废水中的氨氮如何去除
- 格式:docx
- 大小:12.82 KB
- 文档页数:1
氨氮废水常用处理方法氨氮废水是指废水中含有氨氮化合物的废水。
氨氮废水的处理是保护环境、减少对生活水源、地下水和环境的污染的重要过程。
以下是常用的氨氮废水处理方法。
一、化学法处理1. 氧化法氧化法是将含有氨氮化合物的废水中的氨氮氧化为硝酸盐,进而使得氨氮被转化为无害物质。
常用的氧化剂有氯和臭氧。
此外,还可以利用高锰酸钾氧化废水中的氨氮。
2. 硫酸铵沉淀法硫酸铵沉淀法是一种将氨氮转化为与之反应生成固体沉淀的方法。
该方法中,硫酸铵与废水中的氨氮发生反应,生成可溶性的硫酸铵、硫酸铁、硫酸铵铁等盐类沉淀,从而将氨氮从废水中去除。
二、生物法处理1. 厌氧处理法厌氧处理法是利用厌氧条件下的微生物,将有机废物和氨氮一起去除。
在厌氧生物反应器中,废水中的氨氮会被微生物利用作为能源和氮源,通过微生物代谢的产物来将氨氮去除掉。
2. 高效曝气活性污泥法高效曝气活性污泥法是一种通过生物氧化反应将氨氮去除的方法。
在高效曝气活性污泥法中,通过添加活性污泥,在适宜的温度和pH条件下,利用曝气设备对污水进行充分曝气,促使废水中的氨氮通过厌氧-好氧反应达到去除的目的。
三、物理法处理1. 吸附法吸附法是通过吸附剂表面的孔隙结构和化学性质,将废水中的氨氮物质吸附到吸附剂上,使氨氮物质从废水中转移到吸附剂上,并通过后续的处理将吸附剂中的氨氮去除。
2. 膜分离法膜分离法是利用半透膜将废水中的氨氮物质分离出来的方法。
通过调整操作条件,如压力差、温度等,使得废水中的氨氮物质能够透过半透膜,从而达到去除的目的。
四、辅助方法1. 灭活法灭活法是指通过添加酸、碱等化学物质,改变废水中的pH值,使得废水中的氨氮化合物发生离子化反应,从而改变其活性,达到去除氨氮的目的。
2. 稀释法稀释法是指通过将废水与其他水源进行混合,降低废水中氨氮的浓度,以达到减少氨氮的目的。
上述是常用的氨氮废水处理方法,具体选择何种方法应根据废水中氨氮浓度、处理效果要求和经济成本等多方面因素综合考虑。
根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。
物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
废水中有机氮和氨氮的处理方法有哪些废水中的有机氮和氨氮主要来自于生物分解或者化学反应产生的有机
物和氨化物。
对于废水中的有机氮和氨氮的处理方法有以下几种:
1.生物处理法:生物处理法是通过生物菌群的作用将废水中的有机氮
和氨氮转化为无机氮的一种方法。
常见的生物处理法包括活性污泥法、微
生物固定化、膜生物反应器等。
生物处理法具有处理效果好、适应性广、
运行成本低等优点。
2.化学处理法:化学处理法是通过加入化学药剂使废水中的有机氮和
氨氮发生化学反应转化为无机氮的一种方法。
常见的化学处理法包括化学
氧化、化学沉淀、离子交换等。
化学处理法可以快速去除废水中的有机物
和氨氮,但运行成本较高。
3.物理处理法:物理处理法是通过物理方法对废水中的有机氮和氨氮
进行分离和去除的一种方法。
常见的物理处理法包括吸附、超滤、反渗透等。
物理处理法操作简便,去除效果较好,但需要较高的技术和设备支持。
4.其他处理方法:除了以上三种常见的处理方法,还有一些其他的处
理方法可以用于有机氮和氨氮的去除。
例如,光催化氧化法利用紫外线或
者可见光激发光催化剂将废水中的有机氮和氨氮氧化为无机氮。
电化学处
理法则是利用电解等电化学反应将废水中的有机氮和氨氮转化为无机氮。
综上所述,废水中有机氮和氨氮的处理方法有生物处理法、化学处理法、物理处理法以及其他一些特殊的处理方法。
根据废水的具体情况和处
理要求,可以选择合适的处理方法进行废水的处理和净化。
1.气提法:这是大多数化肥厂采用的方法,实用。
一次性投资费用中等,处理费用合理。
2.吹脱法:将PH值调整到10.5-11左右,将氨从液相转移到气相,必须进行吸收,否则污染空气且污染物转移是不行的。
一次性投资高,操作工艺流程复杂,处理成本较高,能耗高。
3.蒸氨塔蒸发法;原理同气提法,投资费用较高,但处理效率更高,用于焦化废水处理较好。
4.MAP法:即是用磷酸根、镁盐与氨反应生成鸟粪石沉淀的化学反应,生成的鸟粪石可作为肥料,尤其用作花肥较好。
处理效果好,一次投资低,但处理成本较高。
5.折点加氯法:即氧化法,一次性投资费用较高,处理效果好,但处理成本高。
0氨氮(NH3-N)是水环境中氮的主要形态,可使水体富营养化,生成的亚硝胺则直接威胁着人类的健康,而且随着经济的发展和生活水平的提高,氨氮现己成为环境的主要污染指标之一。
因此,有效地控制氨氮己成为治理废水污染所而临的重大课题。
物理化学方法是废水中氨氮去除的主要方法之一。
它主要包括折点氯化法、化学沉淀法、离子交换法、空气吹脱与水蒸气气提法、液膜法、电化学法以及湿式催化氧化法等。
(1)折点氯化法。
折点氯化法是将氯气通人废水中,到达一定状态时水中游离氯含量最低,而氨的浓度降为零,该状态下的氯化称为折点氯化。
处理后的出水须除去水中残氯。
氧化1mg 氨氮约需要9~10mg氯气,影响因素是温度、pH 值及氨氮浓度。
折点氯化法适于处理低浓度氨氮废水,液氯的使用和贮存要求高,处理成本高。
(2)化学沉淀法。
