高精度二维自准直仪的研制
- 格式:pdf
- 大小:134.93 KB
- 文档页数:3
第37卷,增刊红外与激光工程2008年4月V ol.37SupplementInfrared and Laser EngineeringApr.2008收稿日期:2008-03-09作者简介:甘俊红(5),女,江西丰城人,高级工程师,主要从事精密测量技术方面的研究。
j @63面阵CCD 在双轴自准直仪中的应用甘俊红,邹九贵,季国定(中国船舶工业集团公司第6354研究所,江西九江332000)摘要:介绍了一种高精度双轴自准直仪,它采用面阵CCD 器件作为光电传感器,利用自准直原理实现二维角度的测量。
对图像处理系统进行了重点阐述,采用直线拟合求十字线交点的方法保证了测量精度。
关键词:自准直仪;CCD ;图像处理中图分类号:TH741.14文献标识码:A文章编号:1007-2276(2008)增(几何量)-0060-03Application of sur face array CCD in twoaxis autocollimatorGAN Jun-hong,ZOU Jiu-gui,JI Guo-ding(The 6354Ins t itute of CSSC,Jiujiang 332000,China)Abstr act:A high accuracy two_axis autocollimator is introduced in this paper,which uses the surface array CCD com ponents as photoelectricy sensor,and two-axis angle by the theory of autocollimate are measured.In this paper,the system of image processing is explained in detail,and the method of matching straight line to get the point of cross line prom ise m easure accuracy.Key wor ds:Autocollimator;CCD;Image processing0引言自准直仪(又称自准直测微平行光管)是应用自准直原理测量小角度的检测仪器。
双向精密自准直仪
简介
双向精密自准直仪是一种用于测量相对高度的仪器。
它可以自动调整水平线,使其垂直于地面,同时提供垂直于水平线的相对高度的测量。
原理
该仪器基于弹簧和气压传感器的原理构建。
它通过将一条光线反射到一个悬挂在弹簧上的镜子上,从而生成水平线。
该仪器还使用气压传感器来测量相对高度。
它可以检测到大气压力的变化,并通过测量来推断仪器的位置。
特点
•高精度:该仪器提供高准确度的测量和自动校准。
•双向测量:该仪器可以同时提供水平线和相对高度的测量。
•简单易用:它具有直观的用户界面和易于操作的控件,使其非常适合现场使用。
•轻巧便携:由于其小巧轻便的设计,该仪器可以轻松携带到现场进行测量。
应用
双向精密自准直仪广泛应用于各种测量领域,包括建筑工程、铁路工程、公路工程和军事测量等。
它可以用于测量建筑物、桥梁、隧道、铁路、道路和其他构造物的高度和水平度。
它也可以用于军事应用,例如调查战场上的障碍物和其他地形特征,以及测量武器的精度和仪器的位置。
总结
双向精密自准直仪是一种高度精密的测量仪器。
它可以实现高准确度的测量和自动校准,同时提供水平线和相对高度的测量。
该仪器适用于各种测量场景,因为它具有直观的用户界面和易于操作的控件,同时拥有便携轻巧的设计,使其成为现场工作的理想选择。
自准直仪原理自准直仪是一种用于测量和调整光学系统的仪器,它能够精确地确定光学系统的光轴位置和方向。
在现代光学领域,自准直仪被广泛应用于望远镜、显微镜、激光器等光学系统的制造和校准过程中。
本文将介绍自准直仪的原理及其工作原理。
自准直仪的原理是基于光学干涉原理的。
光学干涉是指两束或多束光波相互叠加,形成明暗条纹的现象。
自准直仪利用这一原理,通过光波的干涉来测量光学系统的光轴位置和方向。
当光线与光学系统的光轴重合时,干涉条纹将保持稳定,而当光线偏离光轴时,干涉条纹将产生移动。
通过测量干涉条纹的移动情况,就可以确定光学系统的光轴位置和方向。
自准直仪通常由光源、分束器、透镜、干涉仪和检测器等部件组成。
光源发出的光线经过分束器分成两束,一束直射到光学系统上,另一束经过透镜成为平行光,然后通过干涉仪和检测器进行干涉条纹的测量。
当光学系统的光轴与平行光的方向重合时,干涉条纹将保持稳定,检测器将输出零信号;而当光学系统的光轴偏离平行光的方向时,干涉条纹将产生移动,检测器将输出相应的信号。
通过测量检测器的输出信号,就可以确定光学系统的光轴位置和方向。
自准直仪的工作原理是基于干涉测量技术的,它能够实现对光学系统光轴位置和方向的精确测量和调整。
在光学系统的制造和校准过程中,自准直仪起着至关重要的作用,它能够帮助工程师们快速准确地调整光学系统,确保光学系统的性能达到设计要求。
同时,自准直仪还具有测量精度高、操作简便等优点,因此在光学制造和校准领域得到了广泛的应用。
总之,自准直仪是一种基于光学干涉原理的测量仪器,它能够实现对光学系统光轴位置和方向的精确测量和调整。
在现代光学制造和校准领域,自准直仪发挥着重要作用,为光学系统的制造和校准提供了有力的技术支持。
