高等数学无穷级数第一节 常数项级数的概念和性质教学教案
- 格式:ppt
- 大小:461.50 KB
- 文档页数:31
第十一章 无穷级数第一节 常数项级数的概念与性质教学目标:1、理解常数项级数收敛、发散以及收敛级数的和的概念.2、掌握级数的基本性质及收敛的必要条件,掌握几何级数收敛和发散的条件. 课时安排:2课时重点:1、 掌握级数收敛的充要和必要条件; 2、 掌握收敛级数的性质; 难点:级数概念及其敛散性 教学法:讲授法一、问题的引出:1、用正多边形的面积逼近园的面积;①.S ≈6A ②.S ≈+612A A S ≈+61224....A A A ++S ≈⨯1621limi nni A -=å二、常数项无穷级数定义1、定义: 设1u ,2u ,. . . 是常数列, 算式简称为级数 。
记为1nN u∞=∑,称为一般项或通项。
2、部分和与部分数列. ①部分和:前几项的和②部分和数列:()③ 1n n n u s s -=-④n n nn 1u lim S ¥==å3、敛散定义(充要条件)①设1nN u∞=∑若lim n n S →∞∃,称1n N u ∞=∑收敛,否则称发散。
(判别敛散的方法)。
②若收敛,如何求和。
(收敛,求和的方法)(求数列的极限) 1lim n n n n S S u ¥==å@4、例子.n n n 1n1u n S n 1¥=+å=例 . 设前项部分的和为问:①.收敛否? ………………………………………………(收敛) ②.若收敛,和为多少? ……………………………( 1 ) ③.写出(求出)该级数.()()n 1n n n 1n n 1n 1n 11S u S S nn n+11u n n 1--ゥ==-=\=-=\=+邋例 2. 判别 ()n 11n n 1¥=+å 是否收敛,若收敛,求和。
(用定义)。
()n1111 S ...1223n n 1=+++创+解:). ()()()111111...223n n 1=-+-++-+1n =1n 1n 1-=++2).. 收敛。
第九章 无穷级数第一讲 常数项级数的概念与性质授课题目(章节):§11.1 常数项级数的概念与性质 教学目的与要求:1.理解常数项级数收敛、发散及其收敛级数和的概念;2.掌握级数的基本性质及收敛的必要条件;3.掌握几何级数的收敛性及求和公式。
教学重点与难点:重点:收敛和发散的定义难点:根据定义判定级数的敛散性;收敛的必要条件。
讲授内容:无穷级数是深入研究函数所不可缺少的一个重要工具,这一章先讨论常数项级数,然后讨论函数项级数,着重讨论如何将函数展开成幂级数的问题。
§11.1 常数项级数的概念与性质解决实际中的很多问题往往有一个近似到精确的过程,在这种过程中,会遇到由有限个数量相加到无穷多个数量相加的问题,例如计算半径为R 的圆的面积A 。
一、问题的提出引例:求圆的面积A 圆内接正六边形的面积1a圆内接正十二边形的面积12a a + 圆内接正二十四边形的面积123a a a ++ ……圆内接正32n ⨯边形的面积12n a a a +++12n A a a a ≈+++12n n a a a A →∞+++→, 称和式12n a a a ++++为无穷级数。
二、常数项级数的概念 定义1 数列12,,,n u u u 构成的和式12n u u u ++++称为常数项无穷级数,简称级数,记为1nn u∞=∑,n u 称为一般项。
定义2 由级数1nn u∞=∑得:12n n s u u u =+++,称n s 为级数1n n u ∞=∑的第n 次部分和;无穷数列12,,,ns s s 称为级数1nn u∞=∑的部分和数列,记为{}n s 。
定义3 若lim n n s s →∞=,则称级数1nn u∞=∑收敛,和为s ,记为1nn us ∞==∑;若lim n n s →∞不存在,则称级数1nn u∞=∑发散。
例1 判定几何级数2(0,n a aq aq aq a q +++++≠为公比)的收敛性。
第五课 无穷级数第一节 常数项级数的概念和性质一、常数项级数的概念1.无穷级数:无穷数列{}(1,2,3,)n u n =的各项和∑∞=1n nu= +++++n u u u u 321,简称级数.n u —— 一般项.2. 1lim limnn kn n k S uS →∞→∞===∑,级数∑∞=1n n u 收敛.S ——∑∞=1n n u 的和, 且有1nn uS ∞==∑.如果}{n S 没有极限, 则称级数∑∞=1n n u 发散.例1 判别无穷级数++⋅++⋅+⋅)1(1321211n n 的敛散性. 解: 由于 )1(1+=n n u n ,111+-=n n 所以 12n n S u u u =+++1111111()()()1122311n n n =-+-++-=-++, 又因 1)111(lim lim =+-=∞→∞→n S n n n , 故级数 ∑∞=1n n u 收敛, 且 1)1(11=+⋅∑∞=n n n .提问 :判断下列级数的敛散性 1)111n n n∞=++∑:111n u n n n n ==+-++, 11()n S n n =+-→∞→∞ 级数发散.2)11ln n n n ∞=+∑:1ln ln(1)ln1()n n n u S n n n +=⇒=+-→∞→∞ 级数发散.二、几类特殊级数(结论当定理使用) (1)调和级数∑∞=11n n 发散. (注意0lim =∞→n n u ) (2) 讨论等比级数(几何级数)∑∞=0n naq)0(≠a 当1q <时收敛.(3)连续复利(时时刻刻在计息 )若以连续复利率r 计息,将一笔P 元的人民币从现在起存银行,t 年后的价值(将来值)为 rt B Pe =若t 年后得到B 元的人民币,则现在需要存入银行的金额(现值)为 rt P Be -= 二、无穷级数的基本性质 【性质1】∑∞=1n nu收敛⇔对任意的非负整数m ,有∑∞+=1m n nu收敛.(若级数收敛,则其每一个余项级数收敛,即级数中去掉或添加有限多 项后不改变级数的敛散性.) 【性质2】1nn uλ∞=∑与1nn u∞=∑具有相同的敛散性(λ为非零常数).例如1112n n ∞==∑,但 1552nn ∞=-=-∑. 【性质3】若∑∞=1n nu与∑∞=1n nv分别收敛于S 与T , 则1()nn n uv ∞=±∑收敛,且 1()n n n u v S T ∞=±=±∑.1111111111,()232232n n n n n n n ∞∞∞=====⇒-=∑∑∑.注意:∑∞=1n nu与∑∞=1n nv同时收敛时,1()nn n uv ∞=±∑一定收敛.∑∞=1n nu与∑∞=1n nv有一个发散时,1()nn n uv ∞=±∑一定发散.【性质4】若1nn u∞=∑收敛且S un n=∑∞=1,则将级数的项任意添加括号后所成的级数1nn σ∞=∑收敛且S n n=∑∞=1σ. 反之不然.(添加括号后所成的级数的部分和数列是原级数部分和数列的子列,而数列收敛时其子列必收敛.) 反之不然.例如 ++++=+-++-+-000)11()11()11( 收 敛,但 +-++-+-111111 却是发散的!【推论】若添加括号后所成的级数发散,原级数必发散. 【性质5】若∑∞=1n nu收敛, 则0lim =∞→n n u . 反之不然.(级数收敛的必要而非充分条件)例如11lnn n n ∞=+∑:1ln ln(1)ln1()n n n u S n n n +=⇒=+-→∞→∞ 级数发散.但1lim lim lnln10n n n n u n →∞→∞+===. 又如:级数11n n∞=∑发散,但是1lim lim 0n n n u n →∞→∞==.提问:(87.2 是非题) 若级数∑∞=1n na与∑∞=1n nb均发散,则级数∑∞=+1)(n n nb a必发散.答 (非).例如∑∞=11n n 和∑∞=-1)1(n n 都发散,但0)11(1=-∑∞=n n n却是收敛的.提问:判断下列级数的敛散性:(1) +++++n 001.0001.0001.0001.03 解 =n u n001.0,而∞→∞→=n n n u lim lim 01001.0≠=n , 该级数发散.(2) ++++++)27181()9141()3121(提示: ++++=∑∞=n n n u 218141211是公比为21收敛的几何级数,+++++=∑∞=nn n v 3127191311是公比为31收敛的几何级数,所以原数收敛.且111112313()1121322n n n u v --∞--=+=+=+=--∑. (3) 级数1(1)21n n nn ∞=-⋅+∑发散,因为(1)lim lim 021n n n n n u n →∞→∞-⋅=≠+.例2(98.6) 设有两条抛物线n nx y 12+=和11)1(2+++=n x n y ,记它们交点的横坐标的绝对值为n a ,(1)求两条抛物线所围成的平面图形的面积n S ;(2)求级数∑∞=1n nna S 的和. 解 由n nx y 12+=和11)1(2+++=n x n y 得)1(1+=n n a n ,由于图形关于y 轴对称,则d 220112[(1)]1na n S nx n x x n n =+-+-+⎰d 2012[](1)na x x n n =-+⎰413(1)(1)n n n n =++因此 414113131()()n n S a n n n n ==-++,所以 34)])1(11(34[lim lim 11=+-==∞→=∞→∞=∑∑n a S a S n nk kk n n n n .特别注意:由0lim =∞→n n u 不能得出∑∞=1n nu收敛的结论.第二节 正项级数的审敛法一、正项级数(各项0≥n u )的∑∞=1n nu,及其审敛法1.【定理1】(基本定理): 正项级数∑∞=1n nu收敛⇔}{n S 有界. 且此时S S n ≤说明:因0≥n u ,于是11--≥+=n n n n S u S S ,可见}{n S 单调递增. (注意:单调有界数列收敛) 2.【定理2】(比较判别法): 设∑∞=1n nu与∑∞=1n nv均为正项级数, 且n n v u ≤, ,2,1=n ,则(1)∑∞=1n nv收敛⇒∑∞=1n nu收敛; (2)∑∞=1n nu发散⇒∑∞=1n nv发散.结论:-p 级数∑∞=11n pn收敛 ⇔ 1>p .(此结论当定理使用) 例3 判断下列级数的敛性散. (1)2111n nn ∞=++∑ 提示:因为221111(1)1n n n u n n n ++=>=+++⇒2111n nn∞=++∑是发散的. (2)1()21nn n n ∞=+∑.提示:1()2122n nn n n n n u v n n ⎛⎫⎛⎫=<== ⎪ ⎪+⎝⎭⎝⎭⇒1()21n n n n ∞=+∑收敛. (3)33221(11)n n n ∞=+--∑.提示:331110n n n u n n u ∞==+--≥⇒∑为正项级数.又333333222211111n n u n n v n n n n=+--=≤≤=++-+⇒ 33221(11)n n n ∞=+--∑收敛.(4)22211(2)(3)n n n n ∞=+++∑. 提示:2222222111(2)(3)(1)n n n n u v n n n n n ++=<==+++⇒原级数收敛.