中介效应与调节效应分析34页PPT
- 格式:ppt
- 大小:3.04 MB
- 文档页数:34
调节效应的分析自变量和调节变量都是分类变量:方差分析考察交互效应(调节效应)自变量(A)和调节变量(M)都是连续变量:对两个变量先做中心化处理(centering);变量–变量的平均数CA CM求中心化处理之后的两个变量的乘积(交互效应项或调节效应项CAM)层级回归分析调节效应或交互效应第一层CA CM第二层CAM R2 改变量是否显著或者CAM是否显著?3. 自变量是连续变量,调节变量是分类变量(分组回归–SEM )自变量是分类变量,调节变量是连续变量先将自变量(4个水平)转化成虚拟变量(K-1个虚拟变量)A1 A2 A3 调节变量中心化处理(CM)求中心化处理之后的调节变量与虚拟变量的乘积CM* A1 CM* A2 CM* A3 层级回归分析调节效应第一层A1 A2 A3 CM第二层CM* A1 CM * A2 CM* A3R2 改变量是否显著中介效应分析自变量:agreeableness 因变量:helping中介变量(mediator):sympathy中介效应分析:自变量对因变量的影响有没有通过某个中间的变量实现。
如果a b都显著,那么有中介效应。
如果c’显著,那么是部分中介效应,如果c’不显著,则是完全中介效应。
(ab都是标准化回归系数)如果a b 都不显著,那么无中介效应。
如果a b有一个显著,那么需要做进一步检验(H0: ab=0)。
Sobel Testz = a*b / √(a*a*sb*sb+b*b*sa*sa)(ab都是标准化回归系数,sa sb 指的是回归系数的标准误)第一步:自变量对因变量有显著效应c = 0.23 (p<0.01)第二步:分析a 和 b 的显著性a的显著性自变量对中介变量的影响a = 0.20 (p=0.01) sa =0.015b的显著性中介变量对因变量的影响(自变量和中介变量)b = 0.281 (p<0.01) sb = 0.013c’的显著性自变量对因变量的直接影响c’= 0.174 (p<0.01)第三步:a 和b 都是显著的,所以M 有中介效应。
调节效应与中介效应调节效应与中介效应1调节效应1.1 调节变量的定义如果变量Y与变量X的关系是变量M 的函数,称M 为调节变量。
就是说, Y与X 的关系受到第三个变量M 的影响,这种有调节变量的模型一般地可以用图1 示意。
调节变量可以是定性的(如性别、种族、学校类型等) ,也可以是定量的(如年龄、受教育年限、刺激次数等) ,它影响因变量和自变量之间关系的方向(正或负)和强弱。
图1调节变量模型在做调节效应分析时,通常要将自变量和调节变量做中心化变换(即变量减去其均值,参见文献) 。
本文主要考虑最简单常用的调节模型,即假设Y与X 有如下关系Y = aX + bM + cXM + e (1)可以把上式重新写成Y = bM + ( a + cM ) X + e对于固定的M ,这是Y对X 的直线回归。
Y与X 的关系由回归系数a + cM 来刻画,它是M 的线性函数, c衡量了调节效应(moderating effect)的大小。
1.2 调节效应分析方法调节效应分析和交互效应分析大同小异。
这里分两大类进行讨论。
一类是所涉及的变量(因变量、自变量和调节变量)都是可以直接观测的显变量(observable variable) ,另一类是所涉及的变量中至少有一个是潜变量( latent variable) 。
1.2.1 显变量的调节效应分析方法调节效应分析方法根据自变量和调节变量的测量级别而定。
变量可分为两类, 一类是类别变量( categorical variable) ,包括定类和定序变量,另一类是连续变量( continuous variable) ,包括定距和定比变量。
定序变量的取值比较多且间隔比较均匀时,也可以近似作为连续变量处理。
表1分类列出了显变量调节效应分析方法。
当自变量和调节变量都是类别变量时做方差分析。
当自变量和调节变量都是连续变量时,用带有乘积项的回归模型,做层次回归分析: ( 1)做Y对X和M 的回归,得测定系数R21。