垂足为H ,求证:EH =12FC.ABC E FHDO分析:要证EH =12FC ,EH 在矩形OBEH 中,得EH =OB =12BD ,而FC 是菱形AEFC的边,CF =AC =BD ,所以EH =12FC ,问题的关键是要证四边形OBEH 是矩形.证明:由正方形ABCD 得AC =BD ,AC ⊥BD ,∠BOC =90°. 又因为EH ⊥AC ,所以EH ∥OB.又因为四边形AEFC 是菱形,得AC =CF ,AC ∥EF ,所以OH ∥BE. 因此四边形OBEH 是矩形,因此EH =OB =12BD =12AC =12FC.评析:综合考查了正方形、菱形的性质和矩形的判定方法.【方法总结】正方形是特殊的平行四边形,是特殊的矩形,是特殊的菱形. 它具有平行四边形、矩形、菱形的所有性质. 分清楚这几种图形的从属关系,从关系图中确定它们性质的相同点和不同点.平行四边形矩形菱形正方形【模拟试题】(答题时间:60分钟)一. 选择题1. 下列选项中,正方形具有而矩形不一定具有的性质是( )A. 四边都相等B. 四角都相等C. 对角线相等D. 对角线互相平分 2. 正方形的对角线长为a ,则它的对角线的交点到各边的距离是( )A. 22aB. 24aC. a 2D. 22a3. 正方形是轴对称图形,那么它的对称轴的条数为( )A. 2B. 3C. 4D. 54. 在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( ) A. AC =BD ,AB ∥CD B. AD ∥BC ,∠A =∠CC. AO =BO =CO =DO ,AC ⊥BDD. AO =CO ,BO =DO ,AB =BC 5. 下列命题中,真命题是( ) A. 两条对角线相等的四边形是矩形 B. 两条对角线互相垂直的四边形是菱形C. 两条对角线互相垂直且相等的四边形是正方形D. 两条对角线互相平分的四边形是平行四边形6. 已知四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A. ∠D =90°B. AB =CDC. AD =BCD. BC =CD*7. 如图1所示,将长为20cm ,宽为2cm 的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为( )A. 34cm 2B. 36cm 2C. 38cm 2D. 40cm 2图1二. 填空题1. 具有平行四边形、矩形和菱形性质的四边形是__________.2. 已知正方形ABCD 的对角线AC 、BD 相交于点O ,且AC =12cm ,•则BO =__________cm ,•∠OAB =__________度.3. 任意一个平行四边形,当它的一个锐角增大到_______度时,就变成了矩形;•当它的一组邻边变到_______时,就变成了菱形;当它的两条对角线变到______时,就变成了正方形.4. 矩形、菱形、正方形都是特殊的四边形,它们具有很多共性,如:__________(填一条即可).5. 正方形的面积为49,则它的边长为__________,对角线长为__________.*6. 如图所示,在正方形ABCD 中,E 是BD 上一点,过E 作EF ⊥BC 于F ,EG ⊥CD 于G ,若正方形ABCD 的周长是a ,则四边形EFCG 的周长为__________.ABCDEF G**7. 如图所示,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上的一动点,则当PF +PE 为最小值时,PF +PE =__________.ABC DPEF三. 解答题 1. 如图,正方形ABCD 的对角线AC 、BD 相交于点O ,OE =OF ,求证:•∠OCF =∠OBE.ABCDE FO2. 如图所示,在△ABC 中,∠C =90°,CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,垂足分别为点E 、F. 求证:四边形CFDE 是正方形.ABC DEF*3. 如图所示,点E 、F 分别为正方形ABCD 边AB 、BC 的中点,DF 、CE 交于点M ,CE 的延长线交DA 的延长线于G ,试探索:(1)DF 与CE 的位置关系; (2)MA 与DG 的大小关系.ABCDE F MG**4. 如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE =FC+EF.ABCDE FG【试题答案】一. 选择题1. A2. B3. C4. C5. D6. D7. B二. 填空题1. 正方形2. 6,453. 90,相等,垂直且相等4. 对边平行、对角线互相平分、对角相等等 5. 7,7 2 6. 12a 7. 17三. 解答题1. 提示:证明△OCF ≌△OBE 可得2. 先证四边形DECF 是矩形,又∵DE =DF ,∴四边形CFDE 是正方形3. (1)DF ⊥CE 提示:先证△EBC ≌△FCD ,得∠ECB =∠FDC ,根据互余的关系,•求出∠CMF =90°即可. (2)由△GAE ≌△CBE 得GA =CB ,再根据直角三角形斜边上中线的性质,得MA =12DG .4. (1)ΔAED ≌ΔDFC. 因为四边形ABCD 是正方形,所以 AD =DC ,∠ADC =90°. 又因为 AE ⊥DG ,CF ∥AE ,所以 ∠AED =∠DFC =90°,所以 ∠EAD +∠ADE =∠FDC +∠ADE =90°,所以 ∠EAD =∠FDC. 所以 ΔAED ≌ΔDFC (AAS ).(2)因为 ΔAED ≌ΔDFC ,所以 AE =DF ,ED =FC. 因为 DF =DE +EF ,所以 AE =FC +EF.。
平行四边形教学方案平行四边形教学方案9篇为了确保工作或事情能高效地开展,往往需要预先制定好方案,方案可以对一个行动明确一个大概的方向。
那么大家知道方案怎么写才规范吗?下面是店铺整理的平行四边形教学方案,仅供参考,欢迎大家阅读。
平行四边形教学方案1考点要求:1、掌握平行四边形的概念和性质及它们之间的关系2、以下定理可以作为证明和计算的依据:平行四边形的对边相等、对角相等、对角线互相平分;一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形.一、预习准备:1.完成《导学式》P76-78,了解平行四边形的判定和性质。
2.记录下你的问题和其他同学交流。
二、例题精讲:例1、将下列图形(1)(2)(3)分别剪一刀后拼成平行四边形、梯形、平行四边形。
例2、如图1,有一张菱形纸片ABCD,, .(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边形的周长。
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形。
