北师大版认识一元二次方程
- 格式:ppt
- 大小:690.00 KB
- 文档页数:21
学科讲义·初三数学 上数学课时,必须全神贯注,心无旁骛,专心听讲,一旦走神,就再也融不进数学老师的世界里了1 第二章 一元二次方程第一节 认识一元二次方程学习目标 1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.能够利用一元二次方程的定义求字母的值;用一元二次方程的根求代数式的值。
3.体会方程的模型思想。
(难点)知识点1: 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2. 同时还要注意在判断时,需将方程化成一般形式。
知识点2: 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注意:(1)将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.(3)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(4)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
知识点解析学科讲义·初三数学 数学老师以4G 的速度讲课,学霸以WiFi 的速度听着,学神以3G 的速度记着,而学渣当场掉线,And you? 2 (5)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
知识点3:一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.体会方程的模型思想.阅读教材P31~32,完成下列问题:(一)知识探究1.只含有________个未知数,并且都可以化成ax2+bx+c=0(a,b,c为常数,a________)的形式的________方程,这样的方程叫做一元二次方程.2.我们把____________(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中________,________,________分别为二次项、一次项和常数项,________,________分别称为二次项系数和一次项系数.(二)自学反馈1.下列方程中,是一元二次方程的是( )A.x-y2=1 B.x2-1=0C.1x2-1=0 D.x22-x-13=02.将方程(2x+1)x=(3x-2)x+2化简整理写成一般形式后,其中a、b、c分别是( ) A.2-3,1, 2 B.2-3,1,- 2C.3-2,-3, 2D.3-2,1, 2活动1 小组讨论例1判断下列方程是否为一元二次方程:(1)1-x2=0;(2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.判断一个方程是不是一元二次方程,首先需要将方程化简,使方程的右边为0,然后观察其是否具备以下三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.三个条件缺一不可.例2将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:方程(8-2x)(5-2x)=18化成一元二次方程的一般形式是2x2-13x+11=0,其中的二次项系数、一次项系数及常数项分别是2,-13,11.(1)将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx,则b=0;若没有出现常数项,则c=0.活动2 跟踪训练1.下列方程哪些是一元二次方程?(1)7x 2-6x =0;(2)2x 2-5xy +6y =0; (3)2x 2-13x -1=0;(4)y22=0;(5)x 2+2x -3=1+x 2.2.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x 2-1=4x; (2)4x 2=81;(3)4x(x +2)=25; (4)(3x -2)(x +1)=8x -3.3.已知方程(a -4)x 2-(2a -1)x -a -1=0. (1)a 取何值时,方程为一元二次方程? (2)a 取何值时,方程为一元一次方程?4.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x. 活动3 课堂小结1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式是ax 2+bx +c =0(a ≠0),特别强调a ≠0.【预习导学】 (一)知识探究1.一 ≠0 整式 2.ax 2+bx +c =0 ax 2bx c a b (二)自学反馈 1.D 2.C 【合作探究】 活动2 跟踪训练1.(1)、(4)是一元二次方程.2.(1)5x 2-4x -1=0,二次项系数、一次项系数及常数项分别是5,-4,-1.(2)4x 2-81=0,二次项系数、一次项系数及常数项分别是4,0,-81.(3)4x 2+8x -25=0,二次项系数、一次项系数及常数项分别是4,8,-25.(4)3x 2-7x +1=0,二次项系数、一次项系数及常数项分别是3,-7,1.3.(1)当a -4≠0即a ≠4时,方程为一元二次方程.(2)a -4=0,且2a -1≠0时,原方程为一元一次方程.即a =4时,原方程为一元一次方程.4.(1)根据题意,得4x 2=25,将其化成一元二次方程的一般形式是4x 2-25=0.(2)根据题意,得x(x -2)=100,将其化成一元二次方程的一般形式是x 2-2x -100=0.(3)根据题意,得x =(1-x)2,将其化成一元二次方程的一般形式是x 2-3x +1=0.第2课时 一元二次方程的解1.经历估计一元二次方程解的过程,增进对方程解的认识.2.能根据实际问题建立一元二次方程的数学模型.(难点)阅读教材P33~34,完成下列问题:(一)知识探究1.能使一元二次方程左、右两边都________的未知数的值,叫做一元二次方程的解.2.估计一元二次方程的解,应先确定方程解的大致范围,然后在这一范围内有规律地取一些未知数的值,如果把一个值代入方程使得左边的计算结果________右边的计算结果,把另一个值代入方程使得左边的计算结果________右边的计算结果,那么方程的解就在这两个值________.(二)自学反馈幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?活动1 小组讨论例如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?(1)如果设梯子底端滑动x m,那么你能列出怎样的方程?解:根据题意,得72+(x+6)2=102,即x2+12x-15=0.(2)x 0 0.5 1 1.5 2 …x2+12x-15 -15 -8.75 -2 5.25 13 …(3)x … 1.1 1.2 1.3 1.4 …x2+12x-15 …-0.59 0.84 2.29 3.76 …活动2 跟踪训练1.