结构力学龙驭球版 桁架习题
- 格式:ppt
- 大小:1.08 MB
- 文档页数:11
结构力学(高等教育出版社 龙驭球)考研模拟题专业课复习资料(最新版)封面1结构力学模拟试题一 1、 、(20 分)计算图示结构。
绘出梁式杆的弯矩图,并求二力杆的轴力。
已知:030 ,045 。
。
题 题 1 图 题 题 2 图 2、 、(18 分)计算图示刚架。
绘制弯矩图和剪力图。
3、 、(20 分)用力矩分配法计算图示刚架。
绘弯矩图,并求 C 支座的反力。
题 题 3 图 4、 、(18 分)连续梁的支座 A 和 B 均发生了支座位移如图。
试列出力法方程,求出方程中的系数和常数项。
(注意:不解方程) 题 题 4 图 5、 、(20 分)用位移法计算图示刚架。
绘出弯矩图。
2EI = 08题 题 5 图 图 6、 、(18 分)做图示梁 A 截面的弯矩 M A 、剪力 F QA 及 k 截面的弯矩 M k 影响线;已知可任意分布均布荷载集度 q=10kN/m,计算 F QA 的最大值,并注出相应的最不利荷载位置。
题 题 6 图 图7、 、(18 分)只考虑图示体系质点在铅垂方向振动。
计算质点的最大竖向位移和刚架顶铰 C 处的最大竖向位移。
已知: 0.4 ( 为结构自振频率),8.4kN F P ,3al4EIk , 38kN W ,各杆 EI 相同均为常数。
EIEIEI = 08m =3m 1EIm =m 2 题 题 7 图 题 题 8 图 8、 、(18 分)计算图示振动体系的自振频率和振型,并绘出振型图。
3结构力学模拟题二 一、是非题,对的画 ,错的打(( 每小题 1 分) 1. 除荷载外,其他因素例如温度变化、支座位移等会使超静定结构产生位移, 因而也就有可能使静定结构产生内力 。
( ) 2. 刚架中所有的结点都为刚结点。
( ) 3. 几何不变体系都为静定结构。
( ) 4. 力法中的基本结构为超静定结构。
( ) 5. 二元体是指由两根链杆联结一个新结点的装置( ) 6. 静定多跨梁由基本部分和附属部分组成。
第3章静定结构的受力分析一、判断题1.图3-1所示桁架杆件AB、AF、AG内力都不为零。
()[厦门大学2007研]图3-1【答案】错【解析】本题为静定结构,根据静定结构的性质:在荷载作用下,如果仅靠结构某一局部就能够平衡外荷载时,则仅此局部受力,其余部分没有内力。
知杆件AB、AF、AG内力都为零。
2.图3-2所示桁架,各杆EA为常数,仅AB杆有轴力,其他杆的轴力为零。
()[天津大学2007研]图3-2【答案】错【解析】本题是一对平衡力作用在超静定部分ADBC 上,故整个超静定部分ADBC 都会产生内力。
倘若本题为静定桁架,则只有AB 杆受力。
3.若某直杆段的弯矩为0,则剪力必定为0;反之,若剪力为0,则弯矩必定为0。
( )[中南大学2005研]【答案】错【解析】由弯矩和剪力的微分关系Q dMF dx可知,剪力为零,但弯矩不一定必为零。
比如,受纯弯曲的杆段。
二、选择题1.如图3-3所示结构在所示荷载作用下,其支座A 的竖向反力与支座B 的反力相比为( )。
[郑州大学2010研、哈尔滨工业大学2008研]A .前者大于后者B.二者相等,方向相同C.前者小于后者D.二者相等,方向相反图3-3【答案】B【解析】直接对C点列力矩方程∑M C=0即可判断。
2.图3-4所示结构,当高度h增加时,杆件1的内力()。
[南京理工大学2012研]A.增大B.减小C.不确定D.不变【答案】D【解析】根据K形结点的特性,因结构是对称的,荷载也是对称的,所以各杆件的内力是对称的,所以杆件1、2均为零杆,与结构高度h增加与否无关。
图3-43.图3-5所示对称三铰拱截面C的轴力已知为F NC=48kN(压),则矢高f应等于()。
[清华大学2003研]A.4m B.4.5m C.4.8m D.5m图3-5【答案】D【解析】先求得B支座竖向反力为50kN,后求出相应简支梁跨中弯矩为240kN·m,再用相应简支梁跨中弯矩除以轴力(水平推力)48kN,于是得到矢高f应等于5m。
第11章静定结构总论11.1复习笔记一、几何构造分析与受力分析之间的对偶关系1.从计算自由度W的力学含义和几何含义看对偶关系(1)W的几何含义W=各部件的自由度总数-全部约束数。
(2)W的力学含义W=各部件的平衡方程总数-未知力总数。
(3)根据W的数值,可对体系的静力特性得出下列结论①W>0,平衡方程个数大于未知力个数,体系不是都能维持平衡,体系为几何可变;②W<0,平衡方程个数小于未知力个数,体系如能维持平衡,体系有多余约束,是超静定的;③W=0,平衡方程个数等于未知力个数,考虑方程组的系数行列式D当D≠0,方程组有唯一解,体系几何不变且无多余约束;当D=0,方程组无解或有无穷多解,体系几何可变且有多余约束。
2.从W=0的一个简例看对偶关系(1)几何构造分析(图11-1(a))图11-1①α≠0(链杆1和2不共线)时,体系为几何不变,且无多余约束;②α=0(链杆1和2为共线)时,体系为几何可变(瞬变),且有多余约束。
(2)受力分析取结点C为隔离体(图11-1c),可写出两个投影平衡方程:F1cosα-F2cosα=F xF1sinct+F2sinoc=F y下面分为两种情况讨论①α≠0时(两根链杆1和2不共线)②α=0时(两根链杆共线)当荷载F y≠0时,方程组无解;如果考虑F y=0而只有水平荷载F x作用的特殊情况,此时解为:F1=F2+F x=任意值。
二、零载法1.零载法的作法表述对于W=0的体系,如果是几何不变的,则在荷载为零的情况下,它的全部内力都为零;反之,如果是几何可变的,则在荷载为零的情况下,他的某些内力可不为零。
2.零载法适用体系零载法是针对W=0的体系,用静力法来研究几何构造问题,用平衡方程的解的唯一性来检验其几何不变性的方法。
3.从虚功原理角度看零载法由于载荷为零,因此虚功方程左边只有一项Fx•△x=0(1)与F x相应的约束是非多余约束,△≠0,解得F=0;(2)与F x相应的约束是多余约束,△=0,则F等于任意值。
第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。