太阳能跨季节储热供热系统试验分析
- 格式:pdf
- 大小:360.38 KB
- 文档页数:6
河北工业大学毕业论文学院:能源与环境工程学院系(专业):热能与动力工程题目:太阳能跨季节储热系统非供热季运行参数的试验与模拟评阅者:2015 年6 月11 日目录1 绪论 (1)1.1课题研究背景及意义 (1)1.1.1发展背景 (1)1.1.2课题研究的目的及意义 (1)1.2课题的研究现状 (2)1.2.1国外研究现状 (2)1.2.2国内研究现状 (3)1.3本课题研究内容和方法 (5)1.3.1研究内容 (5)1.3.2研究方法 (6)2 太阳能跨季节储热系统非供热季简介 (7)2.1节能楼建筑概况 (7)2.2太阳能跨季节储热系统的组成 (7)2.2.1太阳能集热器 (8)2.2.2蓄热水箱 (8)2.2.3储热地埋管小井群 (9)2.3太阳能跨季节储热非供热季系统的控制过程 (10)3 太阳能跨季节储热系统的试验分析 (10)3.1 试验过程 (10)3.1.1 试验目的 (10)3.1.2试验方案 (11)3.2集热和储热过程的温度曲线分析 (12)3.3太阳能跨季节储热系统数据处理 (14)4 太阳能跨季节储热系统TRNSYS16模型 (19)4.1建立TRNSYS16模型的目的 (19)4.2太阳能跨季节储热系统模型的建立 (20)4.3太阳能跨季节储热系统模拟过程中的部件以及部件参数的设置 (21)4.4模型验证的有关计算 (23)4.4.1典型天的选择 (23)4.4.2典型天的数据计算 (24)4.4.3典型天气象数据输入及模型验证分析 (26)5 太阳能跨季节储热系统的运行策略 (28)5.1典型天的瞬时模拟 (28)5.2不同阶段典型天的运行策略 (30)5.2.1 初期典型天的运行策略 (30)5.2.2 中期典型天的运行策略 (33)5.2.3 末期典型天的运行策略 (35)5.3 最佳控制策略及下一步预测 (37)5.3.1 最佳运行策略的确定 (37)5.3.2 非供热期的预测模拟 (38)全文总结 (41)参考文献 (42)致谢 (44)1 绪论1.1课题研究背景及意义1.1.1发展背景能源是国民经济的重要基础,社会的进步和科技的发展都与之息息相关。
《太阳能相变蓄热供暖系统理论及实验研究》篇一一、引言随着能源危机和环境污染问题的日益严重,清洁可再生能源的开发与利用已成为全球关注的焦点。
太阳能作为一种取之不尽、用之不竭的清洁能源,其在供暖领域的应用具有重要意义。
太阳能相变蓄热供暖系统通过高效利用太阳能,实现低能耗、低污染的供暖方式,对于提高能源利用效率、缓解能源压力具有重要价值。
本文将围绕太阳能相变蓄热供暖系统的理论及实验研究进行深入探讨。
二、太阳能相变蓄热供暖系统理论1. 系统构成太阳能相变蓄热供暖系统主要由太阳能集热器、相变材料(PCMs)蓄热器、控制系统及辅助加热设备等组成。
其中,太阳能集热器用于收集太阳能并转化为热能,相变材料蓄热器通过相变过程实现热能的储存与释放,控制系统负责整个系统的运行与调节,辅助加热设备则用于在太阳能不足时提供补充热源。
2. 工作原理太阳能相变蓄热供暖系统的工作原理主要基于相变材料的潜热储能特性。
在白天,太阳能集热器将收集的太阳能转化为热能,并将其传递给相变材料蓄热器中的相变材料。
在相变过程中,相变材料吸收大量热能并储存起来。
当夜间或太阳能不足时,相变材料将储存的热能释放出来,为供暖系统提供热量。
通过控制系统的调节,可实现热能的合理利用与分配。
三、实验研究为了深入研究太阳能相变蓄热供暖系统的性能及特点,本文开展了一系列实验研究。
1. 实验设备与方法实验设备主要包括太阳能集热器、相变材料蓄热器、测温仪、数据采集器等。
实验方法包括性能测试、数据记录与分析等。
通过改变太阳辐射强度、环境温度等条件,观察相变材料的相变过程及热能储存与释放情况,分析系统的性能特点及影响因素。
2. 实验结果与分析(1)性能测试结果:通过实验发现,太阳能相变蓄热供暖系统在太阳辐射强度较高时,能够有效地吸收并储存太阳能。