例4 设40tan n n a xdx π=⎰.(1)求211(n n n a a n ∞+=+∑)的值.(2)证明当0λ>(常数)时,级数1nn a n λ∞=∑收敛.(1)解 244201tan (tan 1)tan tan 1n n n n a a x x dx xd x n ππ++=+==+⎰⎰ 所以211111(lim(1)1(1)1n n n n n a a n n n n ∞∞+→∞==+=-=++∑∑)= (2)证明 因为 4tan 0n n a xdx π=>⎰21110(1)n n n a a a n n n n nλλλλ+++≤≤=<+, 且0λ>时,111n n λ∞++∑收敛,故原级数收敛.例5 讨论级数11(0)1nn a a ∞=>+∑的敛散性. 解:1)1a >时由111n n n u a a =<+且11nn a∞=∑收敛可得原级数收敛. 2)1a =时由1112n n u a ==+且112n ∞=∑发散可得原级数发散.3)01a <<时由1112n n u a =>+且112n ∞=∑发散可得原级数发散. 结论:当通项较容易通过不等式的放缩而找到已知敛散性的级数的通项 时,可以选择比较判别法.利用比较判别法需要对调和级数、几何级数、 P -级数的敛散性非常熟悉.3.【定理3】(比较判别法的极限形式): 设∑∞=1n n u 与∑∞=1n n v 均为正项级数,若l v u nnn =∞→lim,则(1)当0l <<+∞时,∑∞=1n nv与∑∞=1n nu有相同的敛散性; (2)当0l =时,若∑∞=1n n v收敛,则∑∞=1n nu也收敛; (3)当l =+∞时,若∑∞=1n nv发散,则∑∞=1n nu也发散.注意:利用比较的极限形式时常需用到极限的等价无穷小概念,0x →时, ~sin ~tan ~arcsin ~arctan ~ln(1)~1x x x x x x x e +-211cos ~2x x -,11n x x n+-,1ln (01xa x a a a ->≠且)例6 (1)判别级数∑∞=+12)11ln(n n 的敛散性.解: 2122021ln(1)1ln(1)lim ln(1)limlim 11t n n n t t n n tn=→∞→∞→+++=====, 且 211n n∞=∑是收敛的p -级数(2p =)⇒ 级数∑∞=+12)11ln(n n 收敛. )12(>=p .(2)判别级数∑∞=11sinn n的敛散性. (3)讨论级数11nn nn∞=∑的敛散性.解:令11,n n n u v n n n ==,则 1lim lim 1n n n n n u v n →∞→∞==且11n n∞=∑发散 ⇒正项级数11n n n n ∞=∑发散.例7 判定级数21(0)1nnn a a a ∞=>+∑的敛散性. 解 (1)当1a =时,211112n nn n a a ∞∞===+∑∑发散. (2)当1a >时,令1n n v a =,22lim lim 11nn n n n nu a v a ρ→∞→∞===<+∞+1n n v ∞=∑收敛(101q a <=<),所以原级数211nnn a a ∞=+∑收敛. 另解:令 2211n n n n n n n a a u v a a a ==≤==+,1nn v ∞=∑收敛(101q a <=<),所以原级数 211nnn a a ∞=+∑ 收敛. (3)当01a <<时,令n n v a =,21limlim 11n nn n nu v a ρ→∞→∞===<+∞+1n n v ∞=∑收敛(01q a <=<),所以原级数211nnn a a ∞=+∑收敛. 另解:令 211n n nn n n a a u a v a =≤==+,1n n v ∞=∑收敛(01q a <=<), 所以 原级数211nnn a a ∞=+∑收敛.综上所述1a =时211n n n a a ∞=+∑发散,1a ≠时211nnn a a∞=+∑收敛. 【结论】:当n →∞时,级数的通项能与常用的等价无穷小挂钩,此时考虑用比较判别法的极限形式进行判定.但必须给出通项比值的极限(与 无穷大比较)以及已知级数的敛散性.4.【定理4】(比值判别法,达朗贝尔判别法D Alembert '): 设∑∞=1n n u 为正项级数,若ρ=+∞→nn n u u 1lim,则(1)1<ρ时, 级数∑∞=1n nu收敛;(2) 1>ρ或+∞=ρ时, 级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.例8(1)(88.3) 讨论级数∑∞=++11)!1(n n nn 的敛散性. 解 由1112(2)!2lim lim lim()(1)(1)!11n n n n n n n nu n n n n u n n n n ++++→∞→∞→∞++=⋅=⋅++++ 112lim 11()n n n n n n →∞++=⋅++1e 1)1()11(1lim <=+⋅+=∞→n n nn n 知原级数收敛.(2)讨论级数1nn n n ∞=∑!的敛散性.解 令11,lim lim(1)1n n n n n n n u n u e n u n ρ+→∞→∞===+=>由于!,1nn n n ∞=∑!发散. (3) 判断级数 12!()nn n n ∞=∑的敛散性.解 令2!nn u n n ⎛⎫= ⎪⎝⎭,由比值判别法知112(1)!221lim lim lim 112(1)!n n n n n n n n n u n u e n n n ρ++→∞→∞→∞⎛⎫+ ⎪+⎝⎭====<⎛⎫+ ⎪⎝⎭故级数 12!()n n n n ∞=∑收敛.(4)∑∞=13sin2n nn π解 该级数的一般项nnn u 3sin2π=,且 11sin sin 3333n n n n n ππππ→∞++时,~,~ 所以 11112sin233lim lim 2lim 132sin 33n n n n n n n n n nnu u ππππ++++→∞→∞→∞⋅===<⋅,故 原级数收敛.【结论】:对于不便用比较与比较的极限形式完成敛散性判别的级数,应考虑比值判别法,它的特点是用自身的相邻两项的后一项与前相邻 一项比值极限判定.但注意极限与1比较大小.但必须注意:比值判 别法对p -级数失效. 5.【定理5】(根式(柯西)判别法): 设∑∞=1n nu为正项级数, 若ρ=∞→nn n u lim ,则(1)1<ρ时, 级数∑∞=1n n u 收敛;(2)1>ρ或+∞=ρ时,级数∑∞=1n nu发散;(3)1=ρ时, 级数∑∞=1n nu可能收敛也可能发散.【结论】:对通项的指数为与n 次幂相关的级数可以考虑用根植判别法.例9 判别下列级数的敛散性(1)211(1)3n n n n ∞=+∑ 解 令21(1)3nn n n u +=,因为21(1)lim lim 133n nn n n n n e n u →∞→∞+==<, 所以 级数 211(1)3n n n n ∞=+∑收敛. (2)1()21nn n n ∞=+∑解 令()21nn n u n =+,因为1lim lim ()lim 121212n n n n n n n n n u n n →∞→∞→∞===<++, 所以 级数 1()21nn n n ∞=+∑收敛.(3)∑∞=⎪⎭⎫ ⎝⎛+-121121)1(n n n nn . 解 由于121121||>→⎪⎭⎫ ⎝⎛+=en u nn n , 所以级数发散.例10 设(1,2,)n n n u c v n ≤≤=,并且级数1n n u ∞=∑与1n n v ∞=∑都收敛,证明 级数1nn c∞=∑收敛.证明 设,(1,2,)n n n n n n w v u t v c n =-=-=则0n n t w ≤≤即级数1nn w∞=∑与1nn t∞=∑都是正项级数.∵ 级数1nn u∞=∑与1nn v∞=∑都收敛,∴级数1nn w∞=∑收敛,从而由正项级数比较判别法知级数1nn t∞=∑也收敛;故 111nnnn n n c v t ∞∞∞====-∑∑∑收敛.第三节 任意项级数的绝对收敛与条件收敛一、交错级数 形如11(1)n n n u ∞-=-∑= +-++-+--n n u u u u u 14321)1( 或1(1)n n n u∞=-∑=+-++-+-n n u u u u )1(321的级数称为交错级数.其中 0>n u , ( ,2,1=n ). 【定理1】(莱布尼茨定理): 设11(1)n n n u ∞-=-∑为交错级数, 若满足(1) 1n n u u +≥,( ,2,1=n ); (2) 0lim =∞→n n u , 则∑∞=--11)1(n n n u 收敛, 且级数和1u S ≤,其余项n r 的绝对值1||+≤n n u r . 二、绝对收敛与条件收敛 【定理2】 若∑∞=1||n nu收敛 ,则 ∑∞=1n n u 收敛. ( 反之不然.)【定义】(1)若∑∞=1||n nu收敛;则 级数∑∞=1n n u 收敛且绝对收敛.(2)级数∑∞=1n nu收敛,但∑∞=1||n nu发散, 则∑∞=1n n u 收敛且条件收敛.例如: 级数∑∞=--1211)1(n n n 绝对收敛, 而级数∑∞=--111)1(n n n 条件收敛. 2.【定理3】:如果任意项级数121nn n uu u u ∞==++++∑满足条件 nn n u u 1lim +∞→=ρ 或 n n n u ||lim ∞→=ρ ,则 (1) 若1<ρ,级数∑∞=1n n u收敛,且绝对收敛. (2) 若1>ρ,级数∑∞=1n nu发散.例11 判断下列级数的敛散性 (1)∑∞=+12)1(sin n n na提示:222sin 11(1)(1)na n n n ≤<++⇒原级数收敛且绝对收敛. (2) 211(1)(21)nn n ∞=--∑ 提示:222111(21)[(1)]n u n n n n ==≤-+-⇒原级数收敛且绝对收敛.(3)111(1)s 13n n n in n π-∞+=-+∑ 提示:1sin13n n n u π++=,11lim 1(sin ~)311n n nu n u n n ππ+→∞=<→∞++时 ⇒1n n u ∞=∑收敛⇒原级数绝对收敛.(更为简单的方法是什么?)(4)21sin 2nn n nx ∞=⋅∑:211211sin ,lim lim 12222n n n n n n n n n n n v n n n u nx u v v n ++→∞→∞+=⋅⇒<==⋅=<12n n n ∞=⇒⇒∑收敛正项级数1n n u ∞=∑收敛⇒21sin 2n n nnx ∞=⋅∑收敛. 例12 (88.3) 设级数 ∑∞=12n na与∑∞=12n n b均收敛,求证(1)∑∞=1n nn ba 绝对收敛.(2)21()nn n ab ∞=+∑收敛.(3)1n n a n∞=∑收敛.证 (1) 因为)(2122n n n n b a b a +≤,而级数∑∞=12n n a 与∑∞=12n n b 均收敛,所以 )(21212n n n b a ∑∞=+收敛,由正项级数的比较判别法知∑∞=1n n n b a 收敛,故∑∞=1n nn ba 收敛且绝对收敛.