美国国家可再生能源实验室 2015电池效率图
- 格式:pdf
- 大小:841.62 KB
- 文档页数:1
铜铟镓硒(CIGS)薄膜太阳能电池技术综述一、薄膜太阳电池概术铜铟镓硒(CIGS)薄膜太阳能电池由于效率高、无衰退、抗辐射、寿命长、成本低廉等特点,是备受人们关注的一种新型光伏电池产品,经过近30年的研究和发展,其光电转化效率为所有已知薄膜太阳能电池中最高的。
而且其光谱响应范围宽,在阴雨天条件下输出功率高于其他任何种类太阳电池,因而成为最有前途的光伏器件之一。
铜铟镓硒CuInSe2(简称CIS)薄膜材料是属于Ⅰ-Ⅲ-Ⅵ2族化合物直接带隙半导体,光吸收系数达到105量级,薄膜厚度约为1-2μm就能吸收太阳光,其禁带宽度为1.02eV。
通过掺入适量的Ga元素以代替部分的In,成为CuInSe2与CuGaSe2(简称CGS)的固溶半导体CuIn1-xGaxSe2(简称CIGS)。
CIGS电池在制作过程中,通过控制不同的Ga掺入量,其禁带宽度可在1.02-1.67eV范围内调整,这就为太阳能电池的带隙优化提供了很好的途径。
二、国内外研究现状(一)国外研究进展CIGS薄膜太阳电池材料与器件的实验室技术在发达国家趋于成熟,大面积电池组件和量产化开发是CIGS电池目前发展的总体趋势,而柔性电池和无镉电池是近几年的研究热点。
美国国家可再生能源实验室(NREL)在玻璃衬底上利用共蒸发三步工艺制备出最高效率达19.9%的电池。
这种柔性衬底CIGS太阳电池在军事上很有应用前景。
近期,CIGS小面积电池效率又创造了新的记录,达到了20.1%,与主流产品多晶硅电池效率相差无几。
美国NREL和日本松下电器公司在不锈钢衬底上制备的CIGS电池效率均超过17.5%;瑞士联邦材料科学与技术实验室(Empa)的科学家AyodhyaN.Tiwari领导的小组经过多年努力,完善了之前开发的柔性不锈钢衬底太阳能电池,实现了18.7%的效率。
由美国能源部国家光伏中心与日本“新能源和工业技术开发机构(NEDO)”联合研制的无镉CIGS电池效率达到18.6%。
LBNL-56609 对中国能源战略对策的评论美国劳伦斯·伯克利国家实验室乔纳森E.辛顿(Jonathan E. Sinton)雷切尔 E. 斯特恩(Rachel E. Stern)纳撒尼尔y亚丁(Nathaniel Aden)马克 D. 列文(Mark D. Levine)以及泰勒 J. 蒂拉欧大卫G. 弗雷德雷黄昱乔安娜 I. 刘易斯林江埃米 T. 麦凯恩林 K. 柏莱斯怀瑞恩周南美国可再生能源国家实验室吉恩Y. 库2005年5月16日本文得到中国可持续能源项目资助Evaluation of China’s Energy Strategy OptionsJonathan E. SintonRachel E. SternNathaniel AdenMark D. LevinewithTyler J. Dillavou David G. FridleyJoe Huang Joanna I. LewisJiang Lin Aimee T. McKaneLynn K. Price Ryan H. WiserNan ZhouLawrence Berkeley National LaboratoryandJean Y. KuNational Renewable Energy Laboratory16 May 2005Prepared for and with the support of the China Sustainable Energy Program本研究得到能源基金会、大卫与露茜尔·派克德基金会和威廉·弗洛拉和休利特基金会合盟的中国可持续能源项目、以及壳牌基金会可持续能源项目的大力支持。
劳伦斯·伯克利国家实验室也同时得到美国能源部能源效率及可再生能源助理部长的支持[合同号:DE-AC03-76SF00098]。
免责声明:美国政府、加州大学及其雇员均不对本报告所提供信息的准确性、完整性和有用性做出任何保证(包括适用于特定目的的保证),也不为此承担任何法律义务或责任。
美国国家能源部可再生能源实验室(NREL)联系方式:网址:/contacts/电话:303-275-4090 (Public Affairs)Golden, Colorado Laboratories and Offices(科罗拉多州)National Renewable Energy Laboratory1617 Cole Blvd.Golden, CO 80401-3305电话:303-275-3000Washington, D.C. Office(华盛顿特区)National Renewable Energy Laboratory901 D. Street, S.W. Suite 930Washington, D.C. 20024-2157电话:202-488-2200简介:The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D).NREL's mission and strategy are focused on advancing the U.S. Department of Energy's and our nation's energy goals. The laboratory's scientists and researchers support critical market objectives to accelerate research from scientific innovations to market-viable alternative energy solutions. At the core of this strategic direction are NREL's research and technology development competencies. These areas span from understanding renewable resources for energy, to the conversion of these resources to renewable electricity and fuels, and ultimately to the use of renewable electricity and fuels in homes, commercial buildings, and vehicles. The laboratory thereby directly contributes to our nation's goal for finding new renewable ways to power our homes, businesses, and cars.