(注:上述所画的平行四边形都不能与原菱形全等)周长为__________ 周长为__________例3、如图,四边形ABCD是平行四边形,AE⊥BD,CF⊥BD,垂足分别为E、F,连结AF、CE。
求证:AF=CE巩固案1.下面几组条件中,能判断一个四边形是平行四边形的是()A.一组对边相等 B.两条对角线互相平分C.一组对边平行 D.两条对角线互相垂直2.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形3.平行四边形四内角平分线所围成的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形4.在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .5.以三角形的三个顶点及三边中点为顶点的平行四边形共有个6.如图,□ABCD的对角线、相交于点,点是的中点,的周长为16cm,则的周长是 cm.7.如图,在□ABCD中,已知AD=8?,AB=6?,DE平分∠ADC交BC边于点E,则BE等于8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=9.在平行四边形ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别AB和CD的五等分点,点B1、B2和D1、D2分别是BC 和DA的三等分点,已知四边形A4 B2 C4 D2的积为1,则平行四边形ABCD面积为10.如图,平行四边形中,,,.对角线相交于点,将直线绕点顺时针旋转,分别交于点.(1)证明:当旋转角为时,四边形是平行四边形;(2)试说明在旋转过程中,线段与总保持相等;(3)在旋转过程中,四边形可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时绕点顺时针旋转的度数.平行四边形教学方案2教学目标:1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应实际问题。
人教版数学八年级下册18.1《平行四边形》说课稿一. 教材分析人教版数学八年级下册18.1《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。
本节内容是整个初中数学的重要内容,也是后续学习几何证明、解三角形等知识的基础。
教材通过引入平行四边形的定义、性质和判定,使学生能够更深入地理解图形的内在联系,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节内容时,已经具备了一定的几何知识基础,对图形的认知和操作能力较强。
但同时,八年级的学生在学习过程中,可能会遇到对平行四边形性质和判定的理解困难,因此需要教师在教学过程中,注重引导学生通过观察、操作、思考、推理等方法,自主探索和发现平行四边形的性质和判定。
三. 说教学目标1.知识与技能目标:使学生掌握平行四边形的定义、性质和判定,能够运用这些知识解决一些简单的几何问题。
2.过程与方法目标:通过观察、操作、思考、推理等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:平行四边形的定义、性质和判定。
2.教学难点:对平行四边形性质和判定的理解,以及如何运用这些知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生自主探索和发现平行四边形的性质和判定。
2.教学手段:利用多媒体课件、几何画板等软件,辅助展示和操作图形,使学生更直观地理解平行四边形的性质和判定。
六. 说教学过程1.导入:通过展示一些生活中的平行四边形图形,引导学生回顾已学的三角形、四边形知识,为新课的学习做好铺垫。
2.自主探索:让学生通过观察、操作、思考、推理等方法,自主探索平行四边形的性质和判定。
3.小组合作:学生分组讨论,分享自己的发现,互相学习和交流,形成共识。
4.教师讲解:教师根据学生的探索结果,进行总结和讲解,使学生对平行四边形的性质和判定有更深刻的理解。
人教版平行四边形的性质教案《平行四边形的性质》选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十九章第一节.本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,下面是为大家整理的人教版平行四边形的性质教案5篇,希望大家能有所收获!人教版平行四边形的性质教案1教学内容:义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。
教学目标:1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。
2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。
3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。
教学重、难点:让学生在观察、操作、交流等教学活动中认识平行四边形。
教具准备:一个长方形方框,多媒体课件。
学具准备:每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。
教学过程:一、谈话引入教师:同学们,在以前的学习中我们已经初步认识了平行四边形。
实际上,在我们生活中也经常见到平行四边形。
请看大屏幕。
(课件出示主题图)请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。
)教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢今天这节课老师就和同学们一起来进一步认识平行四边形。
板书课题:平行四边形二、探究新知1、认识平行四边形的特征(1)教师:同学们喜欢看魔术表演吗(喜欢)现在,老师就给同学们表演一个小魔术。
(教师出示一个长方形方框)这个图形大家认识吗(它是长方形)教师:对!这是一个长方形。
老师握着这个长方形方框的两个对角,轻轻地拉一拉。
人教版数学八年级下册18.1.2第1课时《平行四边形的判定》说课稿一. 教材分析《平行四边形的判定》是人教版数学八年级下册第18.1.2节的内容,属于几何学的范畴。
本节内容主要介绍了平行四边形的判定方法,是学生进一步理解几何图形,运用几何知识解决实际问题的基础。
教材通过具体的例题和练习,使学生掌握平行四边形的判定方法,培养学生的逻辑思维能力和空间想象力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,对图形的认知和判断能力有所提高。
但是,对于平行四边形的判定,学生可能还存在一定的困惑,需要通过实例和练习进一步巩固。
此外,学生可能对理论知识的记忆较为困难,需要通过反复练习和引导,使学生能够熟练掌握判定方法。