化学沉淀法是将氨与化学沉淀剂(H3PO4 + MgO)反应生成沉淀物以去除废水中的氨氮。
向废水中投加MgCI2+6H2O和Na2HPO4+12H2O以去除氨氮。
结果表明,在pH值为 8.91,Mg2+∶NH4+PO43-的物质的量的比为1.25∶1∶1,反应温度为25℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氮浓度由9500mg/L降到460mg/L,去除率达95%以上。
污水去除氨氮的方法物化法1.吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2.沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理,此法适合于低浓度的氨氮废水处理,氨氮的含量应在10-20mg∕1.o3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.1..1.EChatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持"假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度Tl>20o C,PHl>9,Pl>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铁盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++P043-=MgNH4P04理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,⅛[Mg2+][NH4+][P043-]>2.5×10-13时可生成磷酸铁镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
给排水工艺中的去除氨氮总氮技术随着城市发展和人口增长,污水处理成为了一项关键的环保任务。
而其中,去除氨氮和总氮是污水处理过程中的重要指标之一。
本文将介绍几种常用的去除氨氮总氮技术,包括生物法、化学法和物理法。
一、生物法生物法是最常见的去除氨氮总氮的方法之一。
其原理是利用微生物将有机物和氨氮等有害物质转化为无害的固体物或气体。
常用的生物法包括活性污泥法、厌氧氨氧化法和硝化—反硝化法。
1. 活性污泥法活性污泥法利用污水中的微生物菌群,通过细菌的降解作用将氨氮和有机物质转化为沉淀物。
该方法适用于中小型污水处理厂,具有成本低、运行稳定等优点。
2. 厌氧氨氧化法厌氧氨氧化法是利用厌氧菌将氨氮氧化为亚硝酸盐。
该方法适用于高氨氮浓度的废水处理,能够大幅度减少氨氮的去除能耗。
3. 硝化—反硝化法硝化—反硝化法是将氨氮先氧化成硝酸盐,然后通过反硝化将硝酸盐还原为氮气排出。
该方法适用于氨氮浓度较低的废水处理,能够实现氮气的高效去除。
二、化学法化学法是采用化学品与氨氮或总氮发生反应,从而实现去除的方法。
常用的化学法包括硝化—硝化法和氨氮氧化法。
1. 硝化—硝化法硝化—硝化法是利用化学药剂将氨氮转化为亚硝酸盐或硝酸盐,再通过沉淀、吸附等方式进行去除。
该方法适用于废水中氨氮浓度较高的情况,但同时也会产生相应的化学废物。
2. 氨氮氧化法氨氮氧化法是利用高效氧化剂将氨氮氧化为无机氮。
该方法适用于氨氮含量较低的废水处理,但氧化剂的使用会增加运营成本。
三、物理法物理法主要是通过物理手段去除废水中的氨氮和总氮。
常用的物理法包括吸附法和膜分离法。
1. 吸附法吸附法是利用吸附剂吸附污水中的氨氮和总氮物质,从而实现去除。
常用的吸附剂有活性炭、树脂等。
该方法适用于小型污水处理系统,但吸附剂的再生和处理也需要额外考虑。
2. 膜分离法膜分离法是利用膜的筛选作用,通过渗透、过滤等方式将废水中的氨氮和总氮分离出来。
常见的膜分离方法有超滤法、反渗透法等。
废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。
生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。
下面我们详细介绍一下这几种水中氨氮的去除方法:一、生物硝化与反硝化(生物陈氮法)(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧;(2)硝化过程中释放出H+, 将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaC03十)。
影响硝化过程的主要因素有:(1)pH值当pH值为〜时(20 C ),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35C,在15 C以下其活性急剧降低,故水温以不低于15C为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为 =〜(温度20C,〜。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取> 2 ,或>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2〜3mg/L以上;(5)B0D负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。