(2)因为级数∑∞=12n na与∑∞=12n nb均收敛,又由(1)知∑∞=1n nn ba 收敛,又由222()2n n nn n n a b ab a b +=++ 得2221111()2nn n n n n n n n n ab a b a b ∞∞∞∞====+=++∑∑∑∑收敛.(3)由于 221110()2n n n a a a n n n <=⋅≤+, 级数 ∑∞=12n n a 与211n n ∞=∑ 均收敛 ⇒ 22111()2n n a n ∞=+∑收敛.再由正项级数的比较法得 级数1nn a n∞=∑收敛 .提问(1)(94.3) 设常数0>λ,而级数∑∞=12n na收敛,则级数∑∞=+-12)1(n n nn a λ( )(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛性与λ有关 分析:因为22222221111(1)[()][]22n nnn n a a a a n n n n λλλ-=≤+<++++,而由题设知∑∞=12n n a 收敛,又211n n ∞=∑ 也收敛, 则原级数收敛且绝对收敛.答 (C).(2)(03.4) 设,,2,1,2,2 =-=+=n a a q a a p nn n n n n 则下列命题 正确的是 ( )(A)若∑∞=1n na 条件收敛,则∑∞=1n np 与∑∞=1n nq 都收敛 (B)若∑∞=1n n a 绝对收敛,则∑∞=1n n p 与∑∞=1n nq 都收敛(C)若∑∞=1n n a条件收敛,则∑∞=1n n p与∑∞=1n nq 的敛散性都不定. (D)若∑∞=1n na绝对收敛,则∑∞=1n n p与∑∞=1n nq的敛散性都不定. 说明:若∑∞=1n na绝对收敛,则∑∞=1n na,∑∞=1n na都收敛,所以∑∞=1n np,∑∞=1n nq都收敛.答案 (B)(3)(96.3) 下述各选项正确的是( ) (A)若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛 .(B)若∑∞=1n nn vu 收敛,则∑∞=12n nu与∑∞=12n nv都收敛 .(C)若正项级数∑∞=1n n u 发散,则nu n 1≥. (D)若级数∑∞=1n nu收敛,且)2,1( =≥n v u n n ,则级数∑∞=1n nv也收敛.答 由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤,并由题 设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n nv u∑∞=+收敛,从而∑∞=+12)(n n n v u收敛.答案 (A). (4)(91.3) 设),2,1(10 =<≤n na n ,则下列级数中肯定收敛的是 (A)∑∞=1n n a (B)∑∞=-1)1(n nna (C)∑∞=1n n a (D)∑∞=-12)1(n n n a 答 (D).由n a n 10<≤知2210n a n <≤,而∑∞=121n n收敛,则∑∞=12n n a 收敛,所以∑∞=-12)1(n n na 收敛,故选(D)(5) (06.4) 若级数∑∞=1n na收敛,则级数( )(A)∑∞=1n na收敛 (B)∑∞=-1)1(n n na 收敛(C)∑∞=+11n n n a a 收敛 (D)∑∞=++112n n n a a 收敛 答 (D).因为由∑∞=1n n a 收敛可知∑∞=+11n n a 收敛,所以∑∞=++112n n n a a 收敛.(6)(04.4) 设有下列命题: 1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛;2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛;3) 若1lim 1>+∞→n n n u u ,则∑∞=1n n u 发散;4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1)(2) (B) (2)(3) (C) (3)(4)(D) (1)(4)答 如nn u )1(-=,0)(1212=+∑∞=-n n n u u收敛⇒(1)错误; (2)正确;1lim1>+∞→nn n u u n u ⇒不趋向于零(n → ∞)⇒(3)正确; n v n u n n 1,1-==⇒0)(1=+∑∞=n n n v u 收敛⇒ (4)错误.故选(B).(7)(05.4) 设,,2,1,0 =>n a n 若∑∞=1n na发散,∑∞=-1)1(n n na 收敛,则下列结论正确的是( )(A)∑∞=-112n n a收敛,∑∞=12n na发散 (B)∑∞=12n na收敛,∑∞=-112n n a发散(C)∑∞=-+1212)(n n n a a收敛 (D)∑∞=--1222)(n n n a a 收敛答令∑∞=1n n a =∑∞=11n n ,则∑∞=-1)1(n n n a =∑∞=-11)1(n n n ,由此知只有(D)是正确的. (利用莱布尼兹判别法作且注意∑∞=-1)1(n n na 条件收敛)。
第1次课的教学整体安排n a +越大,则近似程度越好。
如果内接正多边形的边数无限增加,即n a +的极限就是所要求的圆面积。
这时和数中的项数无限增多,于是出现了无穷多个数依次相加得式子。
将上面面积问题抽象出来,就得到无穷级数的一般概念。
,,n u ,那末表达式3n u u ++++(常数项)级数,记为1nn u∞=∑,即n u ++, 一般项或通项.上述级数的定义只是一个形式上的定义,怎样理解无穷级数中无穷多个相加呢?联系到我们可以从有限项的和出发,观察它们的变化趋势,由此来理解无穷多个数n u + ,时,级数的部分和就构成一个新的数列:,1n n s u u u =++,根据这部分和数列有没有极限,我们引进无穷级数(1-1)的收敛与发散的概念。
n u ++,发散,这时级数(1-1)没有和是级数和s 的近似n k u ++++发散;级数发散,但(11)(1-+-在级数中去掉、加上或改变有限项,不改变级数的敛散性n收敛,则对这个级数的各项间任意加括号所得的级数112111)()()k k n n n n n u u u u u -+++++++++++(1-4)仍收敛,且其和不变。
)性质4推论:如果加括号后所成的数列发散,那么原来级数也发散。
)收敛级数去括号后所成的级数不一定收敛.例如,级数 (11)(11)-+-+收敛于零,但级数1n++但是它是发散的。
(这是一个常用级数,能否既表示级数又表示级数的和?n u ++。
不论级数收敛还表示,当且仅当级数收敛时,记号1nn u∞=∑才表示这级数的1,2,),这种级数称为n u ++,由于0n u ,其部分和=1k u ∑ (1,2,n =)2,),即正项级数1n n u ∞=∑的部分和数列增加数列,于是有下列两种可能情形:2,),故10=≤∑n k k u 的部分和数列有界,由定理1知级数。
1n u∞=∑收敛。
.根据极限定义,存在正整数),且级数1 (1,2,)n n n b +=,因此即根据正项级数1nn b∞=∑收敛,11a b ≤,于是2,),又级数1na∞=∑收敛。
第十一章 无穷级数第一节 常数项级数的概念与性质教学目标:1、理解常数项级数收敛、发散以及收敛级数的和的概念.2、掌握级数的基本性质及收敛的必要条件,掌握几何级数收敛和发散的条件. 课时安排:2课时重点:1、 掌握级数收敛的充要和必要条件; 2、 掌握收敛级数的性质; 难点:级数概念及其敛散性 教学法:讲授法一、问题的引出:1、用正多边形的面积逼近园的面积;①.S ≈6A ②.S ≈+612A A S ≈+61224....A A A ++S ≈⨯1621limi nn i A -=å二、常数项无穷级数定义1、定义: 设1u ,2u ,. . . 是常数列, 算式简称为级数 。
记为1nN u∞=∑,称为一般项或通项。
2、部分和与部分数列. ①部分和:前几项的和②部分和数列:()③1n n n u s s -=-④n n n n 1u lim S ¥==å3、敛散定义(充要条件)①设1nN u∞=∑若lim n n S →∞∃,称1n N u ∞=∑收敛,否则称发散。
(判别敛散的方法)。
②若收敛,如何求和。
(收敛,求和的方法)(求数列的极限) 1lim n n n n S S u ¥==å@4、例子.n n n 1n1u n S n 1¥=+å=例 . 设前项部分的和为问:①.收敛否? ………………………………………………(收敛) ②.若收敛,和为多少? ……………………………( 1 ) ③.写出(求出)该级数.()()n 1n n n 1n n 1n 1n 11S u S S nn n+11u n n 1--ゥ==-=\=-=\=+邋例 2. 判别 ()n 11n n 1¥=+å 是否收敛,若收敛,求和。
(用定义)。
()n1111 S ...1223n n 1=+++创+解:). ()()()111111...223n n 1=-+-++-+ 1n=1n 1n 1-=++2).. 收敛。
第八章 常数项级数的概念与性质授课序号01),将数列){}n u 中的各项用加号连接的形式n u ++常数项无穷级数,简称级数,记为1nn u∞=∑,其中是求和记号,称为下标变量,第对数列123,,,,n u u u u ,取它的前1nn i i u u =+=∑,n 项之和).若级数的部分和数列{}n S()0n aq a ++≠()1++1n n +⎪⎭⎫ ⎝⎛+11n 的敛散性. 11n++ 的和.授课序号02n u ++,其中()n u 为任意实数,那么该级数叫做∑∞=1||nu也收敛,则称级数n 绝对收敛;2,),则有); 则交错级数收敛,且收敛和1s u ≤.nu收敛,则任意项级数);11(1)n n-+-+是收敛的.114n nn -⋅的敛散性.授课序号03()()1n n n u x u x ∞=++=∑()01nn u x ∞=∑就是常数项级数. 的收敛点,收敛点的全体组成的数集称为()u x ∞∑的收敛域()0nn a x x +-+nn a x∞=∑,因此不失一般性,我们仅讨论这个形,则幂级数称为一个常数项级数a ∞∑n n a x ++,n n b x ++22,)R R -,其和函数分别为11(,),x R R ∈-0110(),(,).n n n n a b a b a b x x R R -+++++∈-(和函数的连续性)设幂级数0nn n a x∞=∑的收敛域为区间I ,则它的和函数授课序号04,cos ,sin ,nx nx该三角函数系中的任何不同的两个函数的乘积的在[]π,π-上的积分等于零.1,2,n =就叫做的傅里叶级数.1,2,,,即只含有正弦项的傅里叶级数;,余弦级数,即只含有常数项及余弦项的傅里叶级数Dirichlet)充分条件),1,2,.的周期函数,它在。
,,n u 则式子1n u u ++叫做无穷级数,记前n 项和为12n u u u =+++,当,即lim n n SS →∞=则称无穷级数收敛,其极限值S 称为级数的和,并记为n u ++; 若n S 没有极限,就称无穷级数发散。
