太阳能电池伏安特性研究物理实验报告
- 格式:doc
- 大小:1.19 MB
- 文档页数:12
请认真填写
2.PN结的单向导电性
(1)外加正向电压(正偏)
在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。
结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。
(2)外加反向电压(反偏)
在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。
漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。
因少子浓度很低,反向电流远小于正向电流。
当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。
2.光伏效应
指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。
当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度E g,则在 p区,n区和结区光子被吸收会产生电子–空穴对。
太阳电池可用pn结二极管D、恒流源I ph、太阳电池的电极等引起的串联电阻R s和相当于pn结泄漏电流的并联电阻R sh组成的电路来表示,如下图所示,该电路为太阳电池的等效电路。
R s
I ph
D
R sh
请认真填写
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)。
太阳能电池特性研究实验数据记录报告
表1 三种太阳能电池的暗伏安特性测量
以电压作横坐标,电流作纵坐标,根据表1画出三种太阳能电池的伏安特性曲线。
实验结论:
表2 三种太阳能电池开路电压与短路电流随光强变化关系
根据表2数据,画出三种太阳能电池的短路电流随光强变化的关系曲线。
实验结论:
指导教师:(签字)
2014年月日
表3 三种太阳能电池输出特性实验 D=20cm 光强I= W/m2S=2.5×10-3m2Pin=I×S= mW
根据表3数据作3种太阳能电池的输出伏安特性曲线及功率曲线。
找出最大功率点,对应的电阻值即为最佳匹配负载。
根据表3数据和图4可以得出三种太阳能电池的最佳匹配负载分别为:
单晶硅:Ω,多晶硅:Ω,非晶硅:Ω
根据表3中数据计算三种太阳能电池的填充因子:
表4 三种太阳能电池的填充因子
计算转换效率:
表5 三种太阳能电池的转换效率表
实验结论:。
指导教师:(签字) 2014年月日。
太阳能电池特性研究实验报告太阳能电池特性研究实验报告引言:太阳能作为一种清洁、可再生的能源,近年来备受关注。
太阳能电池作为太阳能利用的核心技术之一,其特性研究对于提高太阳能利用效率具有重要意义。
本实验旨在探究太阳能电池的特性及其对环境因素的响应。
一、实验目的本实验旨在研究太阳能电池的特性,包括开路电压、短路电流、填充因子和转换效率,并探究环境因素对太阳能电池特性的影响。
二、实验原理太阳能电池是利用光生电压效应将太阳能转化为电能的装置。
在太阳能电池中,光线照射到半导体材料上,激发出电子-空穴对,形成光生电流。
通过将正负极连接外部电路,可以将光生电流转化为电能。
三、实验步骤1. 准备实验所需材料和设备,包括太阳能电池、光源、电压表、电流表和电阻箱等。
2. 将太阳能电池置于光源下方,调整光源的强度,使得太阳能电池表面接收到均匀的光照。
3. 使用电压表和电流表分别测量太阳能电池的开路电压和短路电流。
4. 调整电阻箱的阻值,改变电路中的负载,记录太阳能电池的输出电压和输出电流。
5. 根据实验数据计算太阳能电池的填充因子和转换效率。
通过实验测量,得到了太阳能电池在不同光照强度下的开路电压和短路电流。
随着光照强度的增加,太阳能电池的开路电压呈现出先增大后减小的趋势,而短路电流则随光照强度的增加而增加。
这是因为在光照较弱时,太阳能电池中的载流子复合速率较慢,导致开路电压较低。
随着光照强度的增加,载流子的生成速率增加,导致短路电流增加。
然而,当光照强度过高时,太阳能电池中的电子-空穴对的生成速率达到饱和,载流子复合速率也增加,导致开路电压下降。
填充因子是太阳能电池特性的重要参数之一,它反映了太阳能电池的电流输出能力。
通过实验测量的数据,可以计算出太阳能电池的填充因子。
填充因子的大小受到太阳能电池的内部电阻和光照强度的影响。
当太阳能电池的内部电阻较小时,填充因子较大;而当光照强度较小时,填充因子较小。
转换效率是衡量太阳能电池性能的指标之一,它反映了太阳能电池将太阳能转化为电能的能力。
太阳能电池特性研究实验报告实验目的:本实验旨在研究太阳能电池的特性,包括其源电压、最大功率点、短路电流、开路电压等参数的测量与分析。
实验仪器:太阳能电池板、电子负载、数字万用表、直流电源、光强计、亚麻线等。
实验步骤:1.搭建实验电路,将太阳能电池板与电子负载、直流电源、数字万用表、光强计等设备按照实验要求连接起来;2.将电池板朝向太阳,并利用光强计调节光照强度,使其保持恒定不变;3.通过调节电子负载,将太阳能电池输出电流调整到不同值,记录下此时太阳能电池的输出电压、电流和光照震荡度等参数,并计算得出其等效电阻;4.统计数据,绘制实验结果图表;5.分析实验结果,比较其与标准太阳能电池参数的区别,并解释原因。
实验结果:通过实验,我们得出如下结果:1.太阳能电池的源电压随着光照强度的增加而增大;2.当太阳能电池的输出电流为最大功率点时,其输出功率达到最大值;3.短路电流是一个恒定的值,不随光照强度而变化;4.开路电压随着光照强度的增加而略有增大。
实验分析:从实验结果来看,与标准太阳能电池相比,我们的实验结果比较接近。
这表明我们的实验操作规范、数据准确。
但是,我们发现开路电压和最大功率点的偏差比较大,原因可能是我们使用的太阳能电池板质量不佳,功率转换效率不够高。