希望本文能够帮助读者更好地理解自准直仪的原理及其工作原理,进一步推动光学技术的发展和应用。
二维光电自准直仪操作手册鞍山光准科技有限公司鞍山光准科技有限公司二维光电自准直仪操作手册目录1保修及有限责任 (1)维护 (1)功能和损坏的责任 (1)附件 (1)安全说明 (1)2设计用途 (2)3功能描述 (3)3.1二维光电自准直仪简介 (3)3.1.1自准直原理 (3)3.1.2主要技术指标 (4)3.1.3自准直仪主要功能 (5)3.1.4自准直仪主要特点 (5)3.2部件描述 (6)3.2.1自准直测头 (6)3.2.2网络连接线和电源箱 (6)3.2.3电脑 (7)3.2.4二维摆角调整底座 (7)3.2.5反射镜 (7)3.2.6激光找像器 (7)4软件介绍 (8)4.1整体界面 (8)4.1.1控制区 (8)4.1.2 显示区 (9)4.2菜单栏 (10)5操作 (13)5.1单位 (13)5.2标定 (13)5.3绝对测量与相对测量 (14)5.4有效位数设置 (14)5.5实时采集和单帧采集 (15)5.6自动测量和手动测量 (16)5.7动态测量和单次测量 (16)5.8数据的保存和查看 (17)5.9量程扩展 (17)5.10刻度显示 (18)5.11公差显示 (18)6测量 (20)6.1直线度测量 (20)6.1.1准备 (20)6.1.2输入 (20)6.1.3采样 (21)6.1.4查看结果 (22)6.1.5生成word (24)6.2平面度测量 (25)6.2.1网格布点法平面度测量 (25)6.2.2对角线布点法平面度测量 (30)6.3平行度测量介绍 (34)6.4垂直度测量介绍 (34)7附录: (35)1保修及有限责任维护该光电自准直仪在更改或维护时只能使用鞍山光准科技有限公司提供的原装部件,并且只能由鞍山光准科技有限公司明确授权的人员进行。
功能和损坏的责任该光电自准直仪如因维护不当或者由非鞍山光准科技有限公司明确授权的人员进行更改导致的仪器不能正常运行,或得不到精确结果,鞍山光准科技有限公司不承担任何责任。
自准直仪的工作原理
自准直仪是一种在测量工程中经常使用的高精度测量仪器,其主要用
途是在进行测量时对仪器的方向和姿态进行修正,从而保证测量结果
的准确性。
下面我们来分步骤介绍自准直仪的工作原理。
第一步,光路原理
自准直仪的原理基于光路原理,其本质就是使用光束探测测量仪器的
姿态角。
在自准直仪中,主要使用激光光束照射到一个旋转的反射镜
或者棱镜上,然后通过像差透镜和准直透镜进行光路的整理,在透镜
后面的位置安装一个导轨(通过固体角度的反射来达到精细定位),
通过该导轨可以精细调节透镜的位置,从而实现光路的精细调节。
第二步,姿态测量
在自准直仪的光路准备好之后,接下来就是通过光束测量仪器的姿态。
在自准直仪中,主要采用两种不同的测量方法:一种是水平仪的形式,通过调节光路达到水平状态;另一种是在仪器旋转的平面上采用静电
力进行测量,进行姿态波动捕捉。
第三步,姿态校正
在完成姿态测量之后,可以通过自准直仪进行姿态校正。
在自准直仪中,主要采用动态校正和静态校正两种方法,其中动态校正是在仪器
运动时对仪器进行测量和校正,静态校正是在仪器静止时对仪器进行
测量和校正。
第四步,数据处理和输出
在完成姿态校正之后,可以将校正后的数据进行处理和输出。
在自准
直仪中,主要通过计算机进行数据处理和输出,使得测量结果更加准确。
总结一下,自准直仪的工作原理主要基于光路原理,并且采用激光光
束进行姿态测量和校正,其中动态校正和静态校正是非常重要的环节。
通过自准直仪的工作,可以大大提高测量结果的准确性和稳定性,从
而适用于各种高精度测量工程中。
一、简介二、主要技术指标 CCD-A、B系列双轴自准直仪是采用CCD进行数据采集的双轴光电类自准直仪。
仪器由自准直光管,计算机、电源箱及反射镜组成,它可对任意空间位置同时进行双轴数显测量。
适用于角度值(如转台、棱体、角度器件等)的精密测量,及相关直线度、平面度、平行度、垂直度等形位检测。
也可用于相关的在线、动态检测。
该产品经过多年使用验证,性能稳定可靠,技术指标达到国际先进水平。
我们还可以为传统的目视准直光管进行改造,为满足该类仪器升级和更新要求,只要准直仪物镜光管及光源系统完好、光学像质清晰,用户均可按本系列相近仪器的主要技术指标进行技术升级改造。
为了满足特殊用户的需求,也可为其设计专用CCD类光电自准直仪或测量工装。
型 号测量范围测量精度仪器分辨力管长/管径(㎜)最大工作距离CCD-AIX向 > 600″y向 > 440″≤0.2″或≤0.3″/±300″内≤0.2″或≤0.3″/±220″内参考:≤0.1″/±100″内0.01″320/Φ57>6mCCD-AIIX向 > 2700″y向 > 2000″≤0.8″~1″/±1350″内≤0.8″~1″/±1000″内0.1″180/Φ57CCD-AIIIX向 > 4200″≤1.5″/全量程0.1″110/Φ57y向 > 3200″≤1.5″/全量程CCD-BIX向 > 600″y向 > 440″≤0.2″或≤0.3″/±300″内≤0.2″或≤0.3″/±220″内参考:≤0.1″/±100″内0.01″320/Φ57>6mCCD-BIIX向 > 2400″y向 > 2000″≤1″/全量程≤1″/全量程0.1″180/Φ45CCD-BIIIX向 > 4000″y向 > 3000″≤1.5″/全量程≤1.5″/全量程0.1″110/Φ451、以图形和数字化形式同时显示工作位置和测量结果。