.无穷级数的基本性质n u 收敛于S ,则每一项乘以一个不为零的常数设有两个收敛级数:12n Su u u =++++,1n v v σ=+++()n n u v +±+收敛于和S σ±。
在级数的前面部分去掉或加上有限项,不影响级数的敛散性,但是其级数和会发生相应变化。
收敛级数加括弧后所成的级数仍然收敛于原来的和S 。
常数项级数收敛的必要条件:若级数1nn u∞=∑收敛,则当n 趋于无穷大时,它的一般项n u 必趋近|n p u ++<nn n n n a x a x ∞=++=∑这种级数称为幂级数,其中a n (n=0,1,2,…)均为常数。
时,它就变为一个常数项级数。
(x 0≠0)时收敛,则适合不等式|x|<|x 111n n n n n na xna x ∞--=++=∑求导后的幂级数与原级数有相同的收敛半径。
s(x)在敛区内可以积分,并且有逐项积分公式:00)1xnn n n n a x dx a x dx n ∞∞====+∑∑⎰()(!n f x n +,称为拉格朗日余项。
阶泰勒公式中的余项趋于零。
此时函数展开式称为()(0)!n n f x n ++)的麦克劳林级数是x 的幂级数,那么这种展开是唯一的,=0的某一临域内收敛,它不一定收敛于)的麦克劳林级数虽然能做出来,但这个级数能否在某个区)都需要进一步验证 1,!nx x n ++-∞<<+∞1211(1),(21)!n n x x n --+-+-∞<<+∞-的展开式2(1)(1)(1),2!!nm m m m m n x x n ---+++++)的展开式:,11n x x +++-<<一般情况下函数展开成幂级数采用间接展开法,即利用简单的函数的展开式、幂级数在收敛域内可逐项求导及可逐项求积分的性质以及变量代换等对复杂函数进行展开。
时间---------月---------日 星期----------------- 课 题§12-1 常数项级数的概念与性质教学目的 1.数项级数收敛、发散以及收敛级数的和的概念. 2.掌握级数的基本性质及收敛的必要条件. 教学重点 级数收敛与发散概念,尤其是级数收敛的必要条件. 教学难点 用级数收敛性及基本性质判别一些级数收敛性问题. 课 型 专业基础课 教法选择讲 授教 学 过 程教法运用及板书要点一. 常数项级数的概念通过实际的例子(学生原有的知识背景:计算圆的面积),抽象内容和具体例子的结合,比较自然地引入级数的基本概念定义1 设有数列u 1,u 2,…,u n …,称121nn n uu u u ∞==++++∑为常数项级数,简称常数项级数。
其中u n 称为级数的通项(或一般项或第n 项);1nn kk S u==∑称为级数的部分和(或前n 项和);{S n }称为级数的部分和数列. 由部分和数列{S n }的敛散性有: 定义 2 若数项级数1nn u∞=∑的部分和数列{}n S 有极限,且极限值为s ,即∞→n lim S n =s ,则称级数1n n u ∞=∑收敛,极限值s 称为此级数的和,此时s=∑∞=1n u n = u 1+u 2+…+u n +…当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.当级数收敛时,其部分和错误!未找到引用源。
与级数的和S 近似相等,它们的差S -错误!未找到引用源。
称为级数的余项,记为例1 讨论如下几何级数(又称为等比级数)的敛散性。
此表2学时填写一份,“教学过程”不足时可续页解 如果错误!未找到引用源。
,则部分和为当错误!未找到引用源。
时,错误!未找到引用源。
,几何级数收敛; 当错误!未找到引用源。
时,错误!未找到引用源。
,所以错误!未找到引用源。
,几何级数发散;当错误!未找到引用源。
时,错误!未找到引用源。
,所以错误!未找到引用源。
高等数学教学教案第7章无穷级数授课序号01++ n授课序号02授课序号03授课序号04授课序号05其中0=nb),2,1(=n,⎰=lnxlxnxfladcos)(2π),2,1,0(=n. (13)另外,若x是函数)(xf的间断点,那么)(xf的傅里叶级数收敛于2)0()0(-++xfxf.四.例题讲解例1.设)(xf是周期为π2的周期函数,它在),[ππ-上的表达式为⎩⎨⎧<≤<≤-=.)(ππxxxxf,,,将)(xf展为傅里叶级数,并作出级数的和函数的图形.例2.(脉冲矩形波) 矩形波用来表示电闸重复地断开和接通时的电流模型.设脉冲矩形波的信号函数)(xf是以π2为周期的周期函数(如图7.2所示),它的表达式为⎩⎨⎧<≤<≤--=.11)(ππxxxf,,,求此函数的傅里叶级数展开式.图7.2例3.设)(xf是周期为π2的周期函数,试将函数⎩⎨⎧<≤<≤--=,0,,0,)(ππxxxxxf展开为傅里叶级数,并作出级数的和函数的图形.例4.将函数xxf+=1)()0(π≤≤x分别展开为正弦级数和余弦级数.例5.设)(xf是以4为周期的函数,在)2,2[-上的表达式为020,()02,xf xh x-≤<⎧=⎨≤<⎩,,其中常数0≠h. 将函数)(xf展开为傅里叶级数,并作出级数的和函数的图形.例6.将函数]2,0[1)(∈-=xxxf,展开为以4为周期的余弦级数.1。
380 第十章 无穷级数在许多科学技术领域中,常常要求我们将无穷多个数或者函数相加,我们把这种和式叫做无穷级数.无穷级数是表示函数、研究函数性态以及进行数值计算的一种有效工具.无穷级数分为常数项级数和函数项级数,本章将先介绍常数项级数的概念及其敛散性的审敛法,然后讨论函数项级数,最后将着重讨论如何将函数展开成幂级数和三角级数的问题.第一节 常数项级数的概念与性质一、常数项级数的基本概念设给定一个数列1u ,2u ,n u ,,用加号把这些项连结起来所构成的和的表达式 1u +2u +n u +(1)称为(常数项)无穷级数,简称(常数项)级数,记作1n n u ∞=∑1u =+2u +n u ++,级数的第n 项u n 通常称为级数的一般项或通项.例如 111111!2!3!!n n n ∞==+++++∑,1(1)1111(1)nn n ∞=-=-+-+-+-+∑,1123n n n ∞==+++++∑ 都是常数项级数.上述级数的定义仅仅是一种形式上的定义,这种加法是否具有“和数”,这个“和数”的意义是什么?为了解决这个问题,我们先作(常数项)级数(1)的前n 项和n s =12n u u u +++1ni i u ==∑, (2)n s 称为级数(1)的部分和.当n 依次取1,2,3,…时,部分和又构成一个新的数列11s u =, 122s u u =+,3123,s u u u =++, n s =12n u u u +++,,即数列12,,,,n s s s .把这个数列{n s }称为级数1n n u ∞=∑的部分和数列(简称为部分和).当n 趋于无穷大时,如果级数1n n u ∞=∑的部分和数列{n s }有极限s ,即lim n n s s →∞=,则称无穷级数1n n u ∞=∑收敛,并称极限s 为级数的和,写成12n s u u u =+++.如果部分和数列{n s }没有极限,则称无穷级数1n n u ∞=∑发散.当级数1n n u ∞=∑收敛时,其部分和n s 是级数的和s 的近似值,它们之间的差值12n n n n r s s u u ++=-=++称为级数的余项.用近似值n s 代替和s 所产生的误差是这个余项的绝对值,即误差是n r .381●●例1 判别无穷级数1123n n n ∞==+++++∑的敛散性.解 由于 (1)122n n n s n +=+++=, 则 (1)lim lim 2n n n n n s →∞→∞+==∞,所以该级数发散.●●例2 讨论级数11111(1)n --+-++-+的敛散性. 解 部分和数列11s =,2110s =-=,31111s =-+=,,11111(1)n n s -=-+-++-.易知,当n 为奇数时,1n s =;当n 为偶数时,0n s =.所以没有极限,故原级数发散. ●●例3 无穷级数20nn n aqa aq aq aq ∞==+++++∑. (3)叫做等比级数(又称为几何级数),其中0a ≠,q 叫做级数的公比,试讨论级数(3)的敛散性.解 如果||1q ≠,级数的部分和1n n s a aq aq-=+++1n a aq q -==-11na aq q q---. 当||1q <时, lim n n s →∞=lim 111n n a aq a q q q →∞⎡⎤-=⎢⎥---⎣⎦, 此时级数(3)收敛,且其和为 1aq -; 当||1q >时,lim n n s →∞=∞,此时级数(3)发散.如果||1q =,则当1q =时,n s na =→∞,因此级数(3)发散;当1q =-时,级数(3)变为n s =a a a a -+-+1(1)n a -+-.显然,n s 随着n 为奇数或为偶数而等于a 或为零,因此n s 的极限不存在,此时级数(3)也发散.综上讨论可知,等比级数11n n aq ∞-=∑当||1q <时收敛,其和为1aq-,当||1q ≥时发散. 例如级数23422223333⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比213q =<,则该级数是收敛的.又例如级数23433332222⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比312q =>,故该级数是发散的. 二、收敛级数的基本性质由上面的讨论可知,级数的收敛问题,实际上也就是研究它的部分和数列的收敛问题,因此,我们可以应用数列极限的有关知识来研究无穷级数的收敛与发散.从而可以得到收敛级数的一些基本性质.性质1 如果级数123n u u u u ++++收敛于和s ,则它的各项同乘以一个常数a 所得的级数123n au au au au ++++也收敛,且其和为as . 证 设级数1n n u ∞=∑与级数1n n au ∞=∑的部分和分别为n s 和n σ,则n s =12n u u u +++,n σ12n au au au =+++n as =.382 由数列极限的性质知lim lim n n n n as as σ→∞→∞==.即级数1nn au∞=∑收敛于as .性质2 如果级数1n n u ∞=∑和1n n v ∞=∑都收敛,且其和分别为s 与σ,则级数1()nn n uv ∞=±∑1122()()()n n u v u v u v =±+±++±+.也收敛,并且有111()nn n n n n n uv u v ∞∞∞===±=±∑∑∑s σ=±.证 令1nn i i s v ==∑,1nn i i u σ==∑,1()nn i i i T u v ==±∑,则1()nn i i i T u v ==±=∑11n ni in n i i u vs σ==±=±∑∑,所以有lim lim()lim lim n n n n n n n n n T s s s σσσ→∞→∞→∞→∞=±=±=±.也就是说,1()n n n u v ∞=±∑收敛于s σ±.●●例4 判别级数212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的敛散性.若收敛时求出它的和.