在夜间或太阳能不足时,相变材料能够稳定地释放热能,为供暖系统提供持续的热源。
(2)影响因素分析:实验结果表明,太阳辐射强度、环境温度、相变材料的性能等因素对系统的性能具有重要影响。
太阳能跨季节储供热系统经济分析方法研究太阳能跨季节储供热系统经济分析方法研究在当今世界能源供应的不确定性和环境保护意识的提高下,寻求可再生能源替代传统能源已成为当务之急。
太阳能作为一种清洁、可持续的能源,其应用前景广阔。
太阳能供热系统是其中一种有效利用太阳能的方式,通过吸收太阳能热量,将其转化为供热能源。
然而,太阳能供热系统在季节变化中存在着热能供应不稳定的问题,而跨季节储供热系统则能有效解决这一问题。
本文将对太阳能跨季节储供热系统的经济分析方法进行研究。
首先,我们需要进行系统建模,将太阳能供热系统分为太阳能收集部分、储能部分和供热部分。
太阳能收集部分通过太阳能集热器将太阳能转化为热能,储能部分通过储热设备将多余的热能储存起来,供热部分通过热交换器将储存的热能释放,供应给用户。
其次,我们需要对太阳能跨季节储供热系统的经济性进行评估。
首先是建设成本的估算,包括太阳能收集器、储热设备、供热设备等的购置费用。
其次是运行成本的估算,包括系统维护费用、能耗费用等。
同时,还需要对系统的寿命进行分析,以确定系统的经济寿命。
最后,通过现金流分析方法,将系统的投资成本与收益进行对比,计算出系统的投资回收期、净现值和内部收益率等指标,来评估系统的经济效益。
然后,我们需要考虑到多种因素对太阳能跨季节储供热系统经济性的影响。
首先是能源价格的变动,太阳能供热系统能够降低用户的能源消耗成本,但能源价格的变动会直接影响系统的经济性。
其次是用户需求的变化,用户的热能需求量和热能使用方式的改变都会对系统的经济效益产生影响。
再次是政府政策的支持程度,政府的补贴政策和税收优惠政策都能够提高太阳能供热系统的经济性。
最后,我们需要对太阳能跨季节储供热系统的经济分析方法进行优化。
如何选择合适的评估指标、确定合理的模型参数,将直接影响到经济分析的准确性和可靠性。
同时,还需要考虑到系统运行中存在的不确定性因素,如天气状况的变化、能源价格的波动等,通过灵活的评估方法来较好地应对不确定性。
《太阳能相变蓄热供暖系统理论及实验研究》篇一摘要本文对太阳能相变蓄热供暖系统进行了深入的理论和实验研究。
首先,阐述了系统的基本原理和组成;其次,详细分析了相变材料(PCMs)在系统中的作用及其选择原则;接着,通过实验验证了系统的性能和效果,并对实验结果进行了深入讨论。
最后,文章总结了太阳能相变蓄热供暖系统的优点与潜在的发展方向。
一、引言随着环境问题的日益突出,可再生能源的利用已成为全球关注的焦点。
太阳能作为一种清洁、可再生的能源,其利用技术不断进步。
太阳能相变蓄热供暖系统是利用太阳能进行供暖的一种高效技术,通过相变材料(PCMs)进行热量存储和释放,为供暖系统提供持续稳定的热源。
本文将对该系统的理论及实验研究进行详细阐述。
二、太阳能相变蓄热供暖系统基本原理及组成太阳能相变蓄热供暖系统主要由太阳能集热器、相变材料(PCMs)、储热容器、循环泵、控制系统等部分组成。
系统通过太阳能集热器将太阳能转化为热能,并利用循环泵将热量传递给相变材料(PCMs),在PCMs中储存热量。
当需要供暖时,控制系统控制循环泵将PCMs中的热量传递给供暖系统,实现供暖。
三、相变材料在系统中的作用及选择原则相变材料(PCMs)在太阳能相变蓄热供暖系统中起着关键作用。
它们能够在一定温度范围内吸收和释放大量的热量,从而实现热量的储存和释放。
PCMs的选择对于系统的性能和效率具有重要影响。
选择PCMs时,应考虑其相变潜热、导热系数、稳定性、成本等因素。
此外,PCMs的物理性质和化学性质应与系统其他部分相匹配,以保证系统的正常运行。
四、实验研究及结果分析为了验证太阳能相变蓄热供暖系统的性能和效果,我们进行了实验研究。
实验中,我们采用了不同的PCMs,通过改变太阳辐射强度、环境温度等条件,观察系统的运行情况和供暖效果。
