2004北航应用数理统计期末考试试题及参考答案
- 格式:docx
- 大小:14.05 KB
- 文档页数:1
2004 年数学竞赛试卷考试统一用答题册(A卷)题号一二三四五六七总分成绩阅卷人签字校对人签字考试课程班级学号姓名成绩200 年月日一、 填空题(本题共40分)1、设,1)0(',0)0(==f f 且在0=x 处)('x f 连续,则=⎰⎰→200))(()(lim 2xx x dt t f dt t f2、设211)(xx f +=,则=)0()10(f.3、x e x x f |2|)(-=的极大值点为=x _____________.4、当b a ,满足条件 时,方程)1(>=a bx a x 恰有一个实根.5、级数∑∞=-1)1(n n n x a 在3=x 处条件收敛,则其收敛半径为=R _________.6、=+-+∞→2)11(lim x xx xe .7、过点)3,0,1(-,平行于平面01043=-+-z y x ,且与直线231zy x =-=+相交的直线方程为____________________. 8、已知a dx x x =⎰+∞0sin ,则=⎰+∞02)sin (dx xx __________.9、二次积分=⎰⎰dx eydy yxy 1)(12_______________.10、设10<<a ,已知由y 轴,2x y =,以及a y =所围成的平面图形和由2,x y a y ==,以及1=x 所围成的平面图形绕y 轴旋转一周所得的旋转体的体积相等,则=a __________. 二、 设可微函数),(y x f z =满足y x xye xz+=∂∂且0),(=-y y f 求dz三、计算曲线积分⎰Lxyds ,其中⎩⎨⎧=++=++01:222z y x z y x L四、计算曲线积分⎰+-Ly x ydxxdy 222其中L 是平面上任意一条不经过原点的逆时针方向的简单曲线.五、设幂级数∑∞=02)!2(n nn x 的和函数为)(x S 求(1) )('x S 于)(x S 所满足的关系式, (2)求)(x S 的表达式.六、设向量场}0,0,{3x A =在球面2222R z y x =++内接有一个平面平行于xoy 面的长方体.问该长方体的长宽高为何时,向量场通过该六面体外侧面的通量Φ最大?并求Φ的最大值.七、设)(x f 在]1,0[可导,,0)1()90==f f 且在),(10内不变号,证明:对于任何的实数k ,至少存在一点)1,0(∈ξ使得 k f f =--)1()1('ξξ.1、 2 _2、52!5!!9!10-3、 14、0<b 或a e b b ln ,0=>5、 26、21-e 7、93651-==+z y x 8、 a 9、61-e 10、21二、 解:由y x xye xz +=∂∂ 得 )()1(),(y e x y dx xye y x z y x y x φ+-==++⎰ 而由0)()1(),(),(=+--=-=-y y y y y f y y z φ 所以)1()(+=y y y φ,所以)1()1(++-=+y y e x y z y x 于是dy y e y x dx xye dy yzdx x z dz y x y x )12)1)(1((+++-+=∂∂+∂∂=++ 三、解:由对称性知⎰⎰++=LLds xz yz xy xyds )(31而⎰⎰++-++=++LLds z y x z y x ds xz yz xy )]()[(21)(2222 ππ-=-=-=⎰⎰221121021LL ds ds 所以 3π-=⎰Lxyds或:⎰⎰⎰⎰-=+=+=LL L Lds x ds z y x ds zx xy xyds 221)(21)(21 361)(61222π-=-=++-=⎰⎰LL ds ds z y x 或:),sin cos 31(21),sin cos 31(21,cos 32θθθθθ--=+-==z y x 带入参数方程得3'''20222πθπ-=++⎰d z y x xy222y x y P +-=, 222y x xQ +=则 )0(,)2(22222222≠+∂∂=+-=∂∂y x y Py x x y x Q 当原点在L 所围区域外部时由Green 公式0222=+-⎰L y x ydxxdy .当原点在L 所围区域内部时,取足够小的0>ε,使得2222:ε=+y x l 在L 所谓区域内部,由Green 公式得⎰⎰⎰-=+-=+-ll L ydx xdy y x ydx xdy y x ydx xdy 22222122ε=⎪⎪⎩⎪⎪⎨⎧===+=⎰⎰⎰)sin ,cos 22(,2cos 22sin cos cos 22)(,22120222πεεπεεεεπεt y t x dt t t t t Green dxdy D五、解(1) ++++++=+=-=+∞=+∞=-∑∑)!12(!5!3)!12()!12()('1253012112n x x x x n x n x x S n n n n n +++++==∑∞=)!2(!4!21)!2()(24202n x x x n x x S nn n所以x ne n x x x x x S x S =++++++=+ !!3!21)()('32 (*) (2)由,)(')(x e x S x S =+x e x S x S -=-)(')( 知 xxe ex S +=-)(2, 所以2)(xx e e x S +=-或 通过(*)式用一阶线性微分方程通解公式及1)0(=S 来求解.