解 由于级数211111222n -+++++与 21213331444n n --+++++都是公比小于1的等比级数,所以它们都收敛,且其和分别为2和4,由性质2知所给级数收敛,其和为212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111222n -⎛⎫=+++++ ⎪⎝⎭21213331444n n --⎛⎫++++++ ⎪⎝⎭246=+=. 性质3 在级数的前面部分去掉或加上有限项,不改变级数的敛散性.证 设将级数121k k k n u u u u u +++++++++的前k 项去掉,则得级数12k k k n u u u +++++++.令新级数的部分和n T =12k k k n u u u ++++++.则12n k k k n T u u u +++=+++k n k s s +=-,其中k n s +为原级数的前k n +项的和,而k s 12k u u u =+++是常数,所以当n →∞时,n T 和n k s +或者同时具有极限,或者同时没有极限,当有极限时,k T s s =-.其中lim n n T T →∞=,lim k n n s s +→∞=.类似地,可以证明在级数的前面加上有限项,也不改变级数的敛散性. 性质4 收敛级数对其项任意加括弧后所成级数仍为收敛的级数,且其和不变. 应该注意,加括号后的级数收敛时,原来未加括弧的级数未必收敛,例如下面的级数(11)(11)(11)-+-+-+ 收敛于零,但级数111111-+-+-+却是发散的.由性质4可得: 如果加括弧后所成的级数发散,则原来级数也发散.383性质5 (级数收敛的必要条件)如果级数1n n u ∞=∑收敛,则当n 无限增大时,它的一般项n u 趋于零,即lim 0n n u →∞=.证 设级数1n n u ∞=∑的部分和数列为{}n s ,且lim n n s s →∞=.因为1n n n u s s -=-,所以1lim lim()n n n n n u s s -→∞→∞=-0s s =-=.性质5表明,若lim 0n n u →∞≠,则1n n u ∞=∑一定发散,但要注意,若lim 0n n u →∞=时,级数1n n u ∞=∑可能收敛,也可能发散. ●●例5 无穷级数111123n+++++ (4)称为调和级数.证明调和级数是发散的.证法1 顺序把级数(4)的两项、两项、四项、八项、2m 项、加括号得级数111111112345678⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111121222m mm +⎛⎫+++++ ⎪++⎝⎭ 因为 11122+>,1111134442+>+=,111111111,567888882+++>+++=11111111111212222222m m m m m m +++++++>+++=++, 所以这个加括号的级数的前1m +项的和大于12m +,从而可知加括号后的级数发散.由性质4所得的结论可知,调和级数(4)发散.证法2 由0x >时,ln(1)x x >+知,11ln 1n n ⎛⎫>+ ⎪⎝⎭,所以1111ln 1nn n i i s i i ==⎛⎫=>+ ⎪⎝⎭∑∑341ln 2ln ln ln 23n n +=++++341ln 223n n +⎛⎫=⋅⋅⋅⎪⎝⎭ln(1)n =+.由于lim limln(1)nn n s n →∞→∞≥+=∞,故调和级数发散.●●例6 -+-+11n n +-+-+的敛散性.解 对级数每两项加括号后所成的级数为2n ∞=∑221n n ∞==-∑2121n n ∞==-∑,而211n n ∞=-∑为调和级数,它是发散的,故知原级数发散. 习 题 10-11.写出下列级数的前5项:384 (1)21(2)n nn ∞=+∑; (2)113(21)24(2)n n n ∞=⋅⋅⋅⋅-⋅⋅⋅⋅∑;(3)11(1)10n n n -∞=-∑;(4)1!(1)nn n n ∞=+∑. 2.写出下列级数的一般项:(1)111246+++;(2)231153759711a a a ++++⋅⋅⋅⋅;(3)35791113149162536-+-+-+-;(42242468x x +⋅⋅⋅⋅ (0x >).3.判定下列级数的敛散性: (1)1n ∞=∑;(2)11(21)(21)n n n ∞=-+∑;(3)1111223(1)n n ++++⋅⋅+;(4)π2ππsin sin sin 666n ++++;(5)1n ∞=∑;(6)13++;(7)22111111323232n n ⎛⎫⎛⎫⎛⎫-+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(8)135721357921n n -+++++++;(9)221(n ∞=∑ (0a >);(10)23111111111111123nn +++++⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 4.证明下列级数收敛,并求其和:11111447710(32)(31)n n +++⋅⋅⋅++⋅⋅⋅⋅⋅⋅-+.5.若级数1n n u ∞=∑与1n n v ∞=∑都发散时,级数1()n n n u v ∞=±∑的敛散性如何?若其中一个收敛,一个发散,那么,级数1()n n n u v ∞=±∑散敛性又如何?第二节 常数项级数的审敛法一、正项级数及其审敛法在第一节中,我们介绍了判别一般常数项级数(即级数的各项可以是正数、负数或者零)是否收敛的方法.如果级数1n n u ∞=∑的每一项都是非负的,即0n u ≥(1n =,2,),则称级数1nn u∞=∑为正项级数. 在这一节,我们将对正项级数给出一些常用的审敛判别法.385设正项级数12n u u u ++++ (1) 的部分和为n s ,显然部分和数列{n s }是单调增加数列,也就是说12n s s s ≤≤≤≤根据单调有界数列必有极限的准则可得,如果部分和数列n s 有界,也就是说存在一正数M ,使得n s M ≤对所有的n 都成立,则级数(1)一定收敛;反之,如果正项级数收敛于s ,则数列{n s }一定有界. 由此可得下面的正项级数收敛的基本定理.正项级数1n n u ∞=∑收敛的充分必要条件是它的部分和数列{n s }有界.根据这一定理,我们可以得到正项级数收敛或发散的一些基本判别法则.(比较审敛法)设级数1n n u ∞=∑,1n n v ∞=∑为两个正项级数,且满足不等式n nu v ≤(1n =,2,)则下面的结论成立:(1)如果级数1n n v ∞=∑收敛, 则级数1n n u ∞=∑也收敛; (2)如果级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.证 (1)设1n n v ∞==∑σ,1n n k k s u ==∑,1nn k k v σ==∑,则由条件知n s =12n u u u +++12n v v v ≤+++n σ=≤1nn vσ∞==∑,即部分和数列{n s }有界,由定理1知级数1n n u ∞=∑收敛.(2)反证法,若正项级数1n n v ∞=∑收敛,则根据(1)知级数1n n u ∞=∑收敛,与1n n u ∞=∑发散矛盾,故级数1n n v ∞=∑发散.由第一节的性质1和性质3可知,级数的每一项同乘以不为零的常数k ,以及去掉级数前面部分的有限项不会影响级数的收敛性,于是可得如下推论:推论 设1n n u ∞=∑和1n n v ∞=∑是两个正项级数.如果从某项开始(比如从第N 项开始),满足不等式n n u kv ≤(n N ≥,0k >),则(1)若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑发散.为了便于应用,我们下面接着给出比较审敛法的极限形式.(比较审敛法的极限形式) 设1n n u ∞=∑和1n n v ∞=∑为给定的两个正项级数,(1) 如果lim nn nu l v →∞=(0l ≤<+∞),且级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;386 (2) 如果lim 0n n n u l v →∞=>或lim nn nu v →∞=+∞,且级数1n n v ∞=∑发散,则级数1n n u ∞=∑发散.证 (1) 根据极限的定义,对1ε=,存在自然数N ,使得当n N >时,有不等式1nnu l v <+, 即 (1)n n u l v <+ 而级数1n n v ∞=∑收敛,再由比较审敛法的推论,便可知1n n u ∞=∑收敛.(2) 反证法,如果级数1n n u ∞=∑收敛,则由结论(1)得级数1n n v ∞=∑收敛,但已知级数1n n v ∞=∑发散,矛盾.因此,级数1n n u ∞=∑发散.●●例1 证明级数1131nn ∞=+∑是收敛的. 证 因为11313n n ≤+,而且几何级数113n n ∞=∑收敛,故由比较判别法知,1131nn ∞=+∑是收敛的. ●●例2 判别级数11(0)1nn a a ∞=>+∑的收敛性. 解 (1)当01a <<时,11lim 10110n n a →∞==≠++,所以级数111n n a ∞=+∑发散. (2)当1a =时,11lim 012n n a →∞=≠+,所以级数111n n a ∞=+∑发散. (3)当1a >时,111nn a a ⎛⎫< ⎪+⎝⎭. 由于级数11nn a ∞=⎛⎫⎪⎝⎭∑收敛,所以级数111nn a ∞=+∑收敛. 综上所述,当01a <≤时,原级数发散,当1a >时,原级数收敛. ●●例3 级数11111123pp p p n nn ∞==++++∑. (2) 称为p -级数,其中0p >是常数,试讨论p -级数的敛散性.解 (1)当1p ≤时,有 11p n n ≤,由于11n n ∞=∑发散,故由比较审敛法知,级数(2)发散.(2)当1p >时,由1k x k -≤≤知 11p p k x≤,所以111k p pk x k k -=≤⎰d 11k p k x x -⎰d ,(2,3,n =) 从而级数(2)的部分和1n s =+21n p k k =≤∑1+12n k p k k x x -=∑⎰d 11n p x x =+=⎰ d 111111p p n -⎛⎫+- ⎪-⎝⎭111p <+-(2,3,n =), 故数列{}n s 有界,所以级数(2)收 敛.综上所述可得p -级数11pn n∞=∑当1p >时收敛,当1p ≤时发散. ●●例4 判别下列级数的敛散性:387(1)3132n n n n ∞=+-∑; (2)1111n nn∞+=∑; (3)11n n ∞=⎛⎫+ ⎪⎝⎭; (4)21e n n n ∞-=∑.解 (1)因为 323323312lim lim 122n n n n n n n n n n →∞→∞++-==-,而211n n ∞=∑收敛,所以级数3132n n n n ∞=+-∑收敛. (2)因为111lim 11nn n nn+→∞==,又级数11n n ∞=∑发散,所以级数1111n nn∞+=∑发散. (3)因为321ln 1lim 11n n n nn →∞→∞⎛⎫+ ⎪⎝⎭==, 而级数3121n n∞=∑收敛,所以级数11n n ∞=⎛⎫+ ⎪⎝⎭收敛.