中国剩余定理及应用
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
中国剩余定理(模板+详解)问题:今有物不知其数,三三数之剩⼆,五五数之剩三,七七数之剩⼆。
问物⼏何?简单点说就是,存在⼀个数x,除以3余2,除以5余三,除以7余⼆,然后求这个数。
上⾯给出了解法。
再明⽩这个解法的原理之前,需要先知道⼀下两个定理。
定理1:⼏个数相加,如果存在⼀个加数,不能被整数a整除,那么它们的和,就不能被整数a整除。
定理2:两数不能整除,若除数扩⼤(或缩⼩)了⼏倍,⽽被除数不变,则其商和余数也同时扩⼤(或缩⼩)相同的倍数(余数必⼩于除数)。
以上两个定理随便个例⼦即可证明!现给出求解该问题的具体步骤:1、求出最⼩公倍数lcm=3*5*7=1052、求各个数所对应的基础数(1)105÷3=3535÷3=11......2 //基础数35(2)105÷5=2121÷5=4 (1)定理2把1扩⼤3倍得到3,那么被除数也扩⼤3倍,得到21*3=63//基础数633、105÷7=1515÷7=2 (1)定理2把1扩⼤2倍得到2,那么被除数也扩⼤2倍,得到15*2=30//基础数30把得到的基础数加和(注意:基础数不⼀定就是正数)35+63+30=1284、减去最⼩公倍数lcm(在⽐最⼩公倍数⼤的情况下)x=128-105=23那么满⾜题意得最⼩的数就是23了。
⼀共有四个步骤。
下⾯详细解释每⼀步的原因。
(1)最⼩公倍数就不解释了,跳过(记住,这⾥讨论的都是两两互质的情况)(2)观察求每个数对应的基础数时候的步骤,⽐如第⼀个。
105÷3=35。
显然这个35是除了当前这个数不能整除以外都能够被其他数整除,就是其他数的最⼩公倍数。
相当于找到了最⼩的起始值,⽤它去除以3发现正好余2。
那么这个基础数就是35。
记住35的特征,可以整除其他数但是不能被3整除,并且余数是2。
体现的还不够明显,再看下5对应的基础数。
21是其他数的最⼩公倍数,但是不能被5整除,⽤21除以5得到的余数是1,⽽要求的数除以5应该是余1的。
中国剩余定理的实际应用:
有一个年级的同学,每9人一排多5人,每7人一排多1人, 每5人一排多2人,问这个年级至少有多少人?
求数学高手详细解答!剩余定理是什么意思?
5 和 9 的公倍数依次是 45、90、135、180、225 ……
这些公倍数中,被7除余1的数是 225
9 和 7 的公倍数依次是 63、126、189、252……
这其中,被5除余2的是 252
5 和 7 的公倍数是 35、70、105、140、……
其中被9除余5的数是 140
把以上 225 252 140 三个数相加,求得
225 + 252 + 140 = 617
5 7 9 三个数的最小公倍数是 5*7*9=315
617-315 = 302
因此 302 就是这个年级至少人数。
1.韩信点兵:有兵一队,若列成五行纵队,则末行一人,成六行纵队,则末行五人,成七行纵队,则末行四人,成十一行纵队,则末行十人.求兵数.
2.有一堆棋子,三个三个地数剩下2个,五个五个地数剩下4个,七个七个地数剩下6个.问这堆棋子最少有多少个?(用两种方法解)
3.某数除以7余3,除以8余4,除以9余5.从小到大求出适合条件的十个数.
4.某数除以5余2,除以7余4,除以11余8.求适合条件的最小数.