设该平行六面体的长、宽、高分别为c b a ,,由高斯公式: ⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∑==⋅=Φdxdydz x dv A div dS n A 23.4332222222bca dx x dy dz a ab bc c ==⎰⎰⎰--- 因为2222)2()2()2(R cb a =++ 即为042222=-++Rc b a取)4(4122223R c b a bc a L -+++=λ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-++=+==+==+=040241024102432222332R c b a c b a L b c a L a bc a L c b a λλλ ⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒R c R b R a 5252532 此为唯一的驻点,根据实际情况,Φ有最大值,故此时Φ取最大值,5max 1251524R =Φ 七、 证明:对于任意的实数k ,取)()(x f e x F kx -=, 由,0)1()0(==f f 得0)1()0(==F F ,又由于)(x f 在]1,0[可导,故)(x F 在]1,0[满足Rolle 定理条件. 从而存在)1,0(∈η,使得0))()('()('=-=-ηηηηkf f e F k即 )()('ηηkf f =由已知:)(x f 在)1,0(内不变号,得到)1,0(,0)(∈≠x x f 取ηξ-=1,有)1,0(∈ξ且k f f =--)1()1('ξξ.注:也可取)1()(x f e x F kx -=。
北航数理统计答案【篇一:北航数理统计考试题】术部2011年12月2007-2008学年第一学期期末试卷一、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?,?2)的样本,令t?x?x),试证明t服从t-分布t(2)二、(6分,b班不做)统计量f-f(n,m)分布,证明1f的?(0?1)的分位点x?是1f1??(n,m)。
三、(8分)设总体x的密度函数为?(1??)x?,0?x?1p(x;?)??0,其他?其中???1,是位置参数。
x1,x2,…,xn是来自总体试求参数?的矩估计和极大似然估计。
四、(12分)设总体x的密度函数为?1?x???exp???,x???p(x;?)??????,??0,其它其中???????,?已知,??0,?是未知参数。
x1,x2,…,xn是来自总?体x的简单样本。
(1)试求参数?的一致最小方差无偏估计?;(2)?是否为?的有效估计?证明你的结论。
五、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,y1,y2,…,yn是来自正态总体n(?两样本相互独立,其中?设h0:?1??2,h1:?1??2,1221?,?1)2的,?2)的简单样本,且21,?1,?2,?222是未知参数,???22。
为检验假可令zi?xi?yi, i?1,2,...,n ,???1??2 ,则上述假设检验问题等价于h0:?1?0,h1:?1?0,这样双样本检验问题就变为单检验问题。
基于变换后样本z1,z2,…,zn,在显著性水平?下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,b班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,?0已知,?2未知,试求假设检验问题h0:?2,?)02的??0,h1:?22??02的水平为?的umpt。
七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为?xij????i??j??ij?2??ij服从正态总体分布n(0,?)且?ij相互独立??i?1,2,...,p;j?1,...,q?pq??和?满足??i?0,??j?0.j?ii?1j?1?总离差平方和pst?sa?sb?se中sa?q?(xi??x),x?i?1x??pqi?1j?11pqij,xi??1qijx?qj?1,且e(se)=(p-1)(q-1)?.?...??p?0的拒绝2试求e(sa),并根据直观分析给出检验假设h0:?1??2域形式。