三. 说教学目标1.知识与技能目标:使学生掌握平行四边形的判定方法,能够运用判定定理判断一个四边形是否为平行四边形。
2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象力,提高学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:平行四边形的判定方法。
2.教学难点:对平行四边形判定定理的理解和运用。
五. 说教学方法与手段本节课采用讲授法、问答法、示例法、练习法等教学方法,结合多媒体课件和几何画板等教学手段,使学生直观地理解平行四边形的判定方法。
六. 说教学过程1.导入新课:通过回顾已学过的四边形的知识,引导学生思考:如何判断一个四边形是否为平行四边形?从而引出本节课的主题。
2.讲解与演示:讲解平行四边形的定义,并通过多媒体课件展示平行四边形的图形,使学生直观地认识平行四边形。
接着,引导学生观察、分析、总结平行四边形的判定方法,并通过几何画板进行动态演示,使学生更好地理解判定方法。
3.练习与交流:布置一些判断题,让学生运用所学知识进行判断,并及时给予反馈和讲解。
同时,鼓励学生相互讨论、交流,培养学生的团队合作意识。
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质教案【教学目标】知识与技能目标1.理解并运用正方形的定义计算和证明;2.理解并运用正方形的性质进行计算和证明;3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.过程与方法目标经历正方形的定义及其性质的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.情感、态度与价值观目标让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【教学重点】正方形性质定理的运用.【教学难点】正方形与平行四边形、矩形、菱形的区别与联系.【教学准备】教师准备:教学中出示的教学插图、问题和例题.学生准备:复习平行四边形、矩形、菱形的定义、性质和判定.【教学过程设计】一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究知识点一:正方形的性质【类型一】特殊平行四边形的性质的综合例1菱形,矩形,正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D 不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题例2如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EF A=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE=2x.∴2x=1-x,解得x=2-1,即BE的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】利用正方形的性质解决角的计算或证明问题例3 在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数.解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用【类型一】 利用正方形的性质解决线段的倍、分、和、差关系例4 如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ;(2)OF =12CE . 解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE .证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE .方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题例5 如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt △AED 和Rt △AFB 中,⎩⎨⎧AD =AB ,AE =AF ,∴Rt △AED ≌Rt △AFB (HL),∴S △AED =S△AFB.∵S四边形ABCD=24cm2,∴S正方形AFCE=24cm2,∴AE=EC=26cm.根据勾股定理得AC=(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、教学小结师生共同归纳小结.1.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:2.分小组进行讨论,整理所学的性质:正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(3)菱形有哪些性质?(4)正方形有哪些性质?图形对边对角对角线对称性平行四边形平行、相等相等互相平分不是轴对称图形矩形平行、相等四个角都是直角互相平分且相等轴对称图形,有两条对称轴菱形平行、四条边都相等相等互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边四个角都是直互相垂直、平分且相轴对称图形,有四条对称都相等角等,每条对角线平分一轴组对角四、学习检测1.下列命题是真命题的是( )A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD 的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.3.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证AE=CF.(2)若∠ABE=55°,求∠EGC的大小.【解析】本题考查了等腰直角三角形、正方形的性质,“三角形的一个外角等于与它不相邻的两个内角之和”,全等三角形的性质与判定,解题的关键是证明△ABE≌△CBF.(1)用SAS证明△ABE≌△CBF.(2)∠EGC=∠EBG+∠BEF,而∠EBG=90°-∠ABE,△BEF是等腰直角三角形,从而可求∠EGC的度数.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,从而可知∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.解:(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°,∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠EBG+∠BEG=80°.[归纳总结]证明线段相等,通常转化成证明这两条线段所在的三角形全等得到对应线段相等.