【单元测试】2018北师版数学七下第2章综合达标训练卷含答案
- 格式:docx
- 大小:103.70 KB
- 文档页数:5
单元测试(二)相交线与平行线(A 卷)一、选择题(每小题3分,共30分)1.如图,下列各组角中,是对顶角的一组是( )A.1∠和2∠B.3∠和5∠C.3∠和4∠D.1∠和5∠2.如图,直线AB 与CD 相交于点,O OE CD ⊥.若140∠=,则AOD ∠的度数为( )A.120︒B.130︒C.140︒D.150︒ 3.如图所示,点P 到直线l 的距离是( )A.线段PB 的长度B.线段PA 的长度C.线段PC 的长度D.线段PD 的长度4.如图,已知70,AOB OC ︒∠=平分,//AOB DC OB ∠,则C ∠为( )A.20︒B.35︒C.45︒D.70︒5.如图,直线,a b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A.34∠=∠B.13∠=∠C.24180︒∠+∠=D.14∠=∠6.如图所示,有下列五种说法:①1∠和4∠是同位角;②3∠和5∠是内错角;③2∠和6∠是同旁内角;④5∠和2∠是同位角;⑤1∠和3∠是同旁内角.其中正确的是( )A.①②③B.①②③④C.①②③④⑤D.①②④⑤ 7.下列说法不正确的是( ) A.钝角没有余角,但一定有补角B.若两个角相等且互补,则它们都是直角C.锐角的补角比该锐角的余角大D.一个锐角的余角一定比这个锐角大8.如图,三角板的直角顶点落在矩形纸片的一边上.若135︒∠=,则2∠的度数是( )A.35︒B.45︒C.55︒D.65︒9.如图,小芳从A 出发沿北偏东60方向行至B 处,又沿北偏西20方向行至C 处,则ABC ∠的度数是( )A.80︒B.90︒C.100︒D.95︒10.如图,把一个长方形纸片沿EF 折叠后,点,D C 分别落在,D C ''的位置.若65EFB ︒∠=,则AED '∠等于( )A.25︒B.40︒C.50︒D.65︒二、填空题(每小题4分,共20分)11.如果35α︒∠=,那么α∠的余角等于___________.12.如图,已知12∠=∠,则图中互相平行的线段是____________.13.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是_______________.14.如图,已知直线12,l l 被直线34,l l 所截,155332,4148,︒︒︒∠=∠=∠=,则2∠=____________.15.光线在不同的介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,145,2122︒︒∠=∠=,则图中6∠=__________,8∠=____________.三、解答题(共50分)16.(12分)如图,已知,,324OA OC OB OD ︒⊥⊥∠=,求1,2∠∠的度数.17.(10分)如图,在屋架上要加一根横梁DE ,且//DE BC ,请你用尺规作出DE ,并说说你的方法和根据.18.(12分)补全下列推理过程:如图,已知//,AB CE A E ∠=∠,试说明:CGD FHB ∠=∠.解:因为//AB CE (_________),所以A ∠=∠_________(______________).因为A E ∠=∠(已知),所以∠______=∠_______(________).所以________∥_________(________________). 所以CGD ∠=∠_______(________________).因为FHB GHE ∠=∠(_________________),所以CGD FHB ∠=∠(_________).19.(16分)如图所示,已知BA 平分,EBC CD ∠平分ACF ∠,且//AB CD . (1)试判断AC 与BE 的位置关系,并说明理由;(2)若DC EC ⊥,垂足为C ,猜想E ∠与FCD ∠之间的关系,并推理判断你的猜想.参考答案1.B2.B3.A4.B5.A6.D7.D8.C9.C 10.C 11.55 12.//AD BC 13.垂线段最短 14.55 15.58 13516.解:因为,,324OA OC OB OD ︒⊥⊥∠=,所以1290,3290︒∠+∠=∠+∠=.所以1324︒∠=∠=.所以2902466︒︒︒∠=-=.17.解:如图所示,方法略.根据:同位角相等,两直线平行.18.已知 ADC 两直线平行,内错角相等 ADC E 等量代换 AD EF 同位角相等,两直线平行 GHE 两直线平行,同位角相等 对顶角相等 等量代换19.解:(1)//AC BE .理由如下:因为//AB CD ,所以ABC DCF ∠=∠.因为BA 平分,EBC CD ∠平分ACF ∠,所以2,2EBC ABC ACF DCF ∠=∠∠=∠.所以EBC ACF ∠=∠.所以//AC BE .(2)E ∠与FCD ∠互余.理由如下:因为//AC BE ,所以E ACE ∠=∠.因为CD 平分ACF ∠,所以ACD FCD ∠=∠.又因为DC EC ⊥,所以90ACE ACD ︒∠+∠=.所以90E FCD ︒∠+∠=,即E ∠与FCD ∠互余.单元测试(二)相交线与平行线(B 卷)一、选择题(每小题3分,共30分) 1.与30的角互为余角的角的度数是( )A.30B.60C.70D.902.如图,若AOC ∠增大50°,则BOD ∠( )A.减少50B.不变C.增大50D.增大1303.如图,直线AB 与直线CD 相交于点O ,点E 是AOD ∠内一点,已知OE AB ⊥,135COE ︒∠=,则BOD ∠的度数是( )A.35︒B.45︒C.50︒D.55︒4.如图,下列条件中能判定//AE CD 的是( )A.A C ∠=∠B.180A ABC ︒∠+∠=C.C CBE ∠=∠D.A CBE ∠=∠5.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿,AC BC 同时出发骑车到C 城.若他们同时到达,则下列判断中正确的是( )A.小亮骑车的速度快B.小明骑车的速度快C.两人一样快D.因为不知道公路的长度,所以无法判断他们速度的快慢6.如图,已知//a b ,直角三角板的直角顶点在直线b 上.若160︒∠=,则下列结论错误的是( )A.540︒∠=B.260︒∠=C.360︒∠=D.4120︒∠=7.如图,直线,,,a b c d ,已知,c a c b ⊥⊥,直线,,b c d 交于一点.若150︒∠=,则2∠=( )A.60︒B.50︒C.40︒D.30︒8.如图,////,46,154AB EF CD ABC CEF ︒︒∠=∠=,则BCE ∠等于( )A.23︒B.16︒C.20︒D.26︒9.将一条两边平行的纸带按如图所示方式折叠,若152∠=,则2∠等于( )A.52︒B.58︒C.64︒D.60︒10.如图,直线MN 分别与直线,AB CD 相交于点,,E F MEB ∠与CFE ∠互补,BEF ∠的平分线与DFE ∠的平分线交于点P ,与直线CD 交于点,//G GH PF 交MN 于点H ,则下列说法中错误的是( )A.//AB CDB.FGE FEG ∠=∠C.EG GH ⊥D.EFC EGD ∠=∠二、填空题(每小题4分,共20分)11.如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是_____________.12.如图所示,当光线从空气中射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若142,228︒∠=∠=,则光的传播方向改变了__________度.13.如图,直线//a b ,直线l 与直线a 相交于点P ,与直线b 相交于点,Q PM l ⊥于点P .若150︒∠=,则2∠=____________.14.如图,已知12,40B ︒∠=∠∠=,则3∠=_____________.15.珠江流域某段江水流向经过,,B C D 三点拐弯后与原来流向相同.如图,若120,80ABC BCD ︒︒∠=∠=,则CDE ∠=___________.三、解答题(共50分)16.(10分)如图,点B 是A ∠的AC 边上一点.(1)以点B 为顶点,BC 为一边,利用尺规作图作EBC ∠,使EBC A ∠=∠;(保留作图痕迹,不写作法)(2)在(1)的条件下,EB 与AD 平行吗?并说明理由.17.(12分)如图,若,ADE ABC BE AC ∠=∠⊥于点,E MN AC ⊥于点N ,试判断1∠与2∠的大小关系,并说明理由.18.(12分)如图,已知170,250,70,//D AE BC ︒︒︒∠=∠=∠=,求C ∠的度数.19.(16分)(1)①如图1,已知//,60AB CD ABC ︒∠=,根据___________可得,BCD ∠=____________________;②如图2,在①的条件下,若CM 平分BCD ∠,则BCM ∠=_________; ③如图3,在①②的条件下,若CN CM ⊥,则BCN ∠=__________;(2)尝试解决下面问题:如图4,//,40,AB CD B CN ︒∠=是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数.参考答案1.B2.C3.B4.C5.A6.A7.B8.C9.C 10.D 11.内错角 12.14 13.40 14.40 15.2016.解:(1)如图所示,EBC A E BC '∠=∠=∠.(2)①当EB 在AC 上方时,//EB AD ,理由:同位角相等,两直线平行;②当EB 在AC 下方时,EB 与AD 不平行.17.解:1∠与2∠相等.理由如下:因为ADE ABC ∠=∠,所以//DE BC .所以1EBC ∠=∠.因为,BE AC MN AC ⊥⊥,所以//BE MN .所以2EBC ∠=∠.所以12∠=∠.18.解:因为170D ︒∠=∠=,所以//AB CD .所以250AED ︒∠=∠=.又因为//AE BC ,所以50C AED ︒∠=∠=.19.解:(1)①两直线平行,内错角相等 60 ②30 ③60 (2)因为//AB CD ,所以180B BCE ︒∠+∠=.因为40B ︒∠=,所以180********BCE B ︒︒︒︒∠=-∠=-=.又因为CN 是BCE ∠的平分线,所以140270BCN ︒︒∠=÷=.因为CN CM ⊥,所以90907020BCM BCN ︒︒︒︒∠=-∠=-=.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版七年级下单元测试第2单元班级________姓名________一、选择题(共10小题,每小题4分,共40分)1.如图,直线a,b被直线c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角2.已知∠A=25°,则∠A的余角、补角分别是()A.65°B.75°C.155°D.165°3.如图,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C 路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.