若B0D5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,B0D5负荷应维持在(B0D5)/kg(SS).d 以下。
(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将N02--N和N03--N还原成N2的过程,称为反硝化。
反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。
污水中氨氮的主要去除方法污水中的氨氮是指以氨(NH3)和离子态氨(NH4+)形式存在的氮元素。
氨氮是一种对水体生态环境和人体健康有一定危害的物质,因此在污水处理过程中需要进行去除。
以下是几种常见的污水中氨氮的主要去除方法。
1.生物处理法:生物氨氮去除法是目前应用最广泛、最经济、最有效的方法之一、通过在生物反应器中利用特定的微生物,将氨氮转化为氮气(N2)释放到大气中,或者转化为硝态氮(NO3-)并利用硝化细菌进一步转化为氮气释放。
常用的生物氨氮去除方法主要包括活性污泥法、固定化生物膜法和厌氧氨氮去除法等。
2.化学处理法:化学方法主要包括气体吸收法、化学沉淀法和化学氧化法等。
其中,气体吸收法是将氨气通过吸收剂吸附或溶解至液相中,并与吸收剂中的化学物质发生反应,形成不溶性固体的化合物,从而实现氨氮的去除。
化学沉淀法是通过加入适当的化学物质,使氨氮与之反应生成不溶性沉淀物,并通过沉淀分离实现氨氮去除。
化学氧化法是将氨氮氧化为其他无害的氮化物,常用的氧化剂包括臭氧、过氧化氢等。
3.物理处理法:物理处理法主要利用了氨氮在温度、压力和pH等条件下的变化进行去除。
其中,蒸发浓缩法是通过加热污水使其蒸发,从而实现氨氮的去除。
这种方法适用于氨氮浓度较高的废水处理,但能耗较大。
还有一种是利用温度和压力的差异,通过改变污水中的工质进行氨氮的分离和去除,这种方法被称为氨氮渗透法。
4.吸附法:吸附法通过将污水中的氨氮与吸附剂接触,并使其吸附在吸附剂表面,从而实现氨氮去除。
常用的吸附剂包括活性炭、聚合物树脂等。
吸附法具有操作简便、效果显著等优点,但需要考虑吸附剂的再生和废弃物处理等问题。
5.其它方法:除了上述的主要方法外,还有一些新兴的污水中氨氮去除方法,如电子催化氨氮去除法、超声波氨氮去除法等。
这些方法在实际应用中还处于探索和发展阶段,需要进一步的研究和验证。
总的来说,污水中氨氮的去除方法多种多样,选择适合的方法需要考虑工艺特点、经济性、运营成本和后续处理等因素。
物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
本文摘自再生资源回收-变宝网()污水中氨氮的主要去除方法近20年来,对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一、生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1。
硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源)。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低。
2.传统生物法目前,国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack 和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)UCT、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺。
污水中氨氮去除方法总结氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
一、生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1、多级污泥系统此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
2、单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
3、生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
二、物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
污水氨氮去除方法污水中的氨氮是一种常见的水质问题,它主要来自废水和农业农村非点源污染。
高浓度的氨氮不仅对人体健康有害,还会对水体生态环境产生严重影响。
因此,制定有效的氨氮去除方法是保护水资源的重要措施之一、以下是几种常见的氨氮去除方法:1.生物除氨法:对于低浓度的氨氮废水,可以利用生物除氨法进行处理。
生物除氨是利用氨氧化细菌和反硝化细菌对废水中氨氮进行降解和转化的过程。
其中,氨氧化细菌可将氨氮氧化为亚硝态氮,而反硝化细菌可将亚硝态氮还原为氮气排放。
生物除氨方法具有操作简便、效果稳定等优势,常常用于污水处理厂和生活污水处理。
2.高级氧化法:高级氧化法是一种利用触媒或特殊氧化剂将废水中的氨氮进行氧化的方法。