5.一猴子数一堆桃子.两个两个地数剩下1个,三个三个地数剩下1个,五个五个地数剩下3个,七个七个地数剩下3个.问这堆桃子最少是多少个?。
中国剩余定理内涵及其简单应用
中国剩余定理是数论中的一个重要定理,它提供了求解一类线性同余方程组的方法。
所谓线性同余方程组,是指一组形如x ≡ a1 (mod m1), x ≡ a2 (mod m2), …, x ≡ an (mod mn)的方程,其中x是未知数,a1, a2, …, an是已知数,而m1, m2, …, mn是不同的正整数。
中国剩余定理的内涵是:当所给线性同余方程组的模m1, m2, …, mn 两两互素时,存在唯一解x ≡ X (mod M),其中X是x的一个解,而M = m1 * m2 * … * mn。
简单来说,中国剩余定理告诉我们,当模数两两互素时,我们可以通过对每个方程求解,再通过一定的运算,得到原方程组的解。
中国剩余定理的应用非常广泛,特别是在密码学和计算机科学中。
例如,当我们需要对一个数进行加密和解密时,可以使用中国剩余定理来进行模运算,从而快速计算得到加密后的结果。
此外,在计算机科学中,中国剩余定理也常用于优化算法和并行计算。
由于中国剩余定理能够将一个大问题拆分成多个小问题并行求解,因此可以显著提高计算效率。
总之,中国剩余定理作为数论中的重要定理,不仅具有深刻的理论意义,还具有广泛的实际应用。
通过它,我们可以快速求解线性同余方程组,加密和解密数据,优化算法等,从而提高计算效率和保护数据安全。
中国剩余定理的历史价值和应用
中国剩余定理(Chinese Remainder Theorem,简称CRT)是古老的数学定理,来源于古印度人拉穆卡尼的《数书大全》,但最早由中国宋朝数学家董仲舒来提出。
CRT是一种快速求解模不互质整数方程组的方法,其历史价值和应用非常广泛。
中国剩余定理可以求解n阶不同进制的数的同余式。
由于CRT的效率高,因此,它在工业上有较多的应用,如计算机硬件中,解数论中的模运算问题时,通常都使用CRT法求解。
例如,在压缩视频时,经典加密算法RSA 就是使用CRT法进行加速计算的。
此外,CRT在许多领域中也有着广大应用,如在凸优化中有测试剩余定理的实验,在几何中的研究的有使用剩余定理的技巧,在模数几何学中也有CRT的计算和推导应用。
而且,CRT在高斯消元法、矩阵计算、主元计算中也有应用可以设计的有关计算的算法。
因此可见,中国剩余定理在古老中国宋朝就已经诞生,它的历史价值和应用十分广泛,它不仅在计算机软件、电子工程中有着重要的地位,而且在许多领域也得到了广大应用,是一种弥足珍贵的古老定理。
中国剩余定理的应用一、有余数除法的定理定理1:如果被除数加上(或减去)除数的整数倍,除数不变,则余数不变。
定理2:如果被除数扩大(或缩小)几倍,除数不变,则余数也扩大(或缩小)同样的倍数。
定理3:如果整数a除以自然数b(b≠0),余数r仍不小于b,则r除以b的余数等于a除以b所得余数。
二、例题例1 某数如果加上5就能被6整除,减去5就能被7整除,这个数最小是几?这样想:这个数除以6余几?除以7几?根据题意可知:某数除以6余1,除以7余5。
解:7÷6=……1, 7是满足6的条件。
6÷7=……6,余数6×2是满足7的条件。
所以7+6×2=19,19不大于6和7的最小公倍数,是要求的数。
例2 一个数除以5余3,除以7余1,求这个数最小是几?解:7÷5=……2(想2乘几除以5余3呢?2×4能满足这个条件,所以,7×4=28是满足这个条件的数)。
5÷7=……5(想5乘几除以7余1呢?5×3能满足这个条件,所以,5×3=15是满足这个条件的数)。
那么,28+15=43是满足除以5余3,除以7余1的条件。
但是,不是题目要求的“最小的”这个条件。
因为43大于5和7的最小公倍数,所以,必须从43里减去5 和7的最小公倍数,即:43-35=8,这个数是8 。
例3 某数除以5余2,除以6余3,求符合条件的最小数?这样想:这个数如果加上3就能同时被5和6整除(能同时被5和6整除的最小数应该是它们的最小公倍数),所以,满足这个条件的最小数应该是5和6的最小公倍数减去3的数。
5和6的最小公倍数:5×6=30,30-3=27。
答:27是符合条件的最小数。
例4 某数除以5余3,除以6也余3。
求符合条件的最小数是多少?这样想:这个数如果加上3就能同时被5和6整除,能同时被5和6整除的最小数应该是它们的最小公倍数,即30,所以题目要求的数为30+3=33。
浅谈“中国剩余定理”在小学数学学习中的运用中国剩余定理是数论中的一个重要定理,它在数学领域有着重要的应用价值。
而在小学数学学习中,中国剩余定理也可以通过一些简单的案例来引导学生理解和运用。
本文将从中国剩余定理的基本概念、小学数学中的应用以及学生学习中的启示三个方面来探讨中国剩余定理在小学数学学习中的运用。
一、中国剩余定理的基本概念中国剩余定理是由中国古代数学家孙子约公元7世纪所著的《孙子定理》中提出的,它是一个关于模的定理。
主要内容是:如果m1,m2,…,mn 是两两互质的正整数,a1,a2,…,an 是任意整数,那么模方程组x≡a1(mod m1)x≡a2(mod m2)⋯x≡an(mod mn)有唯一的解。
这就是中国剩余定理的基本内容。
一个简单的例子可以帮助我们了解中国剩余定理的基本概念:例:假设一条囚犯刑期是365天,他想用一个长度在35-45之间的鞭认了当前日子。
该如何完成。
解:这个问题可以看作是一个中国剩余定理的实际问题。
因为365=5*73 。
那么鞭的长度模5的余数必须是0。
因为365=8*45+25 ,所以鞭的长度模8的余数必须是5。
通过中国剩余定理可以知道,模45的余数是25的数只有70。
所以囚犯只需要找一个长度为70的鞭。