过一点有且只有一条直线与已知直线垂直4.如图,已知OA⊥OB,OC⊥OD,则图中∠1和∠2的关系是()A.互余B.互补C.相等D.以上都不对5.如图,下列推理正确的是()A.因为∠1=∠2,所以DE∥BFB.因为∠1=∠2,所以CE∥AFC.因为∠CEF+∠AFE=180°,所以DE∥BFD.因为∠CEF+∠AFE=180°,所以CE∥AF6.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,则∠3=()A.70°B.100°C.110°D.120°7.如图,下列判断错误的是()A.∵∠1=∠2,∴AE∥BDB.∵∠3=∠4,∴AB∥CDC.∵∠1=∠2,∴AB∥DED.∵∠5=∠BDC,∴AE∥BD8.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°9.如图,AB∥CD,则α,β,γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180°C.α+β+γ=360°D.α-β-γ=180°10.如图,一束光线与水平面成60°角照射到地面,现在地面AB上支放着一块平面镜CD,使这束光线经过平面镜反射后成水平光线射出(∠1=∠2),那么平面镜CD与地面AB所成∠DCA度数为()A.30°B.45°C.50°D.60°二.填空题(共6小题,每小题4分,共24分)11.已知在同一个平面内的三条直线l1,l2,l3,如果l1⊥l2,l2⊥l3,那么l1与l3的位置关系是________12.如图,已知∠1=∠2,则图中互相平行的线段是;理由是:__________________________________________;13.如图,B,A,E三点在同一直线上,请你添加一个条件,使AD∥BC,你所添加的条件是________________.(不允许添加任何辅助线)14.已知∠AOB=60°,OC为∠AOB的平分线,以OB为始边,在∠AOB的外部作∠BOD=∠AOC,则∠COD的度数是________.15.如图,m∥n,∠1=110°,∠2=100°,则∠3=________.16.如图,AD平分∠CAE,CF∥AD,∠1=80°,∠2=________.三.解答题(共6小题,56分)17.(6分)若一个角的余角是这个角的15,求这个角的补角的度数.18.(8分)如图,直线AB,CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB,∠BOF的度数.19.(8分)如图,在△ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为F;(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数;20.(10分)如图,直线AB和CD交于点O,OE⊥OD,OD平分∠BOF,∠BOE =50°.(1)求∠AOC的度数;(2)求∠EOF的度数.21.(12分)如图,将一副三角尺的直角顶点重合在一起.(1)若∠DOB与∠DOA的度数比是2∶11,求∠BOC的度数;(2)若叠合所成的∠BOC=n°(0<n<90),则∠AOD的补角的度数与∠BOC的度数之比是多少?22.(12分)观察发现:已知AB∥CD,点P是平面上一个动点.当点P在直线AB,CD的异侧,且在BC(不与点B,C重合)上时,如图①,容易发现:∠ABP +∠DCP=∠BPC.拓展探究:(1)当点P位于直线AB,CD的异侧,且在BC左侧时,如图②,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由;(2)当点P位于直线AB,CD的异侧,且在BC右侧时,如图③,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由;(3)当点P位于直线AB,CD的同侧,如图④,∠ABP,∠DCP,∠BPC之间有何关系?并说明理由.参考答案1-5BCBCD6-10CCBBA11.平行12.AD//BC,内错角相等,两直线平行13.∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°14.60°15.150°16.100°17.解:设这个角的度数为x,则它的余角的度数为(90°-x).由题意得90°-x=15x,解得x=75°.所以这个角的补角为180°-x=180°-75°=105°. 18.解:因为OE⊥CD,所以∠DOE=90°,因为∠1=50°,所以∠DOA=40°,即∠BOC=∠DOA=40°,因为OD平分∠AOF,所以∠AOF=2∠DOA=80°,所以∠BOF=180°-∠AOF=100°19.解:(1)∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF(2)∵EF∥DC∴∠2=∠BCD∵∠1=∠2,∴∠1=∠BCD xx+]∴DG∥BC∴∠ACB=∠3=105°20.解:(1)因为∠BOE=50°,∠COE=90°,∠AOC+∠COE+∠BOE=180°,所以∠AOC=180°-50°-90°=40°.(2)因为∠AOC=40°,所以∠BOD=∠AOC=40°,因为OD平分∠BOF,所以∠BOD=∠DOF=40°,所以∠EOF=50°+40°+40°=130°.21.解:(1)设∠DOB=2x°,则∠DOA=11x°.因为∠AOB=∠COD=90°,所以∠AOC=∠DOB=2x°,∠BOC=7x°.又因为∠DOA=∠AOB+∠COD-∠BOC=180°-∠BOC,所以11x=180-7x,解得x=10.所以∠BOC=70°.(2)因为∠AOD=∠AOB+∠COD-∠BOC=180°-∠BOC,所以∠AOD与∠BOC互补,则∠AOD的补角等于∠BOC.故∠AOD的补角的度数与∠BOC的度数之比是1∶1.22.解:(1)∠ABP+∠DCP=∠BPC.理由:如图,过点P作直线PQ∥AB,∴∠ABP=∠BPQ(两直线平行,内错角相等),∵AB∥CD(已知),∴DC∥PQ(如果两条直线和第三条直线平行,那么这两条直线平行),∴∠DCP=∠CPQ(两直线平行,内错角相等),∴∠ABP+∠DCP=∠BPQ+∠CPQ=∠BPC(等量代换)(2)∠ABP+∠BPC+∠DCP=360°,理由:如图③,过P作PQ∥AB,则DC∥PQ,∴∠ABP+∠BPQ=180°,∠DCP+∠CPQ=180°,∴∠ABP+∠BPC+∠DCP=360°(3)∠BPC=∠DCP-∠ABP,理由:如图④,过P作PQ∥AB,则PQ∥DC,∴∠DCP=∠CPQ,∠ABP=∠BPQ,∴∠BPC=∠CPQ-∠BPQ=∠DCP-∠ABP。
新北师大版七年级下章节综合练习及答案第2章相交线与平行线班级姓名一.选择题(共20小题)1.两条直线最多有一个交点,三条直线最多有三个交点,四条直线最多有6个交点,……,那么7条直线最多()A.28个交点B.24个交点C.21个交点D.15个交点2.下列说法正确的个数是()①y=2是一元一次方程②ac=bc,那么a=b ③倒数是本身的数是±1 ④近似数 3.50万精确到百位⑤102°75′+35°45′=139° ⑥六条直线两两相交最多有16个交点A.1个B.2个C.3个D.4个3.如图,直线AB、CD相交于点O,OE⊥CD,OD平分∠BOF,若∠EOF=ɑ,则∠EOB=()A.ɑ﹣90o B.360°﹣2ɑC.2ɑ﹣180o D.180o﹣ɑ4.如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠AOD=()A.120°B.130°C.140°D.150°5.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°6.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°7.运动会上,一位跳远运动员跳落沙坑时的痕迹如图所示,测量该运动员跳远成绩的依据是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线垂直8.如图所示,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点能作一条垂线D.垂线段最短9.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.10.如图,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度11.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠512.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠513.给出下列判断:①两条不相交的直线叫做平行线;②不相等的两个角一定不是对顶角;③若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,其中正确的有()A.1个B.2个C.3个D.4个14.在下列各题中,属于尺规作图的是()A.利用三角板画45°的角B.用直尺和三角板画平行线C.用直尺画一工件边缘的垂线D.用圆规在已知直线上截取一条线段等于已知线段15.下列作图属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB.借助直尺和圆规作∠AOB,使∠AOB=2∠αC.画线段AB=3cmD.用三角尺过点P作AB的垂线16.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1B.2C.3D.417.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm18.下列画图语句中,正确的是()A.画射线OP=3 cm B.画出A、B两点的距离C.画出A、B两点的中点D.连结A、B两点19.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交20.四位同学做“读语句画图”练习.甲同学读语句“直线经过A,B,C三点,且点C在点A与点B之间”,画出图形(1);乙同学读语句“两条线段AB,CD 相交于点P”画出图形(2);丙同学读语句“点P在直线l上,点Q在直线l外”画出图形(3);丁同学读语句“点M在线段AB的延长线上,点N在线段AB 的反向延长线上”画出图形(4).其中画的不正确的是()A.甲同学B.乙同学C.丙同学D.丁同学二.填空题(共15小题)21.平面内三条直线两两相交,最多有m个交点,最少有n个交点,则n﹣m=.22.平面内有10条直线两两相交,交点个数最多有m个,最少有n个,则m+n 的值为.23.如图所示,直线AB、CD相交于O,∠BOC=135°,则直线AB与直线CD的夹角是°.24.当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,如图,AB与CD相交于水平面点F,一束光线沿CD射入水面,在点F处发生折射,沿FE射入水内.