这种方法适用于高浓度氨氮废水的处理。
高级氧化法常用的技术包括臭氧氧化、过氧化氢氧化和二氧化氯氧化等。
这些氧化剂可以将废水中的氨氮直接氧化为无害的物质,达到氨氮去除的目的。
但是,高级氧化法操作复杂、消耗能量较多,在实际应用中受到一定限制。
3.离子交换法:离子交换是一种常见的废水处理技术,也可用于氨氮去除。
通过正、负离子交换树脂对废水进行处理,氨氮离子与树脂上的H+或OH-离子发生交换,从而实现了氨氮的去除。
离子交换法具有操作简单、处理效果好的特点,广泛应用于水处理领域。
4.膜分离技术:膜分离技术是一种通过半透膜将废水中的氨氮分离出来的方法。
常用的膜分离技术包括超滤、反渗透等。
这些技术可以将废水中的氨氮分离成浓缩的溶液,然后再进行处理或深度净化。
膜分离技术具有操作简便、高效率、节能等优点,但成本较高,适用于规模较大的废水处理厂。
除了上述的主要技术,还有其他一些辅助氨氮去除方法:如化学沉淀法、吸附法、蒸发结晶等。
这些方法在实际应用中常常与主要技术相结合,根据具体情况选取最适合的氨氮去除方法。
总结起来,氨氮去除是保护水环境的重要措施,选择合适的氨氮去除方法要考虑废水的性质、浓度和实际应用等因素。
为了实现氨氮有效去除,可能需要综合应用多种处理技术,以达到水质要求并尽量降低处理成本。
氨氮污染的治理措施随着社会的发展,环境污染问题日益严重,其中氨氮污染是较为严重的一种污染形式。
氨氮污染对生态环境产生的影响很大,此外,也可能对人类健康产生负面影响。
针对氨氮污染,需要采取多种治理措施,下面我们将讨论一些常见的治理方法。
1. 人工湿地处理法人工湿地处理法是通过人工构造湿地,使其具有较高的特定植物和微生物等,在对水质进行去除有害物质。
人工湿地治理污染的优势在于,无需净化设备、操作成本低,耗能小等,且不产生二次污染。
近年来,人工湿地也得到了广泛的应用。
2. 生物法生物法是指采用氨、亚氨、硝态氮菌等微生物将氨氮进行氧化、硝化和还原脱氮,从而达到降低氨氮浓度的目的。
生物法有许多优点比如处理成本低、阴凉隔热、处理效率高、消耗少量的能源等优点,已经被广泛应用于工业、农业和生活环境的废水处理中。
此外,生物法也是一种可持续发展的废水处理方法。
3. 化学法化学法是指通过添加化学试剂在废水中形成固相或难生物降解的污泥,降低氨氮浓度的方法。
这种方法适用范围比较广,不仅适用于工业废水处理,也适用于生活废水处理。
相较而言,化学法处理废水的成本较高,且不具有持久性,但却是处理大量高浓度氨氮废水的有效方法。
4. 去除废水源头处理去除废水源头处理是指在废水从源头流出之前,通过各种手段将氨氮浓度控制在一定范围内的方法。
这种方法是应对氨氮污染的最有效手段之一。
比如应用一些生物技术改良农业、养殖等行业的排放管道,可以使氨氮的排放得到有效控制,减少氨氮浓度对周边环境的影响。
综上所述,氨氮污染的治理是一个系统工程,需要多种治理方法的相互协作。
从现有治理经验来看,人工湿地处理法、生物法、化学法、去除废水源头处理等方法均是较为有效的治理方法,在治理过程中各自的优点和不足需要逐步明确,并解决相关问题,只有这样才能更好地治理氨氮污染问题,促进环境保护和可持续发展。
废水中氨氮的去除废水中氨氮的去除废水中氨氮的去除一直是环境保护领域的重要课题之一。
氨氮是指水体中以氨的形式存在的氮,主要来自于工业生产废水、农业养殖废水等。
氨氮的排放对环境造成严重影响,会导致水体富营养化、酸碱平衡破坏、生态系统紊乱等问题。
因此,对废水中的氨氮进行有效去除是非常必要的。
目前,常用的废水中氨氮去除方法主要包括物理法、化学法和生物法。
物理法主要是利用吸附、萃取、蒸发和膜分离等技术手段将氨氮从废水中分离出来。
化学法则是通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
而生物法则是利用微生物的作用将废水中的氨氮转化成无害的氮气,从而达到去除的目的。
物理法中比较常用的方法是吸附。
吸附是指通过固体材料对氨氮的接触和吸附,将其从废水中分离出来。
常用的吸附剂有活性炭、氧化铁等。
活性炭吸附剂有较大的比表面积,能够有效地吸附氨氮。
氧化铁则是一种常见的吸附剂,它能够与氨氮形成络合物,从而实现氨氮的去除。
此外,萃取、蒸发和膜分离等技术也可以用于废水中氨氮的去除,但相比吸附而言,其成本较高。
化学法中,常用的方法是氨氮的沉淀。
氨氮的沉淀是指通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
常用的化学药剂有氢氧化钙、氯化铁等。
氢氧化钙是一种碱性物质,能够与氨氮发生反应,形成氨氮的沉淀物。
氯化铁则是一种常见的混凝剂,能够与氨氮形成沉淀,并与其一同被沉淀下来。
此外,还可以通过氧化、氮化等化学反应将氨氮转化成不可溶于水的化合物,从而实现氨氮的去除。
生物法中,常用的方法是利用微生物将废水中的氨氮转化成无害的氮气。
这类方法主要包括硝化和反硝化。
硝化是指通过一系列的微生物反应,将废水中的氨氮转化成硝态氮。
硝态氮不仅不具有毒性,而且还可以作为植物的肥料,有助于环境的改善。
反硝化是指通过一系列的微生物反应,将硝态氮还原成氮气。
这样即实现了氨氮向氮气的转化,达到了废水中氨氮的去除目的。
氨氮的去除根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。