材料学院研究生会学术部2011年12月2007-2008学年第一学期期末试卷一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令)x x T -=,试证明T 服从t -分布t (2)二、(6分,B 班不做)统计量F-F(n,m)分布,证明111(,)F F n m αααα-的(0<<1)的分位点x 是。
三、(8分)设总体X 的密度函数为其中1α>-,是位置参数。
x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。
四、(12分)设总体X 的密度函数为1x exp x (;) 0 , p x μμσσσ⎧⎧-⎫-≥⎨⎬⎪=⎭⎨⎩⎪⎩,其它,其中,0,μμσσ-∞<<+∞>已知,是未知参数。
x 1,x 2,…,x n 是来自总体X 的简单样本。
(1)试求参数σ的一致最小方差无偏估计σ∧; (2)σ∧是否为σ的有效估计?证明你的结论。
五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。
为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。
基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题22220010:, :H H σσσσ≥<的水平为α的UMPT 。
材料学院研究生会学术部2011 年12 月2007-2008学年第一学期期末试卷一、(6 分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( , 2) 的样本,令2(x1 x2)T(x3 x4)2 (x5 x6)2 ,试证明T 服从t-分布t(2)二、( 6 分, B 班不做 ) 统计量F-F(n,m) 分布,证明1的 (0< <1)的分位点x 是1。
F F1 (n,m) 。
三、(8分)设总体X 的密度函数为其中1,是位置参数。
x1,x2,⋯,x n是来自总体X 的简单样本,试求参数的矩估计和极大似然估计。
四、(12分)设总体X 的密度函数为1xexp ,xp(x; )0 , 其它其中, 已知,0, 是未知参数。
x1,x2,⋯,x n 是来自总体X 的简单样本。
1)试求参数的一致最小方差无偏估计;2) 是否为的有效估计?证明你的结论。
五、(6分,A 班不做)设x1,x2,⋯,x n是来自正态总体N( 1, 12) 的简单样本,y1,y2,⋯,y n 是来自正态总体N( 2, 22) 的简单样本,且两样本相互独立,其中1, 12, 2, 22是未知参数,1222。
为检验假设H0 :可令z i x i y i, i 1,2,..., n ,1 2 ,1 2, H1 : 1 2,则上述假设检验问题等价于H0 : 1 0, H1: 1 0,这样双样本检验问题就变为单检验问题。
基于变换后样本z1,z2,⋯,z n,在显著性水平下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6 分,B 班不做)设x1,x2,⋯,x n是来自正态总体N( 0, 2) 的简单样本,0 已知,2未知,试求假设检验问题H0: 202, H1: 202的水平为的UMPT。
七、(6 分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6 分)设方差分析模型为总离差平方和试求E(S A ) ,并根据直观分析给出检验假设H0 : 1 2 ... P 0的拒绝域形式。
《应用数理统计》试卷 第 1 页 共 4 页《应用数理统计》期末考试试卷一、单项选择题:(每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )A.P(A)=1-P (B )B.P(AB)=P(A)P(B)C.P(A ∪B)=1D.P(AB )=1 2、设A ,B 为随机事件,P(A)>0,P (A|B )=1,则必有( ) A.P(A ∪B)=P(A) B.A ⊂B C.P(A)=P(B) D.P(AB)=P(A)3、将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为( )A.2422B .C C 2142 C .242!A D.24!!4、某人连续向一目标射击,每次命中目标的概率为34,他连续射击直到命中为止,则射击次数为3的概率是( ) A.()343B.41)43(2C. 43)41(2D.C 4221434()5、已知随机变量X 的概率密度为f X (x ),令Y=-2X ,则Y 的概率密度f Y (y)为( )A.2f X (-2y)B.f X ()-y2C.