如果∠1=50°,∠2=36°,则光的传播方向改变了度.25.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=°.26.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为.27.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是.28.如图,点P在直线l外,PB⊥l于B,A为l上任意一点,则PA与PB的大小关系是PA PB.29.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.30.如图,AC⊥BC,垂足为点C,CD⊥AB,垂足为点D,则点B到AC的距离是线段的长度.31.如图,写出图中∠A所有的内错角:.32.如图,能与∠1构成同位角的角有个.33.在同一平面内,两条直线(不重合)的位置关系有种,它们是.34.平面上不重合的四条直线,可能产生交点的个数为个.35.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是.三.解答题(共15小题)36.平面内有不重合的4条直线,请指出这4条直线交点个数的所有情况,并画出相应的草图.37.如图,直线AB、CD相交于点O,OE是∠COB的平分线,∠EOF=90°,∠AOD=70°.(1)求∠BOE的度数;(2)OF是∠AOC的平分线吗?为什么?38.如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.39.如图,直线AB,CD相交于点O,OF平分∠AOC,∠COE=90°,∠DOF=160°.(1)求∠COF的度数;(2)求∠BOE的度数.40.如图所示,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠AOE,若∠DOF=50°,求∠AOG的度数.41.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,求∠AOC和∠COB的大小.42.如图,要从小河l引水到村庄B,请设计并作出一条最短路线,并说明理由.43.已知:点P是直线MN外一点,点A、B、C是直线MN上三点,分别连接PA、PB、PC.(1)通过测量的方法,比较PA、PB、PC的大小,直接用“>”连接;(2)在直线MN上能否找到一点D,使PD的长度最短?如果有,请在图中作出线段PD,并说明它的理论依据;如果没有,请说明理由.44.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO 的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.45.操作:如图,直线AB与CD交于点O,按要求完成下列问题.(1)用量角器量得∠AOC=度.AB与CD的关系可记作.(2)画出∠BOC的角平分线OM,∠BOM=∠=度.(3)在射线OM上取一点P,画出点P到直线AB的距离PE.(4)如图若按“上北下南左西右东”的方位标记,请画出表示“南偏西30°”的射线OF.46.如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.47.如图,直线DE经过点A.(1)写出∠B的内错角是,同旁内角是.(2)若∠EAC=∠C,AC平分∠BAE,∠B=44°,求∠C的度数.48.平面内有10条直线,无任何三条交于一点,欲使它们有31个交点,怎样才能办到.49.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.50.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.参考答案与试题解析一.选择题(共20小题)1.两条直线最多有一个交点,三条直线最多有三个交点,四条直线最多有6个交点,……,那么7条直线最多()A.28个交点B.24个交点C.21个交点D.15个交点【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:∵7条直线两两相交:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=×2×3,6=×3×4,10=1+2+3+4=×4×5,∴七条直线相交最多有交点的个数是:n(n﹣1)=×7×6=21.故选:C.【点评】此题主要考查了图形变化类,此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.2.下列说法正确的个数是()①y=2是一元一次方程②ac=bc,那么a=b ③倒数是本身的数是±1 ④近似数 3.50万精确到百位⑤102°75′+35°45′=139° ⑥六条直线两两相交最多有16个交点A.1个B.2个C.3个D.4个【分析】①根据一元一次方程的定义即可求解;②根据等式的性质即可求解;③根据倒数的定义即可求解;④根据精确度的定义即可求解;⑤根据度分秒的加法法则计算即可求解;⑥在同一平面内,n条直线两两相交,则有个交点,代入即可求解.【解答】解:①y=2是一元一次方程是正确的;②ac=bc,当c=0时,a不一定等于b,原来的说法是错误的;③倒数是本身的数是±1是正确的;④近似数3.50万精确到百位是正确的;⑤102°75′+35°45′=139°是正确的;⑥六条直线两两相交最多有=15个交点,原来的说法是错误的.故选:D.【点评】考查了一元一次方程的定义,等式的性质,倒数的定义,精确度的定义,度分秒的加法,能够求解同一平面内,直线两两相交的交点的个数.3.如图,直线AB、CD相交于点O,OE⊥CD,OD平分∠BOF,若∠EOF=ɑ,则∠EOB=()A.ɑ﹣90o B.360°﹣2ɑC.2ɑ﹣180o D.180o﹣ɑ【分析】根据垂线、角之间的和与差,即可解答.【解答】解:∵OE⊥CD于O,∠EOF=α,∴∠DOF=α﹣90°,∵OD平分∠BOF,∴∠BOD=∠FOD,∵∠AOC=∠BOD,∴∠AOC=∠FOD,∴∠AOC=α﹣90°,∴∠BOE=180°﹣∠COE﹣∠AOC=180°﹣90°﹣(α﹣90°)=180°﹣α,故D正确;故选:D.【点评】本题考查了垂线,解决本题的关键是利用角之间的关系解答.4.如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠AOD=()A.120°B.130°C.140°D.150°【分析】根据对顶角的性质,可得∠1,再根据邻补角的定义,可得答案.【解答】解:∵∠1+∠2=120°,且∠1=∠2,∴∠1=∠2=60°,∴∠AOD=180°﹣∠1=120°,故选:A.【点评】本题考查了对顶角、邻补角,利用对顶角、邻补角的定义是解题关键.5.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°【分析】直接利用垂线的定义结合角平分线的定义得出答案.【解答】解:∵∠BOD=∠AOC=70°,射线OM平分∠AOC,∴∠AOM=∠MOC=35°,∵ON⊥OM,∴∠COM=90°﹣35°=55°.故选:C.【点评】此题主要考查了垂线以及角平分线的定义,正确得出∠AOM的度数是解题关键.6.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°【分析】由对顶角相等可求得∠BOD,根据垂直可求得∠EOB,再利用角的和差可求得答案.【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选:D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.7.运动会上,一位跳远运动员跳落沙坑时的痕迹如图所示,测量该运动员跳远成绩的依据是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线垂直【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:C.【点评】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.垂线段的性质:垂线段最短.8.如图所示,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点能作一条垂线D.垂线段最短【分析】直接利用直线的性质进而分析得出答案.【解答】解:A、因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质是解题关键.9.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【分析】点到直线的距离是指垂线段的长度.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.【点评】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.10.如图,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【解答】解:点P到直线l的距离是线段PC的长度,故选:C.【点评】本题考查了点到直线的距离问题,关键是根据点到直线的距离的定义和垂线段的性质解答.11.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【分析】根据同位角的定义,可得答案.【解答】解:已知直线a、b被直线c所截,那么∠1的同位角是∠2,故选:A.【点评】本题考查了同位角,利用同为角的定义是解题关键.12.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠5【分析】根据内错角的定义找出即可.【解答】解:根据内错角的定义,∠1的内错角是∠5.故选:D.【点评】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.13.给出下列判断:①两条不相交的直线叫做平行线;②不相等的两个角一定不是对顶角;③若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平行线的定义、对顶角相等、邻补角的定义和角平分线的定义逐个判断即可.【解答】解:在同一平面内,两条不相交的直线叫做平行线,故①错误;不相等的两个角一定不是对顶角,故②正确;若两个角的一边在同一直线上,另一对边互相平行,则这两个角相等或互补,故③错误;∵∠AOC和∠BOC是邻补角,∴∠AOC+∠BOC=180°,∵OD平分∠AOC,OE平分∠BOC,∴∠DOC=∠AOC,∠EOC=BOC,∴∠DOE=∠DOC+∠EOC=×180°=90°,即∠DOE是直角,故④正确;即正确的个数是2个,故选:B.【点评】本题考查了平行线的定义、对顶角相等、邻补角的定义和角平分线的定义等知识点,能熟记知识点的内容是解此题的关键.14.在下列各题中,属于尺规作图的是()A.