然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。
去除氨氮的主要方法有:物理法、化学法、生物法。
物理法有反渗透、蒸馏、土壤灌溉等处理技术;化学法有离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法有藻类养殖、生物硝化、固定化生物技术等处理技术。
目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。
1.折点氯化法除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。
当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。
当氯气通入量超过该点时,水中的游离氯就会增多。
因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。
氧化每克氨氮需要9~10mg氯气。
pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。
1mg残留氯大约需要0.9~1.0mg的二氧化硫。
在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法除氨机理如下:Cl2+H2O→HOCl+H++Cl-NH4++HOCl→NH2Cl+H++H2ONHCl2+H2O→NOH+2H++2Cl-NHCl2+NaOH→N2+HOCl+H++Cl-折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。
最全的脱氨脱氮工艺汇总含氨氮废水的处理方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法等。
本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。
化学沉淀法化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸铵镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
磷酸铵镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。
反应方程式如下:Mg²﹢+NH4﹢+PO4³﹣=MgNH4P04影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当pH值为10,镁、氮、磷的摩尔比为1.2:1:1.2时,处理效果较好。
以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当pH值为9.5,镁、氮、磷的摩尔比为1.2:1:1时,处理效果较好。
对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。
当pH值为10.0,温度为30℃,n(Mg²﹢):n(NH4+):n(P04³-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。
将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。
在对沉淀法工艺进行优化的条件下,使氨氮去除率达到98.1%,然后联用液膜法进一步处理使其氨氮浓度降低到0.005g/L,达到国家一级排放标准。
对化学沉淀法进行改进研究,考察Mg²﹢以外的二价金属离子(Ni²﹢,Mn²﹢,Zn²﹢,Cu²﹢,Fe²﹢)在磷酸根作用下对氨氮的去除效果。
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,但吹脱与温度、PH、气液比有关,需要有效的控制。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮,但同时会引起磷的增加。
5.化学氧化法
希洁氨氮去除剂,一款强氧化剂,是能将氨氮直接氧化成氮气进行脱除的一种方法,该方法对现场工艺要求低,易于添加和使用,良好的操作性,去除率高,添加量少,能有效的降低运营成本,反应速度快,6分钟左右即可完成反应过程。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
比较依赖现场场地,并且投资大,时耗长才能有效的有回报。
三、生化联合法
一般物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。
常见的高浓度氨氮废水处理的弱点:
1. 无论是“蒸氨(汽提)或吹脱+A/O或吹脱+化学沉淀”,都离不开高投资、高运行成本的预处理工艺。
“蒸氨”一次性投资太大,“吹脱”动力消耗太大。
2. 续接A/O法时不仅投资高,而且占地面积大,对预处理出水的要求苛刻(如NH3-N必须小于300mg/l,汽提或吹脱法对超过5000mg/l以上的高浓度氨氮废水根本达不到这个要求,于是只能用成倍的清水稀释)。
但是利用希洁氨氮去除剂化学氧化法,投资和占地面积都比A/O法小,而且在高浓度氨氮废水或是低浓度氨氮废水都能达到有效的去除效果。