(4)因为 242e lim lim 01e n n n n n n n -→∞→∞==,而级数211n n ∞=∑收敛,所以级数21e n n n ∞-=∑收敛. ●●例5 判别级数11ln 1p n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.(0p >,且为常数)解 因为1ln 1lim 1p n pn n→∞⎛⎫+ ⎪⎝⎭1lim ln 1p n p n n →∞⎛⎫=+ ⎪⎝⎭1ln lim 11p n p n n →∞⎡⎤⎛⎫⎢⎥=+= ⎪⎝⎭⎢⎥⎣⎦ 而p -级数11p n n ∞=∑当1p >时收敛,所以当1p >时原级数收敛;当1p ≤时11p n n∞=∑发散,故当1p ≤原级数发散.判别级数的敛散性,如果已知一些收敛级数和发散级数,则可以以它们为标准进行比较.常用于比较的级数有p -级数、等比级数与调和级数,因此必须记住它们.由比较审敛法的定理我们知道,它是通过与某个敛散性已知的级数的比较来判断给定级数的敛散性,但有时作为比较对象的级数不容易找到,那么能不能从给定的级数自身直接判别级数的敛散性?为此,下面我们将给出使用上很方便的比值审敛法和根值审敛法.(比值审敛法) 设级数1n n u ∞=∑是正项级数,且1lim n n nuu ρ+→∞=.则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或1lim n n nu u +→∞=∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.388 正项级数敛散性的这一判别法称为比值审敛法或达朗贝尔(D alembert ')审敛法.证(1)当1ρ<时,取一个适当小的正数ε,使得1r ρε+=<,由1lim n n nuu ρ+→∞=知,存在正整数N ,使得当n N >时,有不等式1n nur u ρε+<+=成立,即有1N N u ru +<, 221N N N u ru r u ++<<, 332N N N u ru r u ++<<,…而等比级数23N N N ru r u r u +++收敛(公比1r <),由比较审敛法可知123N N N u u u ++++++收敛.由于级数1n n u ∞=∑只是比级数1nn N u∞=+∑多了前N 项,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,取一个适当小的正数ε ,使得1ρε->,由极限的定义知,存在正整数N ,使得当n N >时,有不等式11n n uu ρε+>->成立,也就是1n n u u +>.所以,当n N >时,级数的一般项逐渐增大,因此lim 0n n u →∞≠,由级数收敛的必要条件可知,级数1n n u ∞=∑发散.类似地,可以证明,当1lim n n nu u +→∞=∞时,级数1n n u ∞=∑发散.(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.例如p -级数11p n n ∞=∑,不论0p >为何值,总有1lim n n nu u +→∞=1(1)lim11pn pn n →∞+=.但我们已经知道当1p >时p -级数收敛,而当1p ≤时p -级数发散.所以,仅根据ρ=1是不能判别级数的敛散性的.●●例6 判别级数2222231232222n n +++++的敛散性. 解 因为22n n n u =,22112(1)112lim lim lim 22n n n n n nnn u n n u n ++→∞→∞→∞++⎛⎫== ⎪⎝⎭112=<,根据比值审敛法,所以原级数是收敛的.●●例7 判别级数2132nn n n ∞=∑的敛散性.解 因为232nn n u n =,所以1limn n nu u +→∞=122212323lim lim (1)232(1)n n n nn n n nn n ++→∞→∞⋅=++2313lim 11221n n →∞⎛⎫⎪==> ⎪ ⎪+ ⎪⎝⎭, 所以级数2132nn n n ∞=∑发散.●●例8 判别级数1111123456(21)2n n+++++⋅⋅⋅-⋅的敛散性.389解 由于1(21)2n u n n =-⋅,所以1lim n n nu u +→∞=(21)2lim 1(21)(22)n n nn n →∞-⋅=++,比值审敛法此时失效.但注意到211(21)2n n n <-⋅,而级数211n n ∞=∑收敛,所以级数11(21)2n n n ∞=-⋅∑收敛. (根值审敛法)设级数1n n u ∞=∑是正项级数,且n ρ=,则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或n =+∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.正项级数敛散性的这一判别法称为根值审敛法或柯西审敛法.证 (1)当1ρ<时,由极限的定义,取一个适当小的0ε>,存在自然数N ,使得当n N >1r ρε<+=<成立,即nn u r <.由于等比级数1n n r ∞=∑(公比1r <)收敛,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,根据极限的定义,取一个适当小的0ε>,存在正整数N ,使n N >时,1ρε>->成立,即1n u >.由于lim 0n x u →∞≠,所以级数1n n u ∞=∑发散.(3)当1ρ=时,根值审敛法失效.仍以p -级数11pn n∞=∑为例,由根值审敛法=1p=→(n →∞). 即1ρ=,但p -级数当1p >时收敛;当1p ≤时发散.因此在1ρ=时级数的敛散性不能由根值审敛法判定. ●●例9 判别级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.解因为11e lim 1<155nn n n n →∞⎛⎫=+= ⎪⎝⎭所以由根值审敛法可知级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛. ●●例10 判别级数ln 123nn n ∞=∑的敛散性.解 因为=ln 23n n=,而当n →∞时,ln nn的极限为0,所以n ln 2lim 3n n n→∞=21=>,因此所给级数发散.390 二、交错级数及其审敛法如果级数的各项是正负交替出现的,也就是形如 1234u u u u -+-+1(1)n n u -+-+ (3) 或 1234u u u u -+-++(1)n n u +-+(3')(0n u >,1,2,n =)的级数称为交错级数.下面的定理说明了如何对于交错级数的敛散性进行判别.(莱布尼兹(Leibniz )审敛法) 如果交错级数11(1)n n n u ∞+=-∑(0,1,2,n u n >=)满足下面的条件:(1)1n n u u +≥(1,2,3,n =);(2)lim 0n n u →∞=则级数11(1)n n n u ∞+=-∑收敛,且其和1S u ≤,其误差1n n r u +≤.证 先证交错级数(3)的前2n 项和2n s 的极限存在,其和1s u ≤. 因为2n s 可表示为2n s =1234212()()()n n u u u u u u --+-++-,及 2n s =1234522212()()()n n n u u u u u u u u ----------所以由条件(1)知,括弧中的所有项都是非负的,因此由2n s 的第一种表达形式可知,2n s 单调增加,由2n s 的第二个表达式可知,21n s u <.于是,由单调有界数列必有极限的准则可知,当n 无限增大时,2n s 趋于一个极限s ,且s 不大于1u ,即21lim n n s s u →∞=≤.再证交错级数(3)的前21n +项的和21n s +的极限为s ,且1s u ≤. 因为 21221n n n s s u ++=+, 所以由条件(2)知21lim 0n n u +→∞=,所以21221lim lim lim n n n n n n s s u s ++→∞→∞→∞=+=.由于级数的前2n 项的和与前21n +的和趋于同一极限s ,故级数11(1)n n n u ∞+=-∑的部分和n s 当n →∞时具有极限s ,这就证明了交错级数11(1)n n n u ∞+=-∑收敛于和s ,并且1s u ≤.对于级数(3)的余项n r ,可写成如下的形式:12()n n n r u u ++=±-+.它的绝对值12||n n n r u u ++=-+.也是一个交错级数,也满足交错级数收敛的两个条件,因此其和不超过级数的第一项1n u +,也就是说 1|| n n r u +. ●●例11 判别级数111111(1)234n n+-+-++-+的敛散性,并求其和s 的近似值(精确到0.1).解 令1n u n =, 显然有 (1) 1111n n u u n n +=>=+, (1,2,n =), (2)1lim lim0n n n u n→∞→∞==. 由定理6知,原级数收敛.且11111(1)23n n s s n +≈=-+++-.其中11n rn ≤+.因为取9n =时,9110r ≤0.1=,所以111110.74562349s ≈-+-++≈.391●●例12判别级数1(1))πn n n ∞=-∑的敛散性.解 因为(1))πn n -(1)n =-.又s in n u =是单调减少数列,且lim 0n n n u →∞→∞==.由莱布尼兹审敛法可知,原级数收敛.三、绝对收敛与条件收敛上面我们讨论了正项级数和交错级数敛散性的判别法,如果级数1n n u ∞=∑中的项n u(1,2,)n =是任意实数,则把这种级数称为任意项级数.下面我们来讨论任意项级数的敛散性.如果对于任意项级数1n n u ∞=∑中的各项取绝对值所得的正项级数1||n n u ∞=∑收敛,则称级数1nn u∞=∑绝对收敛;如果级数1||n n u ∞=∑发散,而级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑条件收敛.由上述定义,容易得到结论:收敛的正项级数是绝对收敛的.绝对收敛级数和收敛级数之间有如下重要关系.如果级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.证 令1(||)2n n n v u u =+ (1,2,3,n =).则当0n u ≥时,n n v u =;当0n u <时,0n v =,所以0n v ≥,且||n n v v =11||||(||||)22n n n n u u u u =+≤+||n u =.因为级数1||n n u ∞=∑收敛,由比较审敛法知1n n v ∞=∑收敛,从而12n n v ∞=∑也收敛.又因为2||n n n u v u =-,所以级数1n n u ∞=∑是由两个收敛级数逐项相减而形成的, 即11(2||)nnnn n u v u∞∞===-∑∑.由级数的性质2可知,级数1n n u ∞=∑收敛.