利用三角板画45°的角B.用直尺和三角板画平行线C.用直尺画一工件边缘的垂线D.用圆规在已知直线上截取一条线段等于已知线段【分析】尺规作图是指用没有刻度的直尺和圆规作图.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.【解答】解:A、利用三角板画45°的角不符合尺规作图的定义,错误;B、用直尺和三角板画平行线不符合尺规作图的定义,错误;C、用直尺画一工件边缘的垂线不符合尺规作图的定义,错误;D、用圆规在已知直线上截取一条线段等于已知线段符合尺规作图的定义,正确.故选:D.【点评】本题考查尺规作图的定义,解题的关键是理解尺规作图的定义,属于中考基础题.15.下列作图属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB.借助直尺和圆规作∠AOB,使∠AOB=2∠αC.画线段AB=3cmD.用三角尺过点P作AB的垂线【分析】根据尺规作图的定义即可判定.【解答】解:根据尺规作图的定义可知:助直尺和圆规作∠AOB,使∠AOB=2∠α属于尺规作图,故选:B.【点评】本题考查尺规作图的定义,解题的关键是理解尺规作图的定义,属于中考基础题.16.有下列画图语句:①画出线段A,B的中点;②画出A,B两点的距离;③延长射线OP;④连接A,B两点,其中正确的个数是()A.1B.2C.3D.4【分析】根据尺规作图的定义及其要求判断可得.【解答】解:①画出线段AB的中点,线段表示错误;②A,B两点的距离只能测量,此语句错误;③射线不能顺向延长,只能反向延长,此语句错误;④连接A,B两点,此语句正确;故选:A.【点评】本题主要考查尺规作图的定义,解题的关键是掌握直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上画刻度.圆规可以开至无限宽,但上面亦不能有刻度.它只可以拉开成你之前构造过的长度.17.下列画图的语句中,正确的为()A.画直线AB=10cm B.画射线OB=10cmC.延长射线BA到C,使BA=BC D.画线段CD=2cm【分析】根据直线、射线、线段的性质即可一一判断.【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.18.下列画图语句中,正确的是()A.画射线OP=3 cm B.画出A、B两点的距离C.画出A、B两点的中点D.连结A、B两点【分析】直接利用基本作图的定义结合射线、线段的定义与性质分析得出答案.【解答】解:A、画射线OP=3 cm,错误,射线没有长度,故此选项不合题意;B、画出A、B两点的距离,错误,应该是量出A、B两点的距离,故此选项不合题意;C、画出A、B两点的中点,错误,应该是画出线段AB的中点,故此选项不合题意;D、连结A、B两点,正确,符合题意.故选:D.【点评】此题主要考查了尺规作图的定义,正确把握相关定义是解题关键.19.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【分析】根据直线、射线、线段的性质即可一一判断;【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.【点评】本题考查作图﹣尺规作图,解题的关键是熟练掌握基本概念,属于中考基础题.20.四位同学做“读语句画图”练习.甲同学读语句“直线经过A,B,C三点,且点C在点A与点B之间”,画出图形(1);乙同学读语句“两条线段AB,CD 相交于点P”画出图形(2);丙同学读语句“点P在直线l上,点Q在直线l外”画出图形(3);丁同学读语句“点M在线段AB的延长线上,点N在线段AB 的反向延长线上”画出图形(4).其中画的不正确的是()A.甲同学B.乙同学C.丙同学D.丁同学【分析】利用直线与点的关系分析.【解答】解:观察图形可知,图形(1)、图形(2)、图形(3);都符合要求;图形(4)点N在线段AB的延长线上,点M在线段AB的反向延长线上,不符合要求.故画的不正确的是丁同学.故选:D.【点评】本题比较简单,考查的是直线与点的关系,线段相交的特点,锻炼了学生观察事物的能力.二.填空题(共15小题)21.平面内三条直线两两相交,最多有m个交点,最少有n个交点,则n﹣m=﹣2.【分析】根据题意确定出m与n的值,即可求出n﹣m的值.【解答】解:平面内三条直线两两相交,最多有3个交点,最少有1个交点,则n﹣m=1﹣3=﹣2,故答案为:﹣2【点评】此题考查了相交线,弄清直线相交的规律是解本题的关键.22.平面内有10条直线两两相交,交点个数最多有m个,最少有n个,则m+n 的值为46.【分析】由题意可得10条直线相交于一点时交点最少,任意两直线相交都产生一个交点时交点最多,由此可得出m,n的值,从而得出答案.【解答】解:根据题意可得:10条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,∴此时交点为:10×(10﹣1)÷2=45,即m=45;则m+n=45+1=46.故答案为:46.【点评】本题考查直线的交点问题,注意掌握直线相交于一点时交点最少,任意n条直线两两相交时交点最多为n(n﹣1)个.23.如图所示,直线AB、CD相交于O,∠BOC=135°,则直线AB与直线CD的夹角是45°.【分析】先根据邻补角的定义求出∠AOC,再根据直线的夹角为锐角解答.【解答】解:∵∠BOC=135°,∴∠AOC=180°﹣∠BOC=180°﹣135°=45°,∴直线AB与直线CD的夹角是45°.故答案为:45.【点评】本题考查了邻补角的定义,要注意直线的夹角是锐角.24.当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,如图,AB与CD相交于水平面点F,一束光线沿CD射入水面,在点F处发生折射,沿FE射入水内.如果∠1=50°,∠2=36°,则光的传播方向改变了14度.【分析】根据对顶角相等得出∠DFB=∠1,进而解答即可.【解答】解:∵∠1=50°,∴∠DFB=∠1=50°,∵∠2=36°,∴∠DFE=50°﹣36°=14°,故答案为:14【点评】此题考查对顶角问题,关键是根据对顶角相等得出∠DFB=∠1.25.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=40°.【分析】根据垂直的定义可得∠CEF=90°,然后求出∠AEC,再根据对顶角相等解答.【解答】解:∵EF⊥CD,∴∠CEF=90°,∴∠AEC=∠CEF﹣∠AEF=90°﹣50°=40°,∴∠BED=∠AEC=40°.故答案为:40.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题,准确识图是解题的关键.26.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为60°.【分析】根据垂直得出∠NOM=90°,根据角平分线定义得出∠AOM=∠COM,再利用∠CON=2∠COM,即可得出答案.【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=2∠COM,∴设∠COM=x,则∠CON=2x,故x+2x=90°,解得:x=30°,∵射线OM平分∠AOC,∴∠AOM=∠COM=30°,∴∠AOC=∠BOD=2∠COM=60°,故答案为:60°.【点评】本题考查了垂直定义,角平分线定义等知识点,能求出∠COM的度数是解此题的关键.27.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.【解答】解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为:垂线段最短.【点评】本题考查了垂线的性质在实际生活中的运用,关键是掌握垂线段的性质:垂线段最短.28.如图,点P在直线l外,PB⊥l于B,A为l上任意一点,则PA与PB的大小关系是PA≥PB.【分析】由垂线段的定义可知,线段PB为垂线段,再根据垂线段的性质判断.【解答】解:∵PB⊥l于B,∴线段PB为点P到直线l的垂线段.根据从直线外一点到这条直线上各点所连的线段中,垂线段最短.可知PA≥PB.故答案为:≥.【点评】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短的性质.29.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.【分析】设AC边上的高为h,再根据三角形的面积公式即可得出结论.【解答】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=5,BC=12,AC=13,∴AB•BC=AC•h,∴h===.故答案为:.【点评】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.30.如图,AC⊥BC,垂足为点C,CD⊥AB,垂足为点D,则点B到AC的距离是线段BC的长度.【分析】直接利用点到直线的距离得出答案.【解答】解:∵AC⊥BC,垂足为点C,CD⊥AB,垂足为点D,∴点B到AC的距离是线段BC的长度.故答案为:BC.【点评】此题主要考查了点的直线的距离,正确把握相关定义是解题关键.31.如图,写出图中∠A所有的内错角:∠ACD,∠ACE.【分析】内错角就是:两个角在截线的两旁,又分别处在被截的两条直线内侧的位置的角.【解答】解:根据内错角的定义,图中∠A所有的内错角:∠ACD,∠ACE.故答案为∠ACD、∠ACE.【点评】考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.32.如图,能与∠1构成同位角的角有3个.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.依此求解即可.【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3、∠4,共3个.故答案为3.【点评】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.33.在同一平面内,两条直线(不重合)的位置关系有2种,它们是相交和平行.【分析】同一平面内,两条直线(不重合)的位置关系:相交和平行.【解答】解:两条直线(不重合)的位置关系有2种,它们是相交和平行.【点评】本题考查了同一平面内,两条直线(不重合)的位置关系.34.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.35.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D.。