--122f y X () D.122f y X ()- 6、如果函数f(x)=x a x b x a x b,;,≤≤或0<>⎧⎨⎩是某连续随机变量X 的概率密度,则区间[a,b]可以是( )A.〔0,1〕B.〔0,2〕C.〔0,2〕D.〔1,2〕7、下列各函数中是随机变量分布函数的为( )A.F x xx 1211(),=+-∞<<+∞B..0,1;0,0)(2x x x x x F ≤C.F x e x x 3(),=-∞<<+∞-D.F x arctgx x 43412(),=+-∞<<+∞π8 则P{X=0}=A.112B.212 C. 412 D. 5129、已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=( ) A. 3 B. 6 C. 10 D. 12 10、设Ф(x)为标准正态分布函数,X i =10,,事件发生;事件不发生,A A ⎧⎨⎩ i=1,2,…,100,且P(A)=0.8,X 1,X 2,…,X 100相互独立。
专业学位研究⽣应⽤数理统计期末试题航天学院2019-2020学年第⼀学期专业学位研究⽣《应⽤数理统计》课程考试卷(A卷)考核形式:开卷部门:班级:姓名:说明:下列试题均可⽤SPSS软件计算,所有问题均要求提供纸质答案及电⼦答案。
最后⼀题要求提供数据⽂件.sav和输出⽂件.spv.⽤两种软件提供答案的试卷可适当加分。
2章参数估计⼀、随机地从A批导线中抽取4根,并从B批导线中抽取5根,测得其电阻(单位:)设测试数据分别服从正态分布,在下列两种情况下讨论两总体均值差的区间估计。
(1)两总体⽅差相等;(2)两总体⽅差不等。
3章假设检验⼆、为研究长跑运动对增强普通⾼校学⽣⼼脏功能的效果,对某⾼校15名男⽣进⾏测试,经过5个⽉的长跑训练后看其晨脉是否减少。
锻炼前后的晨脉数据如下表所⽰。
试问锻炼前后的晨脉在显著性⽔平0.05下有⽆显著性差别。
4章⽅差分析三、为了研究⽕箭燃料和推进器对⽕箭射程的影响,选⽤了4种不同燃料和3种不同推进器,将他们相互搭配并在每⼀种搭配下做了两次试验,得到⽕箭射程(海⾥)数据如下表。
在显著性⽔平0.05下,试分析燃料、推进器以及燃料和推进器这两种因素的交互作⽤对⽕箭射程的影响是否显著?6章回归分析四、国家需要⼤⼒发展国际旅游⾏业以增加国家的外汇收⼊,外汇收⼊Y 与接待的旅游⼈数X 之间构成什么样的统计关系呢?根据2004年的中国统计年鉴,得到1985—2002年间的统计数据如下表:(1)试根据上述数据建⽴外汇收⼊Y 与接待的旅游⼈数X 之间的回归模型,并进⾏回归分析,对2003年和2004年的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。
(2)试查找2005-2016年间连续6年的国家的外汇收⼊与接待的旅游⼈数的相关统计数据,分析其是否符合(1)中的模型,如不符合,试建⽴新的回归模型。
(3)利⽤(2)中的回归模型对我国2017年(可验证)和2019年(预测)的外汇收⼊Y 与接待的旅游⼈数X 进⾏预测。
2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
北京航空航天大学概率论与数理统计试卷 2004-01姓名: 班级: 学号: 得分: 一.判断题(10分,每题2分)1. 在古典概型的随机试验中,0)(=A P 当且仅当A 是不可能事件 ( ) 2.连续型随机变量的密度函数)(x f 与其分布函数)(x F 相互唯一确定 ( ) 3.若随机变量X 与Y 独立,且都服从1.0=p 的 (0,1) 分布,则Y X = ( ) 4.设X 为离散型随机变量, 且存在正数k 使得0)(=>k X P ,则X 的数学期望)(X E 未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( ) 二.选择题(15分,每题3分)1. 设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤ 次成功的概率为 .(a) r n r r n p p C ----)1(11; (b) r n r rn p p C --)1(; (c) 1111)1(+-----r n r r n p pC ; (d) r n r p p --)1(. 2. 离散型随机变量X 的分布函数为)(x F ,则==)(k x X P . (a) )(1k k x X x P ≤≤-; (b) )()(11-+-k k x F x F ; (c) )(11+-<<k k x X x P ; (d) )()(1--k k x F x F .3. 设随机变量X 服从指数分布,则随机变量)2003,(max X Y =的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点; (c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D .