该定理表明,对于任意项级数1n n u ∞=∑,如果由正项级数审敛法判定级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.进而可知,一些任意项级数的敛散性可借助于正项级数的审敛法而得到判定.一般来说,如果1||n n u ∞=∑发散,我们不能断定1n n u ∞=∑发散,但是,如果我们用比值法或根值法,根据1ρ>判定1||n n u ∞=∑发散,则可断定1n n u ∞=∑发散.这是因为从1ρ>可推知lim 0n n u →∞≠,从而可392 知lim 0n n u →∞≠,因此级数1n n u ∞=∑发散.●●例13 证明级数11sin rn n n α∞+=∑(其中0r >)绝对收敛. 证 因为11sin 1r r n nn α++≤,而级数111r n n ∞+=∑收敛,所以由比较审敛法知,11sin r n n n α+∞+=∑收敛,因此所给级数绝对收敛.●●例14 判别级数2111(1)13n n nn n ∞=⎛⎫-+ ⎪⎝⎭∑的敛散性.解 1113nn ⎛⎫+ ⎪⎝⎭,而11lim 13nn n n →∞⎛⎫=+ ⎪⎝⎭e13=<.故由根值审敛法知所给级数收敛.由定理7,我们注意到每个绝对收敛的级数都是收敛的,但反过来不一定成立.也就是说,并不是每个收敛级数都是绝对收敛的.例如,级数111111(1)234n n+-+-++-+是收敛级数,但对各项取绝对值后得到的级数为11111234n++++++是调和级数,它是发散的.●●例15 判别级数1np n x n∞=∑的敛散性,若收敛,讨论其是绝对收敛还是条件收敛解 对级数11||n np p n n x x n n ∞∞===∑∑应用根值审敛法,因为||n x =,由此可知: 当||1x <时,p 为任意实数,级数收敛(绝对收敛);当||1x >时,p 为任意实数,级数发散;当1x =时,(1)1p >时,级数收敛(绝对收敛);(2)1p ≤时,级数发散; 当1x =-时,(1)1p >时,级数收敛(绝对收敛);(2)01p <≤时,级数收敛(条件收敛);(3)0p ≤时,级数发散.绝对收敛级数有一些很好的运算性质,我们不加证明地给出如下:绝对收敛级数不因改变项的位置而改变它的和.1n u 及1n n v ∞=∑都绝对收敛,其和分别为s 和σ,则它们的柯西乘积111221()u v u v u v ++++1211()n n n u v u v u v -+++也是绝对收敛的,且其和为s σ.习 题 10-21.用比较审敛法或其极限形式判定下列各级数的敛散性:(1)1111253647(1)(4)n n ++++⋅⋅⋅+⋅+;(2)1+111357+++;(3)2221111135(21)n +++++-;(4)2222(sin 2)(sin 4)(sin 2)666nn ++++;393(5)ππππsinsin sin sin 2482n +++++. 2.用比值审敛法判别下列级数的敛散性:(1)234521333n n ++++++; (2)232332!33!3!323n n n n ⋅⋅⋅+++++;(3)231111sin 2sin 3sin sin 2222n n +⋅+⋅+++;(4)21(!)(3)!n n n ∞=∑; (5)n ∞=; (6)1!n n n n ∞=∑; (7)213n n n ∞=∑. 3.用根值审敛法判定下列各级数的敛散性:(1)152n n n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)2111n n n ∞=⎛⎫+ ⎪⎝⎭∑; (3)2122n n n n n ∞=+⎛⎫ ⎪⎝⎭∑ ; (4)131ennn ∞=+∑; (5)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中(),,,n n a a n a b a →→∞均为正数;(6)1(0,lim ,0)nn n n n n x x a a a a ∞→∞=⎛⎫>=> ⎪⎝⎭∑.4.判别下列级数的敛散性:(1)23433332344444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)()11sin 2n n n n ∞=π+∑;(3)1111(1sin1)sin sin 22nn ⎛⎫⎛⎫-+-++-+ ⎪ ⎪⎝⎭⎝⎭;(4)222222ln 1ln 1ln 1123⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)222sin 2sin 2sin 333n n πππ⋅+⋅++⋅+;(6)21cos 32nn n n ∞=π∑; (7)111(e e 2)nn n ∞-=+-∑. 5.判别下列级数是否收敛?若收敛的话,是绝对收敛还是条件收敛? (1)1(1)n n ∞-=-∑ (2)111(1)8n n n n ∞-=-∑; (3)1311(1)sin n n n ∞-=-∑; (4)111(1)ln n n n n ∞-=+-∑;(5)11111234a a a a -+-+-++++(a 不为负整数);(6)1111ln 2ln3ln 4ln5-+-+;(7)234111sin sin sin 234πππ-+-πππ;394 (8)22221111sinsin sin sin 1234-+-+.第三节 幂级数一、函数项级数的概念在前两节内容中,我们讨论了常数项级数,这一节我们将研究应用更为广泛的函数项级数.如果1()u x ,2()u x ,, ()n u x ,,是定义在区间I 上的函数列,则由该函数列构成的和式12()()()n u x u x u x ++++(1)称为定义在区间I 上的(函数项)无穷级数,简称(函数项)级数, ()n u x 称为一般项或通项.当x 在区间I 中取某个确定的值0x 时,函数项级数1()n n u x ∞=∑成为常数项级数10200()()()n u x u x u x ++++,该级数可能收敛,也可能发散.如果常数项级数01()n n u x ∞=∑收敛,则称点0x 是函数项级数1()nn u x ∞=∑的收敛点;如果级数01()nn u x ∞=∑发散,则称点0x是函数项级数1()n n u x ∞=∑的发散点. 函数项级数1()n n u x ∞=∑的所有收敛点组成的集合称为它的收敛域,所有发散点组成的集合称为它的发散域.对应于收敛域内的任意一个数x ,函数项级数1()n n u x ∞=∑成为一收敛的常数项级数,因而有一确定的和s .因此,在收敛域上,函数项级数的和是x 的函数()s x ,我们把()s x 称为函数项级数的和函数,和函数的定义域就是级数的收敛域,并记为()s x =12()()()n u x u x u x ++++.类似于常数项级数,把函数项级数1()n n u x ∞=∑的前n 项的部分和记为()n s x ,则在收敛域内有lim ()()n n s x s x →∞=.把()()()n n r x s x s x =-仍然称为函数项级数的余项. 当然,只有在收敛域上()n r x 才有意义.于是当1()n n u x ∞=∑收敛时,有lim ()0n n r x →∞=.●●例1 级数12111n n n x x x x ∞--==+++++∑是定义在(,)-∞+∞上的函数项级数.它的前n 项和为()n s x =21111n n x x x xx --++++=-当||1x <时,该级数收敛,其和函数为11x-,且有21111n x x x x-=+++++- (2) 而当||1x ≥时该级数发散.该级数的收敛域为(1,1)-,而其发散域为(,1][1,)-∞-+∞.395二、幂级数及其收敛性在函数项级数中,简单且常见的一类级数就是幂级数.它的表达形式是2012n n a a x a x a x +++++, (3) 或2010200()()()n n a a x x a x x a x x +-+-++-+(4)其中,012,,,,,n a a a a 叫做幂级数的系数.由于在函数项级数00()n n n a x x ∞=-∑中,如果作变换0y x x =-,则级数(4)就变成级数0n n n a y ∞=∑,因此由级数(3)的性质可以推得级数(4)的性质,所以这里我们主要讨论幂级数(3).由例1 知道,幂级数0n n x ∞=∑的收敛域为(1, 1-),发散域为(,1][1,)-∞-+∞.对于一般的幂级数(3),显然至少有一个收敛点0x =,除此之外,它还有哪些收敛点,怎样得到像例1那样的收敛域呢?对此,下面的阿贝尔(Abel )定理给出了明确的回答.(阿贝尔定理) 如果幂级数0n n n a x ∞=∑在0x x =(00x ≠)处收敛,则对于满足0||||x x <的一切x ,幂级数0nn n a x ∞=∑绝对收敛;反之,如果幂级数0n n n a x ∞=∑在0x x =0(0)x ≠处发散,则对于满足0||||x x >的一切x ,幂级数0n n n a x ∞=∑发散.证 设0x 是幂级数(3)的收敛点,即级数2010200nn a a x a x a x +++++收敛.根据级数收敛的必要条件,有0lim 0nn n a x →∞=.于是,存在一个正数M ,使得nn a x ≤M (0,1,2,3,n =).从而有0000nnn n nn n n n x x a x a x a x x x =⋅=≤0nx M x . 因为当0x x <时,等比级数00nn xM x ∞=∑收敛(公比01x x <),所以级数0n n n a x ∞=∑收敛,故级数0nn n a x∞=∑绝对收敛.定理的第二部分可以用反证法证明.如果幂级数0n n n a x ∞=∑当0x x =(00x ≠)时发散,如果有一点1x 适合10||||x x >,10nn n a x ∞=∑收敛,则根据该定理的第一部分的证明可知,级数0nn n a x ∞=∑收敛,这与假设矛盾,定理得证.定理1说明,如果幂级数(3)在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数(3)都收敛;如果幂级数(3)在0x x =处发散,则对于闭区间00[||,||]x x -以外的任何x ,幂级数都发散.由此可知,如果幂级数(3)既有非零的收敛点,又有发散点,则收敛396 点和发散点不可能交错地落在同一区间内,也就是一定存在收敛区间和发散区间的分界点x R =与x R =-(0R >)使得当||x R <时,幂级数(3)绝对收敛;当||x R >时,幂级数(3)发散;当x R =与x R =-时,幂级数(3)可能收敛也可能发散.通常称正数R 为幂级数(3)的收敛半径;开区间(,)R R -称为幂级数(3)的收敛区间. 由幂级数(3)在x R =±处的收敛性可以决定它的收敛域,其收敛域是(,)R R -,[,)R R -(,]R R -,或[,]R R -中之一.如果幂级数(3)只在0x =处收敛,则规定其收敛半径为0R =;如果幂级数(3)对一切x 都收敛,则规定其收敛半径为R =+∞,此时的收敛域为(,-∞+∞).收敛半径的求法由下面的定理给出.设n a 与1n a +是幂级数0n n n a x ∞=∑的相邻两项的系数,且1limn n na a ρ+→∞=.