第二章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是()2.下列作图能表示点A到BC的距离的是()3.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个(第5题)(第6题)(第7题)6.如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2 B.∠1>∠2 C.∠1=∠2 D.不能确定7.如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()A.50°B.60°C.70°D.80°8.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°(第8题)(第9题)(第10题)9.如图,AB∥CD,CD∥EF,则∠BCE等于()A. ∠2-∠1B. ∠1+∠2 C.180°+∠1-∠2 D.180°-∠1+∠210.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()A.180°n B.(n+1)·180°C.(n-1)·180°D.(n-2)·180°二、填空题(每题3分,共24分)11.尺规作图是指用____________________________画图.12.如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.(第12题)(第13题)(第14题)13.如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:______________________________.14.如图,AB ∥CD ,EF 分别交AB ,CD 于G ,H 两点,若∠1=50°,则∠EGB =________.15.同一平面内的三条直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a________c .若a ∥b ,b ∥c ,则a________c .若a ∥b ,b ⊥c ,则a________c.16.如图,已知AB ∥CD ,CE ,AE 分别平分∠ACD ,∠CAB ,则∠1+∠2=________.(第16题)(第17题)(第18题)17.如图,某煤气公司安装煤气管道,他们从点A 处铺设到点B 处时,由于有一个人工湖挡住了去路,需要改变方向经过点C ,再拐到点D ,然后沿与AB 平行的DE 方向继续铺设.已知∠ABC =135°,∠BCD =65°,则∠CDE =________.18.如图,沿虚线剪去长方形纸片相邻的两个角,使∠1=115°,则∠2=________. 三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.如图,已知AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:(第20题)解:因为AD∥BC(已知),所以∠1=∠3().因为∠1=∠2(已知),所以∠2=∠3.所以BE∥________().所以∠3+∠4=180°().21.如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠∠DOE=求∠AOF的度数.(第21题)22.将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.(第22题)23.如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP=∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.(第23题)24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.(第24题)25.如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE的延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第25题)答案一、1.C 2.B 3.B 4.B 5.C 6.C7.D8.C9.C(第10题)10.C点拨:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥A n C,所以A3E∥A2D∥…∥A1B∥A n C.所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….所以∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)·180°.二、11.圆规和没有刻度的直尺12. 105°13.垂线段最短14.50°点拨:因为AB∥CD,所以∠1=∠AGF.因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF.故∠EGB=50°.15.∥;∥;⊥16.90°点拨:因为AB∥CD,所以∠BAC+∠ACD=180°.因为CE,AE分别平分∠ACD,∠CAB,所以∠1+∠2=90°.(第17题)17.110°点拨:如图,过点C作CF∥AB,因为AB∥DE,所以DE∥CF.所以∠CDE =∠FCD.因为AB∥CF,∠ABC=135°,所以∠BCF=180°-∠ABC=45°.又因为∠FCD=∠BCD+∠BCF,∠BCD=65°,所以∠FCD=110°.所以∠CDE=110°.故填110°.(第18题)18.155°点拨:过E作EF∥AB,如图所示.因为AB∥CD,所以EF∥CD.所以∠1+∠3=∠2+∠4=180°.所以∠3=180°-115°=65°. 所以∠4=90°-∠3=90°-65°=25°. 所以∠2=180°-∠4=180°-25°=155°.三、19.解:设这个角的度数为x ,依题意有23(180°-x)-55°=90°-x ,解得x =75°.故这个角的度数为75°.20.两直线平行,内错角相等;DF ;同位角相等,两直线平行;两直线平行,同旁内角互补21.解:因为OE 平分∠BOD , 所以∠DOE =∠EOB. 又因为∠∠DOE =,∠AOD +∠DOE +∠EOB =180°,所以∠DOE =∠EOB =180°×16=30°,∠AOD =120°.所以∠COB =∠AOD =120°. 因为OF 平分∠COB , 所以∠BOF =60°. 所以∠AOF =180°-60°=120°. 22.解:(1)因为CF 平分∠DCE , 所以∠1=∠2=12∠DCE.因为∠DCE =90°, 所以∠1=45°. 因为∠3=45°, 所以∠1=∠3.所以CF ∥AB(内错角相等,两直线平行). (2)因为∠D =30°,∠1=45°, 所以∠DFC =180°-30°-45°=105°.23.解:过点P 作PE ∥CD 交AD 于E ,则∠DPE =∠α. 因为AB ∥CD ,所以PE ∥AB.所以∠CPE =∠B ,即∠DPE +∠β=∠α+∠β=∠B.故不论点P 在BC 上怎样运动,总有∠α+∠β=∠B.24.解:因为AE 平分∠BAD , 所以∠1=∠2.因为AB ∥CD ,∠CFE =∠E , 所以∠1=∠CFE =∠E. 所以∠2=∠E. 所以AD ∥BC.25.解:(1)因为BE 平分∠ABD ,DE 平分∠BDC , 所以∠ABD =2∠EBD ,∠BDC =2∠EDB. 因为∠EBD +∠EDB =90°,所以∠ABD +∠BDC =2(∠EBD +∠EDB)=180°. 所以AB ∥CD.(2)∠EBI =12∠BHD.理由如下:因为AB∥CD,所以∠ABH=∠BHD.因为BI平分∠EBD,BH平分∠ABD,所以∠EBI=12∠EBD=12∠ABH=12∠BHD.。
第二章综合测试一、选择题(每小题3分,共30分)1.已知1∠和2∠是对顶角,且138∠=︒,则2∠的度数为( ) A .38°B .52°C .76°D .142°2.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条不重合的直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线. A .1B .2C .3D .43.一个角的余角是这个角的补角的13,则这个角的度数是( )A .30°B .45°C .60°D .70°4.如图,直线1l ,2l 被直线3l 所截,且12l l ∥,则α∠的度数是( )A .41°B .49°C .51°D .59°5.下列图中,1∠与2∠是同位角的是( )ABCD6.下列说法中,正确的是( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线有且只有一条 C .若直线a b a c ∥,∥,则b c ∥D .同一平面内,若两条线段不相交,则它们互相平行 7.如图所示,已知AB CD ∥,下列结论正确的是( )A .12∠=∠B .23∠=∠C .14∠=∠D .34∠=∠8.如图,BD AC ∥,BE 平分ABD ∠,交AC 于点E ,若50A ∠=︒,则1∠的度数为( )A .65°B .60°C .55°D .50°9.如图,直线AB 、CD 相交于点O ,OE CD ⊥,52AOE ∠=︒,则BOD ∠等于( )A .24°B .26°C .36°D .38°10.如图,将长方形纸片ABCD 沿EF 折叠,使CD 与MN 重合,若170∠=︒,则2∠等于( )A .60°B .50°C .40°D .30°二、填空题(每小题4分,共24分)11.已知,如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,若25EOC ∠=︒,则BOD ∠的度数为________. 12.已知在同一个平面内的三条直线1l ,2l ,3l ,如果1223l l l l ⊥⊥,,那么1l 与3l 的位置关系是________. 13.如图所示,若180B C ∠+∠=︒,则可以得到________∥________,若12∠=∠,则可以得到________∥________.14.如图,若使12∠=∠,则需添加哪两条直线平行________.15.如图所示,AB CD ∥,MN 交CD 于点E ,交AB 于点F ,EG MN ⊥于点E ,若60DEM ∠=︒,则AGE ∠=________.16.如图,直线a b ∥,直线l 与a 相交于点P ,与直线b 相交于点Q ,且PM 垂直于l ,若158∠=︒,则2∠=________.三、解答题(共46分) 17.(10分)如图,(1)由点A 到河边l 的最短路线为AO 的依据是________;(2)如果要从A 点经过B 再到河边l ,要使路程最短,在图中画出行走路线.18.(10分)已知1∠,如图.求作ABC ∠,使21ABC ∠=∠.(不写作法)19.(12分)如图,BD AC ⊥于D ,EF AC ⊥于F ,AMD AGF ∠=∠,1235∠=∠=︒. (1)求GFC ∠的度数;(2)求证:DM BC ∥.20.(14分)如图,已知AM BN ∥,60A ∠=︒.点P 是射线AM 上一动点(与点A 不重合),BC ,BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C ,D . (1)求CBD ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使ACB ABD ∠=∠时,ABC ∠的度数是________.