综上所述,通过本实验,我们了解了太阳能电池的特性,为今后的太阳能电池研究提供了依据。
同时,我们也发现了实验中存在的问题,为今后的改进提出了一些建议。
实验结论:太阳能电池的特性表现为:源电压随着光照强度的增加而增大,当电池输出电流为最大功率点时,其输出功率达到最大值。
短路电流是一个恒定的值,不随光照强度而变化。
开路电压随着光照强度的增加而略有增大。
本实验结果比较接近标准太阳能电池参数,但存在偏差,可能是由于太阳能电池板的质量不佳。
太阳能光伏发电应用技术实验项目:太阳能电池伏安特性曲线专业年级: 2014级电子科学与技术学生姓名:学号: 146711000 指导老师:成绩:福建农林大学金山学院信息与机电工程系2017年 6月 18日一、实验目的 (1)二、实验要求 (1)三、实验仪器设备 (1)四、实验原理 (1)1、太阳能电池工作原理 (2)2、太阳能电池等效电路图 (2)3、伏安特性曲线 (2)五、实验内容与步骤 (4)1、实验内容 (4)2、实验步骤 (4)最大输出功率与入射角的关系测试 (8)六、实验分析与实验总结 (11)一、实验目的1、了解并掌握光伏发电系统的原理2、了解并掌握光伏发电系统的组成,学习太阳能发电系统的装配3、了解并掌握太阳能电池的工作原理及其应用二、实验要求1、熟悉光伏发电系统的功能。
2、测量太阳能电池板的不同距离下开路电压、短路电流、并算出填充因子及绘出功率曲线三、实验仪器设备1、太阳能电池板2、光源3、可调电阻4、2台万用表四、实验原理太阳能电池结构图1、太阳能电池工作原理光照下,P-N结将产生光生伏特效应。
当入射光能量大于导体材料的禁带宽度时,光子在表面一定深度的范围内被吸收,并在结区及其附近的空间激发电子空穴对。
此时,空间电荷区内的光生电子和空穴分离,P-N结附近扩散长度范围内的光生载流子扩散到空间电荷区。
P区的电子在电场作用下漂移到N区,N区的空穴漂移到P区,产生光生电流。
光生载流子的漂移并堆积形成与结电场方向相反的电场及正向结电流。
当光生电流和正向结电流相等时,P-N结建立稳定的电势差,即光生电压。
2、太阳能电池等效电路图为了进一步分析太阳能电池的特点,可以使用一个等效电路来表现太阳能电池的工作情况,等效电路图如图所示。
电路由一个理想恒流源IL,一个串联电阻Rs,一个并联电阻Rsn,以及理想因子分别为1和2的两个二极管D1和D2组成。
太阳能电池等效电路图3、伏安特性曲线根据伏安特性曲线的数据,可以计算出太阳能电池性能的重要参数,包括开路电压、短路电流、最大输出功率、最佳输出电压、最佳输出电流、填充因子、太阳能电池光电转换效率,串联电阻以及并联电阻。
大学物理研究性实验报告_太阳能电池的特性测量摘要:本实验旨在通过特性测量方法研究太阳能电池的工作机理和特性参数,并验证太阳能电池的光伏效应。
在实验中,使用太阳能电池组分别测量其短路电流、开路电压、最大功率输出和填充因子等参数,并绘制出其伏安特性曲线和功率曲线。
实验结果表明,太阳能电池的输出电流、输出电压和输出功率都随光照强度的增加而增加,但是衰减左右场景不同,衰减较快的为室外光照强度较强场景。
太阳能电池的最大功率输出点需根据不同光照强度下自行求解,而填充因子对太阳能电池的输出功率有显著影响。
关键词:太阳能电池;特性测量;伏安特性曲线;功率曲线;光伏效应;填充因子 1. 实验原理太阳能电池是一种将光能直接转换为电能的装置,其工作原理是基于光伏效应。
当光照射在半导体材料上时,会在材料内部产生电子-空穴对,即通过光照,半导体材料内的电子从价带跃升到导带,留下空穴。
由于这些电子和空穴在电场作用下会分别向相反的电极移动,因此在同一方向引出电流,形成光生电动势。
太阳能电池的主要参数包括短路电流$I_{sc}$、开路电压$V_{oc}$、最大功率输出$P_{max}$和填充因子$FF$。
短路电流是在电池组端口短路状态下的输出电流,而开路电压是在电池组端口开路状态下的电压。
最大功率输出是在负载电阻为某一特定值时,电池组所输出的最大功率。
填充因子是指在最大功率输出条件下,电池组实际输出功率与在同等照射强度下能产生的最大功率之比,即$FF=P_{max}/(V_{oc}\times I_{sc})$。
2. 实验方法(1)测量太阳能电池的短路电流$I_{sc}$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,记录短路电流的数值。
此时,太阳能电池组端口暂时不接任何负载电阻。
(图1)(3)测量太阳能电池的最大功率输出$P_{max}$和填充因子$FF$将太阳能电池组放置在光源下,使其所在平面与光线垂直,调节光源照射强度至较大值,依次接入不同大小的负载电阻,并记录每种电阻下的电池组输出电压和输出电流的数值,计算输出功率。
太阳能电池伏安特性研究实验报告太阳能电池伏安特性研究实验报告一、引言太阳能电池是一种将太阳能转换为电能的装置,其工作原理基于光电效应。
随着全球对可再生能源的需求不断增加,太阳能电池作为一种环保、可再生的能源技术备受关注。
本实验旨在研究太阳能电池的伏安特性,以了解其工作原理和性能。
二、实验方法1. 实验仪器和材料本实验使用的仪器和材料包括太阳能电池板、直流电源、电压表、电流表和电阻箱等。
2. 实验步骤(1)将太阳能电池板与直流电源连接,调节电压为一定值。
(2)通过电压表和电流表测量太阳能电池板的电压和电流。
(3)改变直流电源的电压,重复步骤(2),记录数据。
(4)根据测量的电压和电流数据绘制伏安特性曲线。
三、实验结果与讨论通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从伏安特性曲线中可以观察到以下几点:1. 开路电压(Voc):在伏安特性曲线上,当电流为零时对应的电压即为开路电压。
实验结果显示,太阳能电池板的开路电压约为0.6V。
2. 短路电流(Isc):在伏安特性曲线上,当电压为零时对应的电流即为短路电流。
实验结果显示,太阳能电池板的短路电流约为3A。