美国国家可再生能源实验室是美国可再生能源和能源效率研究和发展的重点实验室。
系统效率分析运行期光伏电站的生产工艺流程为:通过太阳辐照,经直流发电单元(将太阳能转化成直流电能,再经逆变产生交流电),出口电压为AC0.5/0.52kV,再经35kV升压箱变,将电压升至35kV后,由35kV集电线路汇集至电站35kV汇集站,再经110kV汇集站,电压升至110kV 后,然后输送至220kV升压站,经220kV主变压器二次升压后,通过220kV架空线路送入系统电网。
其发电工艺流程如下:(8)变压器损耗(9)系统故障及维护损耗结合XX项目实施的实际情况,参考《XX光伏发电项目招商文件》中评分标准的要求,技术方案中系统能力先进性(5分),81%得1分,系统效率最高值得5分;因此系统效率即使是重要的招商得分项,同时该参数又直接影响发电量和效益测评即投标申报电价,为科学合理的控制和了解本项目地的系统效率水平,使其尽可能向可操作、可实现的最高效率努力,系统效率基本取值分析如下:(1)不可利用的太阳辐射损耗根据项目地的地理位置、气候气象和太阳辐射数据当地的气象和太阳辐射特点,结合的阵本次对灰尘、植被等遮挡损耗取值为2.20%。
(3)温度影响损耗光伏组件工作温度可以由以下计算公式:Tc=(Ta+(219+832Kt)×(NOTC-20))/800NOCT=45°C,Kt晴朗指数0.7,Tc为光伏组件温度,Ta为环境温度?t=(Tc-25)×ɑ ,ɑ为光伏组件的温度功率衰减因子;结合农业种养殖的模式和当地气候、气温条件,根据光伏组件的温度效率系数≥-0.39%/℃的技术指标要求,利用收集到的典型月辐照度和温度数据,采用上述公式结合光伏组件的串并联等方案,进行不同辐射量和温度下的分析计算后,本次由温度引起的发(6)直流、交流线路损耗交直流损耗计算:交流线路有功功率损失:?P=3I2R直流线路有功功率损失:?P=I2R结合上述计算分析,本次对直流电缆损耗取值为2.0%,交流线路损耗取值为1.0%。
多结太阳电池用键合技术张无迪;王赫;刘丽蕊;孙强;肖志斌【摘要】介绍了使用键合技术制备高效多结太阳电池的方法,即在不同材料衬底依次外延生长晶格匹配子电池,再通过键合技术将二者集成至一起.着重介绍了多种实现子电池集成的键合技术,并分析了其技术特点.%Fabrication method of high-efficiency multi-junction solar cells applying wafer bonding technology was ttice-matched sub-cells were grown on different material substrate by epitaxy,then the tandem sub-cells were combined through wafer bonding technology.Several different wafers bonding technology for realization of sub-cells combination were emphatically introduced,the characteristics of these technology was analyzed as well.【期刊名称】《电源技术》【年(卷),期】2017(041)009【总页数】4页(P1315-1318)【关键词】键合;多结太阳电池;晶格匹配【作者】张无迪;王赫;刘丽蕊;孙强;肖志斌【作者单位】中国电子科技集团公司第十八研究所,天津300384;中国电子科技集团公司第十八研究所,天津300384;中国电子科技集团公司第十八研究所,天津300384;中国电子科技集团公司第十八研究所,天津300384;中国电子科技集团公司第十八研究所,天津300384【正文语种】中文【中图分类】TM914Abstract:Fabrication method of high-efficiency multi-junction solar cells applying wafer bonding technology was ttice-matched sub-cells were grown on different material substrate by epitaxy,then the tandem sub-cells were combined through wafer bondingtechnology.Several different wafers bonding technology for realization of sub-cells combination were emphatically introduced,the characteristics of these technology was analyzed as well.Key words:wafer bonding;multi-junction solar cells;lattice-matched晶片键合(Wafer bonding)技术是将不同材料的晶片结合在一起,用以生产半导体新型器件和微型原件的技术。