根据下列表格的对应值可知,方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解x的范围是( )x 3.23 3.24 3.25 3.26ax2+bx+c -0.06 -0.02 0.03 0.09A.3<x<3.23 B.3.23<x<3.24C.3.24<x<3.25 D.3.25<x<3.262.根据关于x的一元二次方程x2+px+q=0,可列表如下:x 0 0.5 1 1.1 1.2 1.3x2+px+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+px+q=0的正数解满足( )A.解的整数部分是0,十分位是5B.解的整数部分是0,十分位是8C.解的整数部分是1,十分位是1D.解的整数部分是1,十分位是23.为估算方程x2-2x-8=0的解,填写下表,由此可判断方程x2-2x-8=0的解为________.x -2 -1 0 1 2 3 4x2-2x-8 0 -5 -8 -9 -8 -5 04.某大学为改善校园环境,计划在一块长80 m,宽60 m的长方形场地建一个长方形网球场,网球场占地面积为3 500 m2.四周为宽度相等的人行走道,如图所示,若设人行走道宽为x m.(1)你能列出相应的方程吗?(2)x可能小于0吗?说说你的理由.(3)x可能大于40吗?可能大于30吗?说说你的理由.(4)你知道人行走道的宽是多少吗?说说你的求解过程.活动3 课堂小结1.一元二次方程的解(根)的概念.2.用估算方法求一元二次方程的近似解的步骤:(1)先确定大致范围;(2)再取值计算,逐步逼近.【预习导学】(一)知识探究1.相等 2.小于大于之间(二)自学反馈x 0 0.5 1 1.5 2 2.5(8-2x)(5-2x) 40 28 18 10 4 0故可知所求的宽为1 m.【合作探究】活动2跟踪训练1.C 2.C 3.-2和44.(1)(80-2x)(60-2x)=3 500,即x2-70x+325=0.(2)x的值不可能小于0,因为人行走道的宽度不可能为负数.(3)x的值不可能大于40,也不可能大于30,因为当x>30时,网球场的宽60-2x<0,这是不符合实际的,当然x更不可能大于40.(4)人行走道的宽为5 m,求解过程如下:x 2 3 4 5 6 7 …x2-70x+325 189 124 61 0 -59 -116 …显然,当x=5时,x-70x+325=0,∴人行走道的宽为5 m.。
《认识一元二次方程》◆教材分析学生的知识技能基础:学生在七年级上学期学习的一元一次方程中,已经学习过方程的解的概念,此后又分别在二元一次方程组、可化为一元一次方程的分式方程中多次学习了关于方程(或方程组)的求解的过程。
因此对本章中的“使一元二次方程的左右两边的值相等的未知数的值即为该一元二次方程的解”的概念不难理解;学生活动经验基础:在相关知识的学习过程中,学生已经初步感受到了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题。
同时通过上一节课的学习,学生发现,一元二次方程在生活中也有着广泛的应用,而列方程、解方程和应用方程是一体的。
在学生已有的估算能力的基础上,引导学生在具体的问题情境中,经历估计近似解的过程,寻找方程的解。
同时,在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
◆教学目标【知识与能力目标】让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想。
【过程与方法目标】1、结合上一节课的实际问题中所建立的一元二次方程模型,激发学生求解的意识。
2、经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力。
【情感态度价值观目标】进一步提高学生分析问题的能力,培养学生大胆尝试的精神,在尝试的过程中体验到学习数学的乐趣,培养学生的合作学习意识,学会在合作学习中相互交流。
◆教学重难点◆【教学重点】探索满足一元二次方程解或近似解的过程。
【教学难点】由具体问题抽象出方程的过程。
◆课前准备◆课件。
◆教学过程一、情境导入思考:1、你能为一个矩形花园提供多种设计方案吗?2、你能根据商品的销售利润作出一定决策吗?得出新知:与一次方程和分式方程一样,一元二次方程也是刻画现实的有效数学模型这就是这节课要学习的内容。
二、合作探究给出例子:例1:一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m²,则花边多宽?先让同学们自行思考或者相互讨论,应该怎样解决这个问题呢?老师一步步给出解答,在解答中适当设置填空,考察同学们的能力。
第二章一元二次方程2.1 认识一元二次方程(一)课题 2.1 认识一元二次方程课型新授课教学目标1.要求学生会根据具体问题列出一元二次方程。
通过“未铺地毯区域有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力。
2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力。
教学重点一元二次方程的概念教学难点如何把实际问题转化为数学方程学情分析本课通过丰富的实例:未铺地毯区域有多宽、梯子的底端滑动多少米,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想。
学生在以前的学习中已经了解了方程的概念,但对于一元二次方程没有深入的理解。
通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型。
教学后记教学内容及过程教师活动学生活动一、通过实例引入新课1.在开始新的一个单元的时候,要向学生讲清楚本单元的主要内容和总体目标,这样可以让学生对本单元的内容做到整体把握和概览。
2.进人本单元的第一节:认识一元二次方程? 板书课题,明确本节课的中心任务。
3.播放“未铺地毯区域有多宽”的课件,说明题目的条件和要求,课件要求制作得精美并且可以清楚得显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示出题目中的各个量?5.让学生回答他们的答案是什么,给予点评,让学生核对答案,可以以学生举手示意的方式掌握全班的情况。
6.继续进行下二个问题:板书P31的等式,提出问题:你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?8.让学生说出自己的答案,点评,其他学1.认真听讲,对本单元(一元二次方程) 有了一个较好的总体认识,为新的内容的学习作好准备。
2.进入良好的学习状态,在教师的引导下顺利进入到新课的学习中,新颖的标题也引起了学生的兴趣;3.很有兴趣地观看课件,对“未铺地毯区域有多宽”的问题产生了很强的探究的欲望,但大部分学生不知道如何找到解决问题的方法,新的任务与原来的认知结构发生冲突。