本题要充分利用正方形的性质“四条边相等;四个内角都等于90°;对角线互相垂直平分且相等,每一条对角线平分一组对角;正方形既是轴对称图形,又是中心对称图形等”,并根据题意选取合适的性质加以运用.等腰直角三角形的两锐角相等,为45°,底边上的高、中线、顶角的平分线重合.三角形全等的判定方法:SAS,ASA,AAS,SSS,HL(只适用于直角三角形),根据图中的条件选取合适的方法证明三角形全等是关键.【板书设计】18.2 特殊的平行四边形 18.2.3 正方形课时1 正方形的性质1.正方形的定义和性质四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用3.学习检测【教学反思】在本节数学课的教学中,通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质学案【学习目标】1.理解正方形的概念;2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;3.会应用正方形的性质解决相关证明及计算问题.【学习重点】探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.【学习难点】会应用正方形的性质解决相关证明及计算问题.【自主学习】一、知识回顾1.你还记得长方形有哪些性质吗?2.菱形的性质又有哪些?二、新知探究知识点1:正方形的性质想一想 1.矩形怎样变化后就成了正方形呢?你有什么发现?邻边_____2.菱形怎样变化后就成了正方形呢?你有什么发现?一个角是_____要点归纳:正方形定义:有一组邻边_____并且有一个角是_____的__________叫正方形.想一想正方形是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.那你能说出正方形的性质吗?1.正方形的四个角都是_________,四条边_________.2.正方形的对角线________且互相______________.证一证已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.证明:∵四边形ABCD是正方形.∴∠A=____°, AB_____AC.又∵正方形是平行四边形.∴正方形是______,亦是______.∴∠A___∠B___∠C___∠D =____°,AB___BC___CD___AD.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.证明:∵正方形ABCD是矩形,∴AO___BO___CO___DO.∵正方形ABCD是菱形.∴AC___BD.想一想请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:平行四边形、矩形、菱形、正方形之间关系:正方形的性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分. 【典例探究】例1如图,在正方形ABCD中,ΔBEC是等边三角形.求证:∠EAD=∠EDA=15°.DAB CE变式题 1 四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.变式题2 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.(1)求证:△APB≌△DPC;(2)求证:∠BAP=2∠PAC.例3 如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E,PF⊥DC于F.试说明:AP=EF.方法总结:在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.【跟踪练习】1.正方形具有而矩形不一定具有的性质是( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等2.正方形具有而菱形不一定具有的性质()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.三、知识梳理内容正方形的性质定义:有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.性质:1.四个角都是直角2.四条边都相等3.对角线相等且互相垂直平分四、学习过程中我产生的疑惑【学习检测】1.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°B(解析:因为CE⊥MN,所以∠MCE+∠NMC=90°.所以∠NMC=90°-∠MCE=55°.由题意得AD∥BC,所以∠ANM=∠NMC=55°.故选B.)3.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm24. 在正方形ABC中,∠ADB=________,∠DAC=_________, ∠BOC=__________.5. 在正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠EBC的度数是___________.6.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E=度.22.5(解析:由正方形的性质得∠ACB=45°,又CE=AC,所以∠E=∠EAC,因为∠E+∠EAC=45°,所以∠E=∠EAC=22.5°.)第4题图第5题图7.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.8. 如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.解:OE=OF.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∴∠AOB=∠BOC=90°.又∵∠OCF=∠OBE,∴△OCF≌△OBE,∴OE=OF.9. 如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.10.如左下图,正方形ABCD中,M是BC上任意一点,E在BC的延长线上,MN⊥AM,MN交∠DCE的平分线于N,试猜想AM与MN有怎样的数量关系,并说明理由.【解析】猜想AM=MN,要证AM=MN,如右上图,只需构造并证明△APM≌△MCN即可.解:AM=MN.理由如下:在AB上取一点P,使BP=BM,连接PM,如右上图.∵AB=BC,BP=BM,∴AP=MC,∠BPM=45°,∴∠APM=135°.∵CN平分∠DCE,∴∠MCN=∠APM=135°.∵MN⊥AM,∴∠AMB+∠CMN=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMN.∴△APM≌△MCN.∴AM=MN.。