实验结果表明,太阳能相变蓄热供暖系统能够有效地储存和释放热量,为供暖系统提供持续稳定的热源。
此外,通过选择合适的PCMs和优化系统参数,可以进一步提高系统的性能和效率。
天津市科技支撑计划项目(07ZCKFSF00400) 作者简介:王恩宇,(1970- ),男,副教授,主要从事燃烧技术、可再生能源利用及建筑节能技术等。
太阳能跨季节储热建筑供热系统及土壤储热实验分析王恩宇 齐承英 杨华 张慧川 吕延松(河北工业大学能源与环境工程学院,天津,300401)摘 要 根据天津城郊别墅类建筑的冷热负荷特点,设计建立了太阳能跨季节储热建筑供热系统。
该系统采用土壤蓄热实现夏季太阳能的跨季节储存,冬季采用太阳能热水或利用热泵提取土壤蓄热进行建筑供热,实现了太阳能的跨季节储热与热泵系统联合运行。
短期的实验数据表明,在36天时间内,储热区土壤温度平均升高了1.3℃,采用垂直埋管换热土壤蓄热系统实现太阳能的跨季节储存是可行的。
长期储热效果有待进一步研究。
太阳能跨季节储存及热泵联合供热系统的设计应注意各子系统的合理匹配,以提高系统综合能效。
关键词 太阳能 跨季节储热 地源热泵 建筑供热A SOLAR ENERGY SYSTEM WITH SEASONAL STORAGE FOR BULIDING HEATING AND EXPERIMENTAL ANALYSIS OF SOIL HEAT STORAGEWang Enyu Qi Chengying Yang Hua Zhang Huichuan Lü Yansong(School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401)Abstract A Solar heating system with seasonal storage is designed and built for the villa buildings in Tianjin suburb. The solar energy was stored in the soil in summer, and was taken out by the ground-source heat bump for building heating in winter. The solar energy collected in winter was used directly for heating. The test data in a short-term experiment indicated that the soil temperature in the heat storage area increased averagely 1.3 centigrade degree after 36 days. The experimental results confirmed that using a vertical duct storage system for the seasonal solar energy storage is viable.. Long-term effects of the solar energy storage system will be needed further study. To design the solar energy seasonal storage and heat bump combined heating system, the reasonable subsystem design should be paid more attention to enhance energy efficiency. Keywords Solar energy Seasonal heat storage Ground-source heat bump Building Heating1.绪论在能源与环境问题日益突出的今天,地源热泵作为清洁、高效的供热空调系统正受到越来越多的关注,成为建筑空调领域的热点。