第二章综合测试答案解析一、 1.【答案】A【解析】1∠和2∠是对顶角,12∴∠=∠,又138︒∠=,238︒∴∠=. 2.【答案】C【解析】(1)过直线外一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条不重合的直线的位置关系只有相交,平行两种,是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3. 3.【答案】B【解析】设这个角的度数为x ,则它的余角为90x ︒−,补角为180x ︒−,依题意,得1901803x x ︒︒−=−(),解得45x ︒=,故选B. 4.【答案】B【解析】两条平行直线被第三条直线所截,内错角相等.因此49α︒∠=,故选B. 5.【答案】D【解析】1∠与2∠在截线的同侧,在被截线的同一方,是同位角,故选项D 中1∠与2∠是同位角,故选D.6.【答案】C【解析】在同一平面内,两条不相交的直线叫做平行线,选项A 错误;一条直线的平行线有无数条,过直线外已知一点,有且只有一条直线与已知直线平行,故选项B 错误;平行于同一条直线的两条直线平行,故选项C 正确;线段平行是指线段所在直线平行,两条线段不相交并不能说明两条线段所在直线不相交,因此选项D 是错误的.故选C. 7.【答案】C 【解析】AB CD ∥,14∴∠=∠.8.【答案】A 【解析】BD AC ∥,50A ︒∠=,130ABD ︒∴∠=,又BE 平分ABD ∠,11652ABD ︒∴∠=∠=.9.【答案】D【解析】因为OE CD ⊥,所以90COE ︒∠=,因为52AOE ︒∠=,所以38AOC ︒∠=,则38BOD AOC ︒∠=∠=.故选D. 10.【答案】C【解析】由题意可知AD ∥BC ,所以170DEF ︒∠=∠=,由折叠知70MEF DEF ︒∠=∠=,所以2180180707040DEF MEF ︒︒︒︒︒∠=−∠−∠=−−=.二、11.【答案】50︒ 【解析】OE 平分AOC ∠,25EOC ︒∠=,225250AOC EOC ︒︒∴∠=∠=⨯=.由对顶角相等可知50BOD AOC ︒∠=∠=.12.【答案】13l l ∥【解析】如图所示,由1223l l l l ⊥⊥,,可得1290∠=∠=︒,所以13l l ∥.13.【答案】AB CD AD BC【解析】B ∠与C ∠是直线AB ,CD 被直线BC 所截形成的同旁内角,由180B C ︒∠+∠=可得AB CD ∥;1∠与2∠是直线AD 与BC 被直线EF 所截形成的内错角,由12∠=∠可得AD BC ∥. 14.【答案】a b ∥【解析】1∠和2∠是直线a 和b 被直线c 所截形成的同位角,由两直线平行,同位角相等,知添加a b ∥. 15.【答案】30︒【解析】由EG MN ⊥可得90DEG DEM ︒∠+∠=,又60DEM ︒∠=,所以30DEG ︒∠=.由AB CD ∥可得30AGE DEG ︒∠=∠=.16.【答案】32︒【解析】如图,a b ∥,3158︒∴∠=∠=,又PM l ⊥,490︒∴∠=,21803432︒︒∴∠=−∠−∠=,故答案为32︒.三、17.【答案】解:(1)垂线段最短.(2)如图,先连接AB ,再过点B 作直线l 的垂线段BC ,则A —B —C 即为行走路线.18.【答案】解:如图,ABC ∠为所求作的角.19.【答案】解:(1)BD AC EF AC ⊥⊥,,90EFC BD EF ︒∴∠=,∥,135EFG ︒∴∠=∠=,9035125GFC ︒︒︒∴∠=+=.(2)证明:BD EF ∥,2CBD ∴∠=∠,又12∠=∠,1CBD ∴∠=∠,GF BC ∴∥,AMD AGF ∠=∠,MD GF ∴∥,DM BC ∴∥.20.【答案】解:(1)因为AM BN ∥,所以180A ABN ︒∠+∠=.因为60A ︒∠=,所以120ABN ︒∠=.因为BC ,BD 分别平分ABP ∠和PBN ∠,所以1122CBP ABP DBP NBP ∠=∠∠=∠,,所以1602CBD ABN ︒∠=∠=.(2)不变化,2APB ADB ∠=∠.理由如下:因为AM BN ∥,所以APB PBN ADB DBN ∠=∠∠=∠,.又因为BD 平分PBN ∠,所以2PBN DBN ∠=∠,所以2APB ADB ∠=∠.(3)因为AD BN ∥,所以ACB CBN ∠=∠.又因为ACB ABD ∠=∠,所以CBN ABD ∠=∠,所以ABC DBN ∠=∠.由(1)知60120CBD ABN ︒︒∠=∠=,,所以112060302ABC ︒︒︒∠=⨯−=().故答案为30°.。
第二章综合达标训练卷相交线与平行线时间4 5分钟满分10 0分一、选择题(每题3分,共45分)1. 在同一平面内两直线的位置关系必是()•A相交B平行C垂直D相交或平行2. 如图OC L AB于点O, /1=/2,则图中互余的角共有().A2对B3对 C.4寸D5对3•.下列说法正确的是().A相等的角是对顶角B对顶角相等C两条直线相交所成的角是对顶角D有公共顶点且又相等的角是对顶角4 .下列说法正确的是().A邻补角是互补的角B锐角小于它的余角C锐角大于它的余角 D 30的角的余角是66°的角5. 如图直线a,b都与直线I相交,下列条件中能说明a// b的是().①/ 仁/2 ②/ 2=7 7 ③/ 2=7 8 ④/ 1 + Z 4=180°A①② B①②③ C①②④ D①②③④6. 下列说法不正确的是().A同旁内角相等,两直线平行B内错角相等,两直线平行C同位角相等两直线平行D若两个角的和是18(°,则这两个角互补7. 在下面的四个图形中71和72是对顶角的是().8如果两个角互余那么这两个角().A都是锐角B都是钝角C一个锐角,一个钝角D都是45°的角9. 冰冰婷婷芳芳和琪琪四位同学在做课外作业时,关于,平行线的识别方法提出了四种不同的说法冰冰:两条直线被第三条直线所截,如果同位角相等那么这两条直线平行;婷婷:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;芳芳:两条直线被第三条直线所截,那么这两条直线平行;琪琪:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.他们的说法中正确的共有().A 1个B阶C个 D 4个10. 如图,直线a, b被c所截a 〃b若71=35°,则/2的大小为().0 0 0 °A. 35B. 145C. 55D. 12511如图直线AB与CD相交于点0 ,EO丄CD,垂足为O,则图中/ AOE和7 BOD的关系是().A相等角B•互为补角 C.对顶角D互为余角12.如图是小鱼做的一道作业题她拿给小丽看小丽告诉她其中有一个推理不正确,它是().A因为AB //CD,所以7ABC7CB因为71=72 所以AD// BCC因为AD//BC所以73=74D因为7A+7ADC=8(f,所以AB // CD13 .如图直线a, b被直线c所截,下列说法正确的是().A当71=72时一定有a//bB当a//b时一定有71=72C 当a//b 时一定有71+72=180D当a//b 时一定有71+72=90A. 7 A=7 BC. 7 B=7 DPE15 .如图BF ,CD相交于点O, A•当7 C =40 0时,AB// CD C.当7 E=1200时,CD //EFB. 7 A=7 APBD. 7 A+7 B=18007 D=400,下列说法正确的是().B.当7 B =40 0时,AC //DE、填空题(每题3分,共15 分)cs iofg I I $ n t記iz Q 14 .女口图AC//BD, AE//BF,下列结论错误的是()(-JKIt16 .如图7仁7 2,17.如 图,当/ 1= ____ 时,AD //BC ;当/ 1= _______ 时,DC// AB .18..将两块直角三角尺的直角顶点重合为如图所示的位置 若/ AOD=1100,则/ BOC=22.如图,如果/ B+/ E =180°,且 BC// DE ,那么 AB 与EF 平行吗 ?为什么?23 .如 图 CD 平分/ ACB, DE// BC, / AED=600,求/ EDC 的度数19.如 图 AB// CD, / ABE=1150,则/ ECD= ________ .20 .如 图,岛C 在岛A 的北偏东60°方向,在岛B 的北偏西45°方向,则从岛C 看A B 两岛 的视角/ ACB= _______三、解答题(每题8分,共40 分)/ D 、/ C 、/ B 的度数24.如图AB丄BC ,BCL CD,// CF你能判断出/ 1和/ 2的关系吗?说明的理由25.如图,在四边形ABCD 中/ A=104°-/ 2 / ABC=76°+/ 2 , BD丄CD, EFL CD,垂足分别为D、F能判断/仁/ 2吗?试说明理由.第二直综合达标训练卷卷)I. 1> 2. C 3. B 4. A 5. C 6. \7. 1> 8. A 9. C 10. B 11. I)12. C B. C bl. D B. DLl>. 123f I7t ZJJ ZB IK. 70fL9・ 65* 20. 105°2L 5『<50\I30"22.平打•理由如卜!V H( ^ DE.A ZBCJF ZE.X Z£+Zh^l80\/. ZB+Z/X^-)80\A Ali//EF.23・ VA ZEDC ■NED - So•I ZBCD = yZ/U*H = 30e.•・• ZMJ(• = "「"= 30\24.Z1 = Z2. fVlhfiU 卜!I AB丄B(\«C±CD.••• Z/VW=ZiWD = 90\乂肚〃CF・:.ZEBC-ZBCF.•・• ZAUC-ZEIX^ZBCD-ZBCF.UHZ1-Z2.25.Zl = Z2.FF^to 下i由Z4 +NAM = 180°■知AD"B(\ 所PXZPB(?=Z1.Zill BQ丄Ci).EE丄mi所以ZJ丿E(・一Z2, 8FWZI-Z2.。
七年级数学下册第二章相交线与平行线单元测试卷(一)班级姓名学号得分评卷人得分一、单选题(注释)1、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3002、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A.是同位角且相等B.不是同位角但相等;C.是同位角但不等D.不是同位角也不等3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能()A.相等B.互补C.相等或互补D.相等且互补4、下列说法中,为平行线特征的是()①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A.①B.②③C.④D.②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=()A.60°B.50°C.30°D.20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为()A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7、如图,由A到B 的方向是()A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°8、如图,由AC∥ED,可知相等的角有()A.6对B.5对C.4对D.3对9、如图,直线AB、CD交于O,EO⊥AB于O,∠1与∠2的关系是( )更多功能介绍ykw18/zt/A.互余B.对顶角C.互补D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。