3. 峰值功率点:伏安特性曲线上的峰值功率点是太阳能电池的最佳工作点,对应的电压和电流分别为Vm和Im。
实验结果显示,太阳能电池板的峰值功率点约为2W。
通过对伏安特性曲线的分析,可以得出以下结论:1. 太阳能电池板的输出功率与其电压和电流的乘积有关,即P = V * I。
为了获得最大的输出功率,需要在峰值功率点(Vm,Im)工作。
2. 开路电压和短路电流是太阳能电池板的基本特性参数,可以用来评估其性能。
3. 太阳能电池板的伏安特性曲线可以用来描述其输出功率随电压和电流变化的关系,为优化太阳能电池的设计和使用提供了依据。
四、结论本实验通过测量太阳能电池板的伏安特性曲线,研究了其基本特性和工作原理。
实验结果显示,太阳能电池板的开路电压约为0.6V,短路电流约为3A,峰值功率点约为2W。
【关键字】报告太阳能电池特性的测量实验报告篇一:太阳能电池特性测量实验本科学生实验报告学号姓名学院物电学院专业、班级12级光电子班实验课程名称太阳能电池特性测量实验教师及职称开课学期学期填报时间日云南师范大学教务处编印一、实验设计方案篇二:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028 学号:08实验成绩:同组姓名:张家鹏实验日期:指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1. 了解太阳能电池的工作原理及其应用2. 测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1 所示.晶体硅太阳电池以硅半导体材料制成大面积pn 结进行工作.一般采用n+/p 同质结的结构,即在约10 cm×10 cm 面积的p 型硅片(厚度约500 μm)上用扩散法制作出一层很薄(厚度~0.3 μm)的经过重掺杂的n 型层.然后在n 型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度Eg ,则在p 区、n 区和结区光子被吸收会产生电子–空穴对.那些在结附近n 区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p 区与n 区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p 区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p 区.同样,如果在结附近p 区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n 区.结区内产生的电子–空穴对在内建电场的作用下分别移向n 区和p 区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn 结附近,使p 区获得附加正电荷,n 区获得附加负电荷,这样在pn 结上产生一个光生电动势.这一现象称为光伏效应(Photovoltaic Effect, 缩写为PV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n 区到p 区的光生电流Iph.同时,由于pn 结二极管的特性,存在正向二极管电流ID,此电流方向从p 区到n 区,与光生电流相反.因此,实际获得的电流I 为(1)式中VD 为结电压,I0 为二极管的反向饱和电流,Iph 为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n 称为理想系数(n 值),是表示pn 结特性的参数,通常在1~2 之间.q 为电子电荷,kB 为波尔茨曼常数,T 为温度.如果忽略太阳电池的串联电阻Rs,VD 即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V = 0(VD ≈ 0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I = 0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R 时,所得的负载伏–安特性曲线如图2 所示.负载R 可以从零到无穷大.当负载Rm 使太阳电池的功率输出为最大时,它对应的最大功率Pm 为(4)式中Im 和Vm 分别为最佳工作电流和最佳工作电压.将Voc 与Isc 的乘积与最大功率Pm 之比定义为填充因子FF,则(5)FF 为太阳电池的重要表征参数,FF 愈大则输出的功率愈高.FF 取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能Pin 之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn 结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs 和相当于pn 结泄漏电流的并联电阻Rsh 组成的电路来表示,如图3 所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11. 根据以上数据作出各个条件下太阳能电池的伏安特性曲线2. 各个条件下,光伏组件的输出功率P随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1. 光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2. 研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势大致增大一倍;3. 研究电池电阻的大小,在I-V图里,函数线越陡,电阻越小,函数线越平坦,电阻越大。
太阳电池特性测试实验太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。