(a) 40; (b) 34; (c) 25.6; (d) 17.6 5. 设),,,(21n X X X 为总体)2,1(2N 的一个样本,X 为样本均值,则下列结论中正确的是 .(a) )(~/21n t nX -; (b) )1,(~)1(4112n F X ni i ∑=-;(c) )1,0(~/21N nX -; (d) )(~)1(41212n X ni i χ∑=-.二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为2. 设连续随机变量的密度函数为)(x f ,则随机变量X e Y 3=的概率密度函数为=)(y f Y3. 设X 为总体)4,3(~N X 中抽取的样本(4321,,,X X X X )的均值, 则)51(<<-X P = .4. 设二维随机变量),(Y X 的联合密度函数为⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f则条件密度函数为,当 时 ,=)(x y f X Y5. 设)(~m t X ,则随机变量2X Y =服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间),(~2σμN X (单位:秒),取16=n 的样本,得样本均值和方差分别为36.0,152==S X ,则μ的置信度为95%的单侧 置信区间上限为7. 设X 的分布律为X 1 2 3 P 2θ )1(2θθ- 2)1(θ-已知一个样本值)1,2,1(),,(321=x x x ,则参数的极大似然估计值 为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的 概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认 为是合格品的产品确实是合格品的概率2.设随机变量X 与Y 相互独立,X ,Y 分别服从参数为)(,μλμλ≠的指数 分布,试求Y X Z 23+=的密度函数)(z f Z .3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1=λ 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率. 4. 总体),(~2σμN X ,),,,(21n X X X 为总体X 的一个样本.求常数 k , 使∑=-ni i X X k 1为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力),(~2σμN X(单位:kg ). 已知8=σ kg , 现从该厂生产的一大批特种金属丝中 随机抽取10个样品,测得样本均值2.575=x kg . 问这批特种金属丝的 平均折断力可否认为是570 kg ? (%5=α)(2) 已知维尼纶纤度在正常条件下服从正态分布)048.0,(2μN . 某日抽取5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 . 问 这天的纤度的总体方差是否正常?试用%10=α作假设检验.四. 证明题(7分)设随机变量Z Y X ,,相互独立且服从同一贝努利分布),1(p B . 试证明随机变量Y X +与Z 相互独立.附表: 标准正态分布数值表 2χ分布数值表 t 分布数值表6103.0)28.0(=Φ 488.9)4(205.0=χ 1315.2)15(025.0=t 975.0)96.1(=Φ 711.0)4(295.0=χ 7531.1)15(05.0=t 9772.0)0.2(=Φ 071.11)5(205.0=χ 1199.2)16(025.0=t 9938.0)5.2(=Φ 145.1)5(295.0=χ 7459.1)16(05.0=t概 率 统 计 试 卷 参 考 答 案一. 判断题(10分,每题2分) 是 非 非 非 是 . 二. 选择题(15分,每题3分) (a)(d)(b)(c)(d). 三. 填空题(28分,每题4分)1.1/22 ;2. ⎩⎨⎧≤>=00)])3/[ln()(1y y y f y f yY ; 3.0.9772 ;4. 当10<<x 时⎩⎨⎧<<-=他其0)2/(1)(x y x x x y f X Y ;5. ),1(m F6. 上限为 15.263 .7. 5 / 6 . 四. 