北师大版七年级数学下册第二章达标测试卷-带参考答案一、选择题(本大题共10个小题,每小题3 分,共30 分,在每个小题给出的四个选项中,只有一项符合题目要求)1.在同一平面内两条直线的位置关系是()A.相交B.平行C.平行或相交D.以上答案都不对2.下列各图中,∠1与∠2是对顶角的是()3.如图,下列各组角中,互为同位角的是()A.∠2和∠3 B.∠1和∠3C.∠3和∠4 D.∠2和∠5(第3题)(第4题)4.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠PQ的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短5.下列各图能表示点A到BC的距离的是()6.如图,DE∥BC,DF∥AC,∠C=72°,则∠EDF的度数是() A.70°B.72°C.80°D.82°(第6题)(第7题)7.如图,下列条件能判定直线l1∥l2的是()A.∠1=∠2 B.∠1+∠3=180°C.∠4=∠5 D.∠1+∠2=180°8.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC 与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°(第8题)(第9题)9.如图,用尺规作出∠OBF=∠AOB,所画痕迹弧MN是()A.以点B为圆心,OD长为半径的弧B.以点C为圆心,DC长为半径的弧C.以点E为圆心,OD长为半径的弧D.以点E为圆心,DC长为半径的弧10.如图,若∠1=∠2,DE∥BC,则下列结论中:①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC;⑥∠FGC=∠DEC+∠DCE,正确的结论是()A.①②③B.①②⑤⑥C.①③④⑥ D.③④⑥(第10题)(第11题)二、填空题(本大题共5个小题,每小题3 分,共15 分)11.如图是一把剪刀,若∠AOB=41°,则∠COD=________.12.如图,直线AB,CD相交于点O,OE⊥AB,∠COB=145°,则∠DOE=________.(第12题)(第13题)13.如图,直线a与直线b交于点A,∠1=120°,∠2=40°.若要使直线b与直线c平行,则至少应将直线b绕点A逆时针旋转________°.14.如图,把一张长方形纸片沿AB折叠,若∠1=75°,则∠2的度数为________.(第14题)(第15题)15.如图,已知AB∥DE,∠B=135°,∠C=60°,则∠D的度数为________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明或演算步骤) 16.(9分)如图,码头、火车站分别位于A,B两点,直线a和b分别表示铁路与河岸.(1)从火车站到码头怎样走最近?画图并说明理由;(第16题)(2)从码头到铁路怎样走最近?画图并说明理由;(3)从火车站到河岸怎样走最近?画图并说明理由.17.(6分)已知一个角的余角是这个角的补角的13,求这个角的度数.第3 页共10 页18.(8分)如图,已知三角形ABC,D为AB的中点,请你解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据(尺规作图);(2)度量DE,BC的长度,直接写出DE,BC之间有何数量关系.(第18题)19.(8分)如图,已知∠1+∠2=180°,∠3=∠B.试说明:∠EDG+∠DGC=180°.(第19题)20.(9分)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)请判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE,∠1=70°,求∠F AB的度数.(第20题)21.(10分)如图,直线AB,CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD∶∠BOC=1 ∶5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.(第21题)第5 页共10 页22.(12分)综合与探究:如图,已知∠BAD+∠ADC=180°,AE平分∠BAD,CD与AE相交于点F,DG交BC的延长线于点G,∠CFE=∠AEB.(1)若∠B=87°,求∠DCG的度数;(2)AD与BC是什么位置关系?请说明理由;(3)若∠DAB=α,∠DGC=β,直接写出当α,β满足什么数量关系时,AE∥DG.(第22题)23.(13分)综合与实践:【问题情境】如图①,AB∥CD,∠P AB=130°,∠PCD=120°,求∠APC的度数.小明的思路是过点P向右作射线PE∥AB,利用平行线的性质求∠APC的度数.【初步探究】(1)按小明的思路,求∠APC的度数;【问题迁移】(2)如图②,AB∥CD,点P在B,D两点之间运动(不与点B,D重合),记∠P AB=α,∠PCD=β,则∠APC与α,β之间有何数量关系?请说明理由;【联想拓展】(3)在(2)的条件下,如果点P在线段OB,射线DM上运动(点P与点O不重合),其余条件不变,请你直接写出∠APC与α,β之间的数量关系;【解决问题】(4)我们发现借助构造平行线的方法可以解决许多问题,随着以后的学习你还会发现平行线的更多用途.试构造平行线解决以下问题:如图③,已知三角形ABC,试说明:∠A+∠B+∠C=180°.(第23题)第7 页共10 页答案一、1.C 2.A 3.B 4.D 5.B 6.B7.B8.C9.D10.B二、11.41°12.55°思路点拨:根据对顶角相等可得∠AOD=145°,再根据垂直的定义可得∠AOE=90°,最后根据角的和差关系即可得到答案.13.2014.30°15.105°三、16.解:(1)如图,沿BA走.理由:两点之间线段最短.(2)如图,沿AC走.理由:垂线段最短.(3)如图,沿BD走.理由:垂线段最短.(第16题)17.解:设这个角的度数为x°,则它的余角为(90-x)°,补角为(180-x)°,由题意得90-x=13(180-x)解得x=45.所以这个角的度数是45°.18.解:(1)如图.依据:同位角相等,两直线平行.(第18题)(2)DE=12BC.19.解:因为∠1+∠2=180°,∠1+∠DFE=180°所以∠2=∠DFE,所以EF∥AB,所以∠3=∠ADE.又因为∠3=∠B,所以∠B=∠ADE所以DE∥BC,所以∠EDG+∠DGC=180°. 20.解:(1)AD∥EC.理由:因为∠1=∠BDC,所以AB∥CD,所以∠2=∠ADC.又因为∠2+∠3=180°,所以∠ADC+∠3=180°所以AD∥EC.(2)因为DA平分∠BDC所以∠ADC=12∠BDC=12∠1=12×70°=35°.所以∠2=∠ADC=35°,因为AD∥EC所以∠F AD=∠AEC.又因为CE⊥AE,所以∠F AD=∠AEC=90°. 所以∠F AB=∠F AD-∠2=90°-35°=55°. 21.解:(1)因为∠AOC=36°,∠COE=90°所以∠BOE=180°-∠AOC-∠COE=54°.(2)因为∠BOD∶∠BOC=1∶5所以∠BOD=180°×11+5=30°,所以∠AOC=30°所以∠AOE=∠AOC+∠COE=30°+90°=120°.(3)∠EOF的度数是30°或150°.22.解:(1)因为∠BAD+∠ADC=180°所以AB∥CD,所以∠DCG=∠B=87°.(2)AD∥BC.理由如下:因为AB∥CD所以∠BAF=∠CFE.因为AE平分∠BAD,所以∠BAF=∠DAF所以∠DAF=∠CFE.因为∠CFE=∠AEB所以∠DAF=∠AEB,所以AD∥BC.(3)当α=2β时,AE∥DG.23.解:(1)因为AB∥CD,PE∥AB,所以PE∥CD,∠P AB+∠APE=180°所以∠PCD+∠CPE=180°.因为∠P AB=130°,∠PCD=120°所以∠APE=50°,∠CPE=60°所以∠APC=∠APE+∠CPE=50°+60°=110°.(2)∠APC=α+β.理由:如图①,过点P作PG∥AB交AC于点G则∠APG=∠P AB=α.因为AB∥CD,所以PG∥CD,所以∠CPG=∠PCD=β所以∠APC=∠APG+∠CPG=α+β.第9 页共10 页(第23题)(3)∠APC=|α-β|.(4)如图②,在BC边(端点除外)上任取一点D,过点D作DN∥AC交AB于点N,作DF∥AB交AC于点F.因为DN∥AC,所以∠C=∠BDN,∠CFD=∠NDF.因为DF∥AB,所以∠B=∠CDF,∠A=∠CFD所以∠A=∠NDF.因为∠BDN+∠NDF+∠CDF=180°所以∠A+∠B+∠C=180°.。
第二章 相交线与平行线单元测试一、选择题l 、如果一个角的补角是 150,那么这个角的余角的度数是( )A.30B.60C.90D.1202、如图,下列条件中,能判定DE//AC 的是( )A.EDC=EFC ∠∠B.AFE ACD ∠=∠C.34∠=∠D.12∠=∠3、如图,//,AB CD 下列结论中错误的是( )A.12∠=∠B.25180∠+∠=C.23180∠+∠=D.34180∠+∠=4、如图,//D,1128,AB C ∠=FG 平分,EFD ∠则2∠的度数是( )A.46B.23C.26D.24 5、如图,,//,AD BC DE AB ⊥则B ∠和1∠的关系是( )A.相等B.互补C.互余D.不能确定6、将直尺与三角尺按如图所示的方式叠放在一起,在图中标记的角中,与∠1互余的角有( )个.A.2B.3C. 4D.57、如图,把矩形ABCD 沿EF 对折,若150,∠=则FED ∠等于( )A.50B.80C.65D.1158、已知两个角的两边互相平行,这两个角的差是o 40,则这两个角分别是( )A.140100和B.11070和C.7030和D.150110和9、一辆汽午在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A.第一次右拐60,第二次左拐120 B.第一次左拐60,第二次右拐60 C.第一次左拐60,第二次左拐120 D.第一次右拐60,第二次右拐6010、把一张对面互相平行的纸条折成如图那样,EF 是折痕,若32EFB ∠=则下列结论正确有( )(1)32 (2)116'C EF AEC ∠=∠=(3)D 116 (4)=64BF BGE ∠=∠A 、1个B 、2个C 、3个D 、4个 二、填空题11、如图,已知直线a b 、被直线c 所截,//,1130,a b ∠=则2∠= .12、如图,//,AB CD 如果2,DHG AGE ∠=∠则DHG ∠= .13、一个角的余角是这个角的补角的1,3则这个角是 度.14、如图,40,60,ABC ACB ∠=∠=BO CO 、平分ABC ∠和ACB ∠,DE 过O 点,且//DE BC ,则BOC ∠= .15、如图,已知//,70AB DE B ∠=,CM 平分,BCE CN CM ∠⊥,那么DCN ∠= .16、如图,//,120,30AB CD BAE DCE ∠=∠=,则AEC ∠= .17、如图,直线AB 、CD 、EF 相交于点O ,140,70,AOD DOE ∠=∠=则AOF ∠= . 18、如图,DB 平分,//,80,ADE DE AB CDE ∠∠=则ABD ∠= ,A ∠= . 19、如图, 已知////,60,10,AB CD EF B D ∠=∠=EG 平分BED ∠,则GEF ∠= .20、如图,已知//,AB CD ABE ∠和CDE ∠的平分线相交于F ,140,E ∠=则BFD ∠的度数为 . 三、作图题(要求必须用尺规作图,不写作法,留下作图痕迹,要有结论)21、如图,一块大的三角板ABC ,D 是AB 上一点,现要求过点D 割出一块小的三角板ADE ,使//,DE BC 请作出DE.四、证明题22、已知,如图,//,,701150,EF BC A D AOB C ∠=∠∠=∠+∠=,求B ∠的度数.23、已知:如图,//D,D AC B A ∠=∠,求证:.E F ∠=∠24、如图,已知//,AB CD 猜想图1、图2、图3中,,B BED D ∠∠∠之间有什么关系?请用等式表示出它们的关系。