北方农村户用太阳能空气集热采暖系统实验分析随着世界能源和环境问题的日益凸显,太阳能空气集热采暖系统成为了研究和应用的热点。
在北方农村,采暖季节长、温度低,传统采暖方式能源消耗大、污染严重,因此太阳能空气集热采暖系统成为了一种可行的解决方案。
本文将从实验分析的角度出发,探讨北方农村户用太阳能空气集热采暖系统的优点、不足以及发展前景。
一、系统构成及原理太阳能空气集热采暖系统主要由太阳能集热器、空气热交换器、暖气片及控制系统组成。
具体原理如下:1.太阳能集热器:利用太阳能对太阳能集热器内介质的照射和吸收,将太阳能中的热能转化为介质的内能,使介质发生相应的温度上升。
2.空气热交换器:空气通过空气热交换器与太阳能集热器内的介质进行热交换,从而使空气得到提高温度的效果,达到采暖的目的。
3.暖气片:将热能输送到室内。
4.控制系统:根据环境温度等参数控制系统工作状态,确保系统的稳定运行。
二、实验分析为了验证太阳能空气集热采暖系统的实用性,笔者在一户北方农村进行了实验。
实验结果显示,太阳能空气集热采暖系统相较于传统采暖方式有以下优点:1.节能减排:传统采暖方式大量消耗煤等传统能源,对环境造成严重污染。
而太阳能空气集热采暖系统只需利用太阳能即可完成采暖,实现了节能减排。
2.成本低廉:采用太阳能空气集热采暖系统的建设成本较低,无需购买燃料,减少了后期运营成本。
3.良好的维护性:太阳能空气集热采暖系统无火焰和烟尘排放,无需进行热管清洗和防护。
同时,系统构造简单,维护方便。
但同时也存在着以下不足:1.系统效率不高:传统采暖方式在效率上,太阳能空气集热采暖系统相对较低。
虽然系统需要时刻对外界温度进行感应,但在阴雨天气或强风天气中,系统效率会下降,需要进行额外的补充能源。
2.局限性较大:太阳能空气集热采暖系统在效率上很大程度取决于气候条件。
在北方春秋季节、冬季朝晚及阴雨天气等气候条件下,系统效果受到影响,不太适用。
三、发展前景通过实验可以发现,太阳能空气集热采暖系统的使用效果比较稳定,在阳光充足的情况下可以最大限度地利用太阳能。
太阳能跨季节储热系统非供热季运行参数的试验毕业论文目录1 绪论 (1)1.1课题研究背景及意义 (1)1.1.1发展背景 (1)1.1.2课题研究的目的及意义 (1)1.2课题的研究现状 (2)1.2.1国外研究现状 (2)1.2.2国内研究现状 (3)1.3本课题研究内容和方法 (5)1.3.1研究内容 (5)1.3.2研究方法 (5)2 太阳能跨季节储热系统非供热季简介 (6)2.1节能楼建筑概况 (7)2.2太阳能跨季节储热系统的组成 (7)2.2.1太阳能集热器 (7)2.2.2蓄热水箱 (8)2.2.3储热地埋管小井群 (8)2.3太阳能跨季节储热非供热季系统的控制过程 (9)3 太阳能跨季节储热系统的试验分析 (10)3.1 试验过程 (10)3.1.1 试验目的 (10)3.1.2试验方案 (11)3.2集热和储热过程的温度曲线分析 (11)3.3太阳能跨季节储热系统数据处理 (14)4 太阳能跨季节储热系统TRNSYS16模型 (19)4.1建立TRNSYS16模型的目的 (19)4.2太阳能跨季节储热系统模型的建立 (20)4.3太阳能跨季节储热系统模拟过程中的部件以及部件参数的设置 (21)4.4模型验证的有关计算 (23)4.4.1典型天的选择 (23)4.4.2典型天的数据计算 (24)4.4.3典型天气象数据输入及模型验证分析 (26)5 太阳能跨季节储热系统的运行策略 (28)5.1典型天的瞬时模拟 (28)5.2不同阶段典型天的运行策略 (30)5.2.1 初期典型天的运行策略 (30)5.2.2 中期典型天的运行策略 (33)5.2.3 末期典型天的运行策略 (35)5.3 最佳控制策略及下一步预测 (37)5.3.1 最佳运行策略的确定 (37)5.3.2 非供热期的预测模拟 (38)全文总结 (41)参考文献 (42)致谢 (44)1 绪论1.1课题研究背景及意义1.1.1发展背景能源是国民经济的重要基础,社会的进步和科技的发展都与之息息相关。