计算题(40分,每题8分)1. A 被查后认为是合格品的事件,B 抽查的产品为合格品的事件. (2分)9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P , (4分).998.09428.0/9408.0)(/)()()(===A P B A P B P A B P (2分) 2. ⎩⎨⎧>=-其他00)(x e x f xX λλ ⎩⎨⎧>=-其他0)(y e y f yY μμ (1分)0≤z 时,0)(=z F Z ,从而 0)(=z f Z ; (1分) 0≤z 时, ⎰∞+-∞-=dx x z f x f z f Y X Z ]2/)3[()()(21 (2分))(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ-------==⎰(2分)所以⎪⎩⎪⎨⎧≤>--=--0,00),(23)(2/3/z z e e z f z z Z μλλμλμ[ ⎪⎩⎪⎨⎧≤>--=--0,00),(32)(3/2/z z e e z f z z Z μλλμλμ] (2分)3. 设 i X 为第i 周的销售量, 52,,2,1 =i i X )1(~P (1分)则一年的销售量为 ∑==521i iXY ,52)(=Y E , 52)(=Y D . (2分)由独立同分布的中心极限定理,所求概率为1522521852185252522)7050(-⎪⎪⎭⎫ ⎝⎛Φ+⎪⎪⎭⎫ ⎝⎛Φ≈⎪⎪⎭⎫⎝⎛<-<-=<<Y P Y P (4分) 6041.016103.09938.01)28.0()50.2(=-+=-Φ+Φ=. (1分)4. 注意到()n i i X X n X X nX X ---+--=- )1(121)2(1)(,0)(2分σnn X X D X X E i i -=-=-)1(1,0~2分⎪⎭⎫⎝⎛--σn n N X X i dze n n z X X E nz i 222121|||)(|σσπ-∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=)3(122分σπnn -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==ni i ni i X X E k X X k E 11||||σπnn kn122-=σ令=5. (1) 要检验的假设为 570:,570:10≠=μμH H (1分)检验用的统计量 )1,0(~/0N nX U σμ-=,拒绝域为 96.1)1(025.02==-≥z n z U α. (2分)96.106.21065.010/85702.5750>==-=U ,落在拒绝域内,故拒绝原假设0H ,即不能认为平均折断力为570 kg . [ 96.1632.0102.010/92.5695710<==-=U , 落在拒绝域外,故接受原假设0H ,即可以认为平均折断力为571 kg . ] (1分)(2) 要检验的假设为 221220048.0:,048.0:≠=σσH H (1分)[22122079.0:,79.0:≠=σσH H ]检验用的统计量 )1(~)(2202512--=∑=n X Xi iχσχ,拒绝域为 488.9)4()1(205.022==->χχχαn 或711.0)4()1(295.02122==-<-χχχαn (2分)41.1=x [49.1=x ]488.9739.150023.0/0362.020>==χ, 落在拒绝域内, [711.0086.06241.0/0538.02<==χ,落在拒绝域内,] 故拒绝原假设0H ,即认为该天的纤度的总体方差不正常 . (1分) 五、证明题 (7分) 由题设知X 0 1 Y X + 0 1 2P p qP 2q pq 2 2p (2分))0()0()0,0(3==+====+Z P Y X P q Z Y X P ;)分(2)1(2-=n n k π)1()0()1,0(2==+====+Z P Y X P pq Z Y X P ;)0()1(2)0,1(2==+====+Z P Y X P pq Z Y X P ;)1()1(2)1,1(2==+====+Z P Y X P pq Z Y X P ; )0()2()0,2(2==+====+Z P Y X P pq Z Y X P ;)1()2()1,2(3==+====+Z P Y X P p Z Y X P . 所以 Y X +与Z 相互独立. (5分)。
应用数理统计考试提纲(2004 年)
1、正态N(μ,σ2),简单随机样本X1、X2……Xn,其中μ已知。
(1)求σ2的一至最小方差无偏估计。
(2)运用信息不等式得到σ2的方差下界。
(3)判断得到的σ2的一致最小方差是否达到信息不等式的下界。
(4)说明有效估计和一致最小方差关系。
2、对于一元线性回归证明b~N(b,σ2/lxx)
3、假设检验。
(比较简单,但要记住公式或自己能推导)
4、对L8(27)正交表进行极差分析和方差分析,判断最优的工艺条件。
5、已知某个、协差矩阵的特征根,求应该选几个主成分和第一主成分的特征向
量。
(第二问都是小数,4×4 矩阵,运算量大,要带计算器)。