管理运筹学第一章.
- 格式:ppt
- 大小:1.81 MB
- 文档页数:65
管理运筹学(一)管理运筹学绪论线性规划(运输问题)整数规划动态规划存储论排队论对策论决策分析第一章绪论运筹学(Operational Research) 直译为“运作研究”运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
运筹学有广泛应用运筹学的产生和发展§1 决策、定量分析与管理运筹学决策过程(问题解决的过程):1)提出问题:认清问题2)寻求可行方案:建模、求解3)确定评估目标及方案的标准或方法、途径4)评估各个方案:解的检验、灵敏性分析等5)选择最优方案:决策6)方案实施:回到实践中7)后评估:考察问题是否得到完满解决1)2)3):形成问题;4)5)分析问题:定性分析与定量分析。
构成决策。
§2 运筹学的分支线性规划非线性规划整数规划图与网络模型存储模型排队论排序与统筹方法决策分析动态规划预测§3运筹学在工商管理中的应用生产计划:生产作业的计划、日程表的编排、合理下料、配料问题、物料管理等库存管理:多种物资库存量的管理,库存方式、库存量等运输问题:确定最小成本的运输线路、物资的调拨、运输工具的调度以及建厂地址的选择等人事管理:对人员的需求和使用的预测,确定人员编制、人员合理分配,建立人才评价体系等市场营销:广告预算、媒介选择、定价、产品开发与销售计划制定等财务和会计:预测、贷款、成本分析、定价、证券管理、现金管理等*** 设备维修、更新,项目选择、评价,工程优化设计与管理等运筹学方法使用情况(美1983)运筹学的推广应用前景据美劳工局1992年统计预测: 运筹学应用分析人员需求从1990年到2005年的增长百分比预测为73%,增长速度排到各项职业的前三位.结论:运筹学在国内或国外的推广前景是非常广阔的工商企业对运筹学应用和需求是很大的在工商企业推广运筹学方面有大量的工作要做第二章线性规划的图解法在管理中一些典型的线性规划应用合理利用线材问题:如何下料使用材最少配料问题:在原料供应量的限制下如何获取最大利润投资问题:从投资项目中选取方案,使投资回报最大产品生产计划:合理利用人力、物力、财力等,使获利最大劳动力安排:用最少的劳动力来满足工作的需要运输问题:如何制定调运方案,使总运费最小线性规划的组成:目标函数 Max f 或 Min f约束条件 s.t. (subject to) 满足于决策变量用符号来表示可控制的因素§1问题的提出例1. 某工厂在计划期内要安排甲、乙两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗以及资源的限制,如下表:问题:工厂应分别生产多少单位甲、乙产品才能使工厂获利最多?线性规划模型一般形式目标函数: Max (Min) z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn ≤( =, ≥)b1a21 x1 + a22 x2 + … + a2n xn ≤( =, ≥)b2…………am1 x1 + am2 x2 + … + amn xn≤( =, ≥)bmx1 ,x2 ,…,xn ≥ 0标准形式目标函数: Max z = c1 x1 + c2 x2 + … + cn xn约束条件: s.t. a11 x1 + a12 x2 + … + a1n xn = b1a21 x1 + a22 x2 + … + a2n xn = b2…………am1 x1 + am2 x2 + … + amn xn = bmx1 ,x2 ,…,xn ≥ 0§2 图解法例1.目标函数:Max z = 50 x1 + 100 x2约束条件:s.t.x1 + x2 ≤ 300 (A)2 x1 + x2 ≤ 400 (B)x2 ≤ 250 (C)x1 ≥ 0 (D)x2 ≥ 0 (E)得到最优解:x1 = 50, x2 = 250最优目标值 z = 27500进一步讨论线性规划的标准化内容之一:——引入松驰变量(含义是资源的剩余量)例1 中引入 s1, s2, s3 模型化为目标函数:Max z = 50 x1 + 100 x2 + 0 s1 + 0 s2 + 0 s3约束条件:s.t. x1 + x2 + s1 = 3002 x1 + x2 + s2 = 400x2 + s3 = 250x1 , x2 , s1 ,s2 , s3 ≥ 0对于最优解 x1 =50 x2 = 250 , s1 = 0 s2 =50 s3 = 0说明:生产50单位甲产品和250单位乙产品将消耗完所有可能的设备台时数及原料B,但对原料A则还剩余50千克。
管理运筹学判断题背诵讲义第一章 线性规划与单纯形表a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的; b) 线性规划模型中增加一个约束条件,可行域的范围般将缩小,减少一个约束条件,可行域的范围一般将扩大;c) 线性规划问题的每一个基解对应可行域的一个顶点; d)如线性规划问题存在可行域,则可行域定包含坐标的原点;e)对取值无约束的变量j x ,通常令'''j j j x x x =-其中'j x ≥0,''j x ≥0,在用单纯形法求得的最优解中有可能同时出现'j x >0,''j x >0;f)用单纯形法求解标准型的线性规划问题时,与j σ>0对应的变量都可以被选作换人变量;g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;h) 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,将使目标函数值得到最快的增长;i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从 单纯形表中删除,而不影响计算结果;j)线性规划问题的任-可行解都可以用全部基可行解的线性组合表示;k)若X 1,X 2分别是某一线性规划问题的最优解则X=1λX 1 +2λX 2也是该线性规划问题的最优解,其中1λ,2λ可以为任意正的实数;1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为 minz=ai ix ∑(ai x 为人工变量),但也可写为minz=i ai ik x ,只要所有k i ,均为大于零的常数; m)对一个有n 个变量、m 个约束的标准型的线性规划问题,其可行域的顶点恰好为m n c 个;n) 单纯形法的迭代计算过 程是从一个可行解转换到目标函数值更大的另一个可行解;o)线性规划问题的可行解如为最优解,则该可行解定是基可行解;p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;r) 将线性规划约束条件的“≤”号及“≥”号变换成“一”号,将使问题的最优目标函数值得到改善;s)线性规划目标函数中系数最大的变量在最优解中总是取正的值:t)一个企业利用3种资源生产4种产品建立线性规划模型求解得到的最优解中最多只含有3种产品的组合;u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; v)一个线性规划问题求解时的选代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
运筹学(Operational Research)复习资料第一章绪论一、名词解释1.运筹学:运筹学是应用分析、试验、量化的方法,对经济管理系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
二、选择题1.运筹学的主要分支包括(ABDE )A图论B线性规划C非线性规划D整数规划E目标规划2. 最早运用运筹学理论的是( A )A . 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署B . 美国最早将运筹学运用到农业和人口规划问题上C . 二次世界大战期间,英国政府将运筹学运用到政府制定计划D . 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上第二章线性规划的图解法一、选择题/填空题1.线性规划标准式的特点:(1)目标函数最大化(2)约束条件为等式(3 决策变量为非负(4 ) 右端常数项为非负2. 在一定范围内,约束条件右边常数项增加一个单位:(1)如果对偶价格大于0,则其最优目标函数值得到改进,即求最大值时,最优目标函数值变得更大,求最小值时最优目标函数值变得更小。
(2)如果对偶价格小于0,则其最优目标函数值变坏,即求最大值时,最优目标函数值变小了;求最小值时,最优目标函数值变大了。
(3)如果对偶价格等于0,则其最优目标函数值不变。
3.LP模型(线性规划模型)三要素:(1)决策变量(2)约束条件(3)目标函数4. 数学模型中,“s·t”表示约束条件。
5. 将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左端加上松弛变量。
6. 将线性规划模型化成标准形式时,“≥”的约束条件要在不等式左端减去剩余变量。
7.下列图形中阴影部分构成的集合是凸集的是A【解析】:如何判断是凸集?凸集:两点之间连线在图内凹集:两点之间连线在图外8. 线性规划问题有可行解且凸多边形无界,这时CA没有无界解 B 没有可行解 C 有无界解 D 有有限最优解9. 对于线性规划问题,下列说法正确的是( D )A. 线性规划问题可能没有可行解B. 在图解法上,线性规划问题的可行解区域都是“凸”区域C. 线性规划问题如有最优解,则最优解可在可行解区域顶点上到达D. 上述说法都正确第三章线性规划问题的计算机求解一、名词解释1.相差值:相应的决策变量的目标系数需要改进的数量,使得决策变量为正值。
管理运筹学Ⅰ一.教学目的运筹学是一门应用数学理论和方法研究社会经济问题的课程,是管理专业一门重要的方法论课程。
通过本课程的学习,使学生获得线性规划、动态规划、网络规划、系统决策等方面的基本技能和方法,为解决实际问题和进行更高层次的学习奠定必要的方法论基础。
二.教学内容第一章线性规划基础第一节运筹学发展简史及其现代社会中的应用第二节线性规划问题的一般模型第三节线性规划问题的标准型第四节线性规划问题的图解法第二章单纯形法第一节线性规划问题的几何意义第二节单纯形法第三节对单纯形法的进一步讨论第四节对线性问题解的讨论第五节改进单纯形法及计算机程序设计第三章线性规划模型的建立第一节线性规划问题建模技巧第二节用线性规划方法求解的实际问题的类型第四章对偶问题及应用第一节对偶问题第二节对偶问题的建立第三节对偶问题的基本性质第四节对偶性质的应用第五节对偶单纯形法第六节对偶单纯形法的应用第五章线性规划问题的灵敏度分析第一节边际值及其应用第二节对C值的灵敏度分析j值的灵敏度分析第三节对aij第四节对 b 值的的灵敏度分析第五节灵敏度分析的应用示例第六章运输问题第一节运输问题的线性规划模型第二节初始基本可行解的求法第三节求检验数的方法第四节方案的调整第五节表上作业法应用举例第六节指派问题第七章整数规划第一节基本概念第二节整数规划问题的图解法第三节整数规划建模第四节割平面算法第五节分枝定界算法第六节 0—1 规划算法第八章动态规划第一节引例第二节动态规划的基本概念和基本原理第三节背包问题第四节生产计划问题第五节购销量计划问题第六节复合系统可靠性问题第七节设备更新问题第八节投资问题第九节计算机算法设计第九章线性多目标规划规划第一节例子第二节建模方法第三节求解方法第四节在决策中的应用三.教学课时安排章名称主要内容课时安排备注1线性规划基础介绍一般线性规划问题的特征、标准形及简单规划问题的图解法6课时包括习题课时间2单纯形法单纯形法的思想与求解过程、线性规划解的讨论63线性规划建模从三个方面讲述建立线性规划模型的方法34对偶问题及应用对偶问题的一般理论及应用65灵敏度分析灵敏度分析方法与应用56运输问题运输问题表上作业法的建模、求解方法、应用,指派问题的求解67整数规划求解整数规划的方法——割平面、分支定界、隐枚举法58动态规划动态规划的概念、基本原理与应用59线性多目标规划多目标规划及其在决策中的应用3总复习3总课时4855运筹学Ⅱ一.教学目的运筹学是一门应用数学理论和方法研究社会经济问题的课程,是管理专业一门重要的方法论课程。
《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。