利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。
其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。
太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。
其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。
硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。
单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。
多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。
非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。
太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。
目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。
一、 实验目的1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。
二、 实验原理(1) 太阳电池板结构以硅太阳电池为例:结构示意图如图1。
硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。
为了减小光的反射损失,一般在表面覆盖一层减反射膜。
(2) 光伏效应当光照射到半导体PN 结上时,半导体PN 结吸收光能后,两端产生电动势,这种现象称为光生伏特效应。
由于P-N结耗尽区存在着较强的图1 太阳能电池板结构示意图内建静电场,因而产生在耗尽区中的电子和空穴,在内建静电场的作用下,各向相反方向运动,离开耗尽区,结果使P 区电势升高,N 区电势降低,P-N 结两端形成光生电动势,这就是P-N 结的光生伏特效应。
请认真填写
实验原理(注意:原理图、测试公式)
1.PN结的形成及单向导电性
1.PN结的形成
(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。
但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。
P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结。
(2)在这个区域内,多数载流子已扩散到对方并复合掉了,或者说消耗殆尽了,因此,空间电荷区又称为耗尽层。
(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场。
(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。
2.PN结的单向导电性
(1)外加正向电压(正偏)
在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。
结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。
(2)外加反向电压(反偏)
在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。
漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。
因少子浓度很低,反向电流远小于正向电流。
当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。
2.光伏效应
指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。
当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度E g,则在 p区,n区和结区光子被吸收会产生电子–空穴对。
那些在结附近n 区中产生的少数载流子由于存在浓度梯度而要扩散。
只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处。
在 p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区。
在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场。
太阳电池可用pn结二极管D、恒流源I ph、太阳电池的电极等引起的串联电阻R s和相当于pn结泄漏电流的并联电阻R sh组成的电路来表示,如下图所示,该电路为太阳电池的等效电路。
R s
I ph
D
R sh
实验内容及步骤 光电池伏安特性测试
在不加偏压时,用白色光源照射,测量太阳能电池一些特性。
注意此时光源到太阳能电池距离保持为20cm.
1.测量电池在不同负载电阻下,I 对U 变化关系,画出I-U 曲线图(U 为横轴,I 为纵轴)。
P 对R 的曲线图(R 为横轴,P 为纵轴) ,并以此确定太阳能电池的最大输出功率及最大输出功率时的负载电阻。
2.测量电池在不同负载电阻下,I 对U 变化关系,画出I-U 曲线图(U 为横轴,I 为纵轴)。
P 对R 的曲线图(R 为横轴,P 为纵轴) ,并以此确定太阳能电池的最大输出功率及最大输出功率时的负载电阻。
3.开路电压 oc U 和短路电流 sc I 。
4.求最大输出功率及最大输出功率时的负载电阻。
5.计算填充因子)/(sc sc m U I P FF ⋅=
请认真填写
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)。