太阳能土壤跨季节蓄热—地源热泵组合理论与实验研究的开题报告一、研究背景及意义随着人类对清洁能源的需求日益增加,太阳能、地源热泵等新能源技术逐渐得到了广泛应用。
作为一种清洁、可再生的能源,太阳能通过太阳能集热器收集和利用,可以供应家庭热水、采暖等用途。
然而,太阳能在不同季节、不同天气条件下的供热效果有所差异,存在冬季太阳能供热不足、夏季太阳能过剩等问题。
因此,如何解决太阳能跨季节供热问题,提高太阳能利用率,是当前太阳能利用方面的研究热点。
地源热泵是一种利用地下热能进行空调供暖的系统。
地下恒定的温度可以保证地源热泵在任何天气条件下都能良好地工作。
由于地下温度受季节影响相对较小,因此地源热泵可以有效解决夏季散热、冬季供热等问题。
因此,将太阳能与地源热泵进行组合利用,可以实现夏季太阳能收集、冬季地源热泵供暖的效果,从而提高太阳能的利用效率,降低对传统能源的依赖。
通过太阳能土壤跨季节蓄热-地源热泵组合利用这一技术,可以解决夏季太阳能过剩、冬季太阳能供热不足的问题,从而实现太阳能的有效利用。
因此,本研究旨在探究太阳能土壤跨季节蓄热-地源热泵组合利用的理论知识和实验研究,为太阳能利用提供新的思路和方法,为清洁能源领域的发展做出贡献。
二、研究内容和方法1. 理论探究:介绍太阳能土壤跨季节蓄热的基本原理和机理,探究太阳能与地源热泵的组合利用机制,分析太阳能土壤跨季节蓄热-地源热泵组合利用的优势和应用前景。
2. 实验设计:设计太阳能土壤跨季节蓄热-地源热泵组合利用的实验装置,研究太阳能的收集效率、土壤蓄热效率、地源热泵的工作效率等关键因素对系统运行的影响。
3. 数据分析和处理:对实验数据进行处理和分析,研究太阳能土壤跨季节蓄热-地源热泵组合利用的供热效果、能耗、经济性等指标,并从理论与实验两个方面验证太阳能土壤跨季节蓄热-地源热泵组合利用的可行性和优劣。
三、研究成果与预期目标1. 提出太阳能土壤跨季节蓄热-地源热泵组合利用的理论框架和技术方案,为太阳能利用提供新的思路和方法。
太阳能跨季节储-供热系统动态特性及运行策略研究太阳能跨季节储/供热系统动态特性及运行策略研究随着能源紧缺和气候变化的日益严峻,太阳能作为一种绿色可再生能源受到了人们的广泛关注。
太阳能热利用作为太阳能的一种重要利用方式,在户外供热、热水供应以及工业和农业领域中有着广阔的应用前景。
然而,由于太阳能供热的季节性和间歇性特点,太阳能热系统在供热过程中存在着一些难题,如如何在无太阳能供热条件下保持系统的稳定运行,太阳能的不稳定性如何影响系统的性能等。
对于太阳能跨季节储/供热系统的动态特性进行深入的研究,可以帮助我们更好地理解系统的运行机理,优化系统的设计和运行策略,提高系统的使用效率。
首先,我们需要分析太阳能系统的动态特性。
太阳能热系统通过太阳能集热器将太阳能转化为热能,并将热能存储下来以应对夜间或阴雨天供热。
在不同季节中,太阳能的辐射强度和日照时间存在差异,从而影响了系统的供热性能。
因此,我们需要通过实验或数值模拟的方法,研究太阳能系统在不同季节和气候条件下的热性能变化规律,了解系统在不同工况下的响应特点。
其次,我们需探讨太阳能系统在跨季节供热时的运行策略。
在冬季和夏季之间的季节交替期,太阳能的供热能力会有所下降,如何保证系统的连续供热成为一个关键问题。
一种常见的解决方法是通过热储罐储存太阳能,以充分利用太阳能资源,并在夜间或阴雨天继续供热。
不同类型的热储罐(例如,水箱、岩棉等)在存储热能时的性能差异会直接影响系统的供热能力。
因此,我们需要对不同类型的热储罐进行实验研究,了解其储热特性和影响因素。
此外,我们还需要制定合理的运行策略来保证系统的性能稳定。
根据太阳能供热系统的特点,我们可以考虑使用智能控制方法,如模糊控制、神经网络控制等,以提高系统的控制精度和响应速度。
同时,结合太阳能的日照预测等信息,可以提前调整系统的工作状态,使得太阳能热系统在季节转换时无缝切换,保证持续供热。
最后,我们需要评估太阳能系统的性能和经济效益。