如果 (1)0ρ≠,则1R ρ=;(2)0ρ=,则R =+∞;(3)ρ=+∞,则0R =.证 记nn n u a x =,则1lim n n n u u +→∞=111lim lim ||n n n n n n n na x a x a a x +++→∞→∞=||x ρ=.由比值审敛法知: (1) 当||1x ρ<,即1||x ρ<时,级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛;当||1x ρ>即1||x ρ>时,级数0n n n a x ∞=∑发散,因此收敛半径1R ρ=.(2)如果0ρ=,则对任何0x ≠,有||01x ρ=<,所以级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛,于是收敛半径R =+∞.(3)如果ρ=+∞,则对于除0x =以外的任何x ,有||1x ρ>,所以对任何0x ≠,幂级数(3)发散,即收敛半径0R =.●●例2 求幂级数231(1)23nn x x x x n +-+++-+的收敛半径、收敛区间和收敛域.解 根据定理2有1lim n n na a ρ+→∞==11lim 11n n n→∞+=,所以收敛半径11R ρ==.所给级数的收敛区间为(1,1)-.对于端点1x =,所给幂级数成为交错级数11111(1)23n n +-+-+-+,该级数收敛. 对于端点1x =-,所给幂级数成为111123n------,该级数发散.故所给级数的收敛域为(1,1]-.●●例3求幂级数212nn n x ∞=∑的收敛域.解 本题为缺项幂级数,由于幂级数相邻两项的系数有零,不能直接求收敛半径.可以397利用比值审敛法来处理,考虑幂级数211||2n n n x ∞=∑,因为2212221||112lim lim 122||2n n n n n n x x x x ++→∞→∞==,当2112x <,即||x <时,级数211||2n n n x ∞=∑收敛; 当2112x >,即||x >,级数211||2n n n x ∞=∑发散;收敛半径R =,收敛区间为(;当x =2111(12nn n n ∞∞===∑∑发散,所以幂级数212n n n x ∞=∑的收敛域为(.●●例4 求幂级数12112n n n x ∞--=∑的收敛半径.解 与标准幂级数(3)比较,级数缺少偶次幂项.因此定理2不能直接应用,但可用比值审敛法来求收敛半径.因1lim n n n u u +→∞=2121212lim 22n n n n n x x x +--→∞=.当221x <,即||x <时,级数收敛;当221x >,即||x >R =●●例5求幂级数n n ∞=的收敛域.解 令1t x =-,则1)n nn n x ∞∞==-=.因为1lim ||1n n n n a a +→∞==,所以收敛半径11R ρ==,收敛区间为(1,1)-.当1t =-时,1)nnn n ∞∞===-收敛;当1t =时,nn n ∞∞===所以n n ∞=的收敛域为[1,1)-,即11t -≤<,把1t x =-代入,得02x ≤<,故幂级数nn ∞=[0,2).三、幂级数的运算如果幂级数2012n n a a x a x a x +++++()s x = 的收敛半径为1R ,而幂级数2012n n b b x b x b x +++++()x σ=的收敛半径为2R ,则(1)幂级数的加法和减法:()nnn nnnn n n n a x b x ab x ∞∞∞===+=+∑∑∑()()s x x σ=+;398 0()nnn nnnn n n n a x b x ab x ∞∞∞===-=-∑∑∑()()s x x σ=-.收敛半径为12min{,}R R R =.(2)幂级数乘法:n nnnn n a x b x∞∞==⋅∑∑000110()a b a b a b x =++2021120()a b a b a b x ++++0110()n n n n a b a b a b x -+++++()()s x x σ=⋅.收敛半径为12min{,}R R R =.(3)幂级数除法:220120122012n n n n n n a a x a x a x c c x c x c x b b x b x b x +++++=++++++++++.这里假设00b ≠, 将0nn n b x ∞=∑与0nn n c x ∞=∑相乘,所得多项式的系数分别等于0n n n a x ∞=∑中同次幂的系数,从而可求出012,,,,,n c c c c . 相除后所得幂级数0n n n c x ∞=∑的收敛区间可能比原来的两级数0nn n a x ∞=∑与0n n n b x ∞=∑的收敛区间小得多.关于幂级数的和函数,有下面的重要性质:如果幂级数0nn n a x ∞=∑收敛半径为R (0R >),和函数为()s x ,即()s x 0n n n a x ∞==∑,则有(1)()s x 在收敛区间(,)R R -内连续,且如果级数0n n n a x ∞=∑在收敛区间的端点x R =(或x R =-)也收敛,则和函数()s x 在x R =处左连续(或在x R =-处右连续). (2)()s x 在收敛区间(,R R -)内可导,并且有逐项求导公式()()n n n s x a x ∞=''=∑0()n n n a x ∞='=∑11n n n na x ∞-==∑.逐项求导后所得到的新级数收敛半径仍为R .(3)()s x 在收敛区间(,R R -)内可积,并且有逐项积分公式1()d ()d d 1xxxnnn n n n n n n a s t t a t t a t t x n ∞∞∞+======+∑∑∑⎰⎰⎰. 逐项积分后所得到的新级数收敛半径仍为R .●●例6 求幂级数011nn x n ∞=+∑的收敛域及其和函数. 解 因为1limn n n a a ρ+→∞==1lim 12n n n →∞+=+,故所给级数的收敛半径11R ρ==,收敛区间为(1, 1)-.当1x =时,原级数成为011n n ∞=+∑,发散;当1x =-时,原级数成为0(1)1nn n ∞=-+∑,是交错级399数,收敛;因此原级数的收敛域为[1,1)-.设所求级数的和函数为()s x ,即() [1,1)1nn x s x x n ∞==∈-+∑,给上面的等式两端乘以x ,得1()1n n x xs x n +∞==+∑.等式两边求导,得11000[()]()()11n n n n n n x x xs x x n n ++∞∞∞==='''===++∑∑∑1 (||).<11x x =-对上式两端从0到x 积分,得0d ()ln(1)1x txs x x t ==---⎰ (||1)x <.故当0x ≠且[1,1)x ∈-时,1()ln(1)s x x x =--,当0x =时,由2() 1123n n x x x s x n ∞===++++∑,得(0)1s =.因此[)1ln(1), 1,0(0,1),()1, =0.x x s x x x ⎧--∈-⎪=⎨⎪⎩●●例7 求幂级数210(1)21n n n x n +∞=-+∑的和函数,并求01(1)21n n n ∞=-+∑的和.解 级数的收敛半径为1,收敛域为[1,1]-. 设级数的和函数为()s x ,即()s x 21(1)21n nn x n +∞==-+∑, 逐项求导,得()s x '210(1)()21n nn x n +∞='=-+∑20(1)n nn x ∞==-∑20()n n x ∞==-=∑211x +. 对上式从0到x 积分,得2001()d d arctan .1xxs t t t x t '==+⎰⎰即所求和函数为()(0)arctan ,s x s x -=又因为(0)0,s =所以()arctan ,[1,1].s x x x =∈-在原级数中,令1x =,得0(1)21n n n ∞=-+∑arctan1=4π=.习 题 10-31.求下列幂级数的收敛域:(1)2323x x x +++; (2)2342221234x x x x -+-+-;(3)23224246x x x +++⋅⋅⋅; (4)2323222222112131x x x ++++++;(5)23423421!22!23!24!x x x x ++++⋅⋅⋅⋅; (6)23423413233343x x x x ++++⋅⋅⋅⋅;400 (7)2111(1)(21)!n n n x n -∞+=--∑; (8)11(1)(1)n n n x n ∞-=--∑; (9)221212n n n n x ∞-=-∑; (10)nn ∞=.2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数: (1)231234x x x ++++; (2)111(1)n n n nx ∞--=-∑;(3)41141n n x n +∞=+∑;(4)3535x x x +++,并求11(21)2nn n ∞=-∑的和. 第四节 函数展开成幂级数一、泰勒级数第三节讨论了幂级数的收敛域及其和函数的性质,由此可知,一个幂级数()nnn a x x ∞=-∑在它的收敛域内收敛于和函数()s x ,即()s x 00()n n n a x x ∞==-∑.但是,在许多应用中,我们需要解决的是与此相反的问题,也就是对于给定的函数()f x ,它是否可以在某个区间上展开成为幂级数?即是否可以找到一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()f x ,如果可以的话,如何来确定这个幂级数.下面我们就来讨论这个问题.由第三章第二节的泰勒公式可知,如果函数()f x 在点0x 的某个邻域内具有直到(1)n +阶连续导数,则在该邻域内()f x 的n 阶泰勒公式为()f x =200000()()()()()2!f x f x f x x x x x '''+-+-+()00()()()!n n n f x x x R x n +-+ (1) 其中()n R x =(1)10()()(1)!n n f x x n ξ++-+ (ξ介于0x 与x 之间)为拉格朗日型余项. 这时在该邻域内()f x 可用n 次多项式()n P x =200000()()()()()2!f x f x f x x x x x '''+-+- ()00()()!n n f x x x n ++- (2) 来近似地表示,其误差等于余项的绝对值()n R x .如果()n R x 随着n 的增大而减小,那么我们就可以用增加多项式的项数的办法来提高精确度.如果()f x 在点0x 的某邻域内具有任意阶导数()f x ',()f x '',(),(),n f x ,则可以设想多项式(2)的项数趋向无穷而成为幂级数200000()()()()()2!f x f x f x x x x x '''+-+-++()00()()!n n f x x x n -+⋅⋅⋅ (3) 幂级数(3)称为函数()f x 在0x 处的泰勒级数.显然,当0x x =时,该级数收敛于0()f x ,但除了0x x =外,该级数是否还收敛?如果收敛的话,是否收敛于()f x ?关于这些问题,下。