(这是一个简单的例子,通过它我们可以初步了解中国剩余定理的基本思想和原理。
)二、小学数学中的应用在小学数学学习中,我们可以通过一些简单的案例来引导学生理解和运用中国剩余定理。
可以引导学生用中国剩余定理解决一些有关时间、距离等实际问题。
这样做不仅可以使学生更加深入地理解中国剩余定理的概念和原理,还可以锻炼学生的数学建模能力和解决问题的能力。
一般来说,小学数学的教学案例其实很简单,可以通过直观的案例引导学生理解和运用中国剩余定理。
以时间问题为例,可以设计这样的案例:某人一次修行时间为3天,另一次修行时间为4天,他已经做了第一次修行,那么他接下来需要再修行多久才能修满一年呢?通过这样的案例,学生可以逐步了解并掌握中国剩余定理的基本方法和步骤。
“中国剩余定理”算理及其应用
“中国剩余定理”算理及其应用:
为什么这样解呢?因为70是5和7的公倍数,且除以3余1。
21是3和7的公倍数,且除以5余1。
15是3和5的公倍数,且除以7余1。
(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。
)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。
用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。
后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。
例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几?
题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;
使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,
因为,274>60,所以,274-60×4=34,就是所求的数。
例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?
题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;
使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;
然后,112×2+120×4+105×5=1229,
因为,1229>168,所以,1229-168×7=53,就是所求的数。
例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。
题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;
使55被8除余1,用55×7=385;
使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,
因为,2499>440,所以,2499-440×5=299,就是所求的数。
例4:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)
题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,
因为,1877>315,所以,1877-315×5=302,就是所求的数。
例5:有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)
题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;
使45被7除余1,用45×5=225;
使63被5除余1,用63×2=126。
然后,280×6+225×2+126×3=2508,
因为,2508>315,所以,2508-315×7=303,就是所求的数。
(例5与例4的除数相同,那么各个余数要乘的“数”也分别相同,所不同的就是最后两步。
)
关于“中国剩余定理”类型题目的另外解法
“中国剩余定理”解的题目其实就是“余数问题”,这种题目,也可以用倍数和余数的方法解决。
不懂论坛上有没人发过。
小学奥赛考试时学习过,也用过,现在把方法写出来,如果懂的也别笑我,呵呵。
选了一本小学奥赛的书上的题目,讲下:
例一,一个数被5除余2,被6除少2,被7除少3,这个数最小是多少?
解法:题目可以看成,被5除余2,被6除余4,被7除余4 。
看到那个“被6除余4,被7除余4”了么,有同余数的话,只要求出6和7的最小公倍数,再加上4,就是满足后面条件的数了,6X7+4=46。
下面一步试下46能不能满足第一个条件“一个数被5除余2”。
不行的话,只要再46加上6和7的最小公倍数42,一直加到能满足“一个数被5除余2”。
这步的原因是,42是6和7的最小公倍数,再怎么加都会满足
“被6除余4,被7除余4”的条件。
46+42=88
46+42+42=130
46+42+42+42=172
这是一种形式的,它的前提是条件中出现同余数的情况,如果遇到没有的,下面讲
例二,一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班有多少学生?
解法:题目可以看成,除3余2,除5余3,除7余4。
没有同余的情况,用的方法是“逐步约束法”,就是从“除7余4的数”中找出符合“除5余3的数”,就是再7上一直加4,直到所得的数除5余3。
得出数为18,下面只要在18上一直加7和5得最小公倍数35,直到满足“除3余2”
4+7=11
11+7=18
18+35=53
这种方法也可以解“中国剩余定理”解的题目。
比“中国剩余定理”更好理解,我觉的速度上会比那个繁琐的公式化的解题更快。
大家可以试下,。