北师大版七年级数学下册单元测试题含答案全套(含期末试题,共7套)第一章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分) 1.计算(-x 2y)3的结果是( )A .x 6y 3B .x 5y 3C .-x 6y 3D .-x 2y 3 2.下列运算正确的是( )A .x 2+x 2=x 4B .(a -b)2=a 2-b 2C .(-a 2)3=-a 6D .3a 2·2a 3=6a 6 3.花粉的质量很小,一粒某种植物花粉的质量约为0.000 037 mg ,已知1 g =1 000 mg ,那么0.000 037 mg 用科学记数法表示为( )A .3.7×10-5 gB .3.7×10-6 gC .3.7×10-7 gD .3.7×10-8 g 4.在下列计算中,不能用平方差公式计算的是( ) A .(m -n)(-m +n) B .()x 3-y 3()x 3+y 3 C .(-a -b)(a -b) D .()c 2-d 2()d 2+c 25.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m6.若3x =4,9y =7,则3x -2y 的值为( )A .47B .74C .-3D .277.如果x +m 与x +3的乘积中不含x 的一次项,则m 的值为( ) A .-3 B .3 C .0 D .1 8.若a =-0.32,b =(-3)-2,c =⎝⎛⎭⎫-13-2,d =⎝⎛⎭⎫-130,则( ) A .a <b <c <d B .a <b <d <c C .a <d <c <b D .c <a <d <b9.如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为(a +1)cm 的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )(第9题)A .(2a 2+5a)cm 2B .(6a +15)cm 2C .(6a +9)cm 2D .(3a +15)cm 2 10.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( ) A .2 B .4 C .6 D .8二、填空题(每题3分,共24分) 11.计算:(2a)3·(-3a 2)=________.12.若x +y =5,x -y =1,则式子x 2-y 2的值是________. 13.计算:(-2)2 016+(-2)2 017=________.14.若(a 2-1)0=1,则a 的取值范围是________.16.已知x 2-x -1=0,则代数式-x 3+2x 2+2 018的值为__________. 17.如果()2a +2b +1()2a +2b -1=63,那么a +b 的值为________. 18.已知a +1a =5,则a 2+1a2的结果是________.三、解答题(第19题12分,第20题4分,第26题10分,其余每题8分,共66分)19.计算: (1)-23+13(2 018+3)0-⎝⎛⎭⎫-13-2; (2)992-69×71;(3)⎝⎛⎭⎫52x 3y 3+4x 2y 2-3xy ÷(-3xy); (4)(-2+x)(-2-x);(5)(a +b -c)(a -b +c); (6)(3x -2y +1)2.20.先化简,再求值:[(x 2+y 2)-(x +y)2+2x(x -y)]÷4x ,其中x -2y =2.21.(1) 已知a +b =7,ab =12.求下列各式的值: ①a 2-ab +b 2;②(a -b)2.(2)已知a =275,b =450,c =826,d =1615,比较a ,b ,c ,d 的大小.22.先阅读再解答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:________________;(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.(第22题)23.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.24.王老师家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米x元,木地板的价格为每平方米3x元,那么王老师需要花多少钱?(第24题)25.利用我们学过的知识,可以导出下面这个形式优美的等式: a 2+b 2+c 2-ab -bc -ac =12[(a -b)2+(b -c)2+(c -a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你检验这个等式的正确性;(2)若a =2 016,b =2 017,c =2 018,你能很快求出a 2+b 2+c 2-ab -bc -ac 的值吗?26.探索:(x -1)(x +1)=x 2-1; (x -1)(x 2+x +1)=x 3-1; (x -1)(x 3+x 2+x +1)=x 4-1; (x -1)(x 4+x 3+x 2+x +1)=x 5-1; …(1)试写出第五个等式;(2)试求26+25+24+23+22+2+1的值;(3)判断22 017+22 016+22 015+…+22+2+1的值的个位数字是几.答案一、1.C2.C 点拨:A .x 2+x 2=2x 2,错误;B .(a -b)2=a 2-2ab +b 2,错误;C .(-a 2)3=-a 6,正确;D .3a 2·2a 3=6a 5,错误;故选C .3.D 点拨:1 mg =10-3 g ,将0.000 037 mg 用科学记数法表示为3.7×10-5×10-3=3.7×10-8 g .故4.A 点拨:A 中m 和-m 符号相反,-n 和n 符号相反,而平方差公式中需要有一项是相同的,另一项互为相反数.5.D 点拨:因为a +b =m ,ab =-4,所以(a -2)(b -2)=ab +4-2(a +b)=-4+4-2m =-2m.故选D .6.A 点拨:3x-2y=3x ÷32y =3x ÷9 y =47.故选A .7.A 点拨:(x +m)(x +3)=x 2 +(3+m)x +3m ,因为乘积中不含x 的一次项.所以m +3=0.所以m =-3.故选A .8.B9.B 点拨:(a +4)2-(a +1)2=a 2+8a +16-(a 2+2a +1)=a 2+8a +16-a 2-2a -1=6a +15(cm 2),故选B .10.C 点拨:(2+1)(22+1)(24+1)(28+1)+1 =(2-1)(2+1)(22+1)(24+1)(28+1)+1 =(22-1)(22+1)(24+1)(28+1)+1 =(24-1)(24+1)(28+1)+1 =(28-1)(28+1)+1 =216-1+1 =216.因为216的末位数字是6,所以原式末位数字是6. 二、11.-24a 5 12.5 13.-22 016 14.a ≠±1 15.25 16. 2 019 点拨:由已知得x 2-x =1,所以-x 3+2x 2+2 018=-x(x 2-x)+x 2+2 018=-x +x 2+2 018=2 019.17.±4 点拨:因为()2a +2b +1()2a +2b -1=()2a +2b 2-1=63,所以2a +2b =±8.所以a +b =±4. 18.23 点拨:由题意知⎝⎛⎭⎫a +1a 2=25,即a 2+1a 2+2=25,所以 a 2+1a2=23.三、19.解 :(1)原式=-8+13-9=-17+13=-1623.(2)原式=(100-1)2-(70-1)×(70+1)=10 000-200+1-4 900+1=4 902. (3)原式=-56x 2y 2-43xy +1.(4)原式=(-2)2-x 2=4-x 2.(5)原式=a 2-()b -c 2=a 2-b 2-c 2+2bc.(6)原式=[(3x -2y)+1]2=(3x -2y)2+2(3x -2y)+1 =9x 2+4y 2-12xy +6x -4y +1.20.解:原式=(x 2+y 2-x 2-2xy -y 2+2x 2-2xy)÷4x =(2x 2-4xy)÷4x =12x -y.因为x -2y =2, 所以12x -y =1.②(a -b)2=(a +b)2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b)2-(a -b)2=4ab ;②a 2+b 2=(a +b)2-2ab =(a -b)2+2ab.解答本题关键是不求出a ,b 的值,主要利用完全平方公式的整体变换求式子的值.(2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,100>78>75>60,所以2100>278>275>260. 所以b >c >a >d.(第22题)22.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2 (2)如图.(所画图形不唯一)23.解:(x 2+px +8)(x 2-3x +q)=x 4-3x 3+qx 2+px 3-3px 2+pqx +8x 2-24x +8q =x 4+(p -3)x 3+(q -3p +8)x 2+(pq -24)x +8q. 因为展开式中不含x 2和x 3项, 所以p -3=0,q -3p +8=0. 解得p =3,q =1.24.解:(1)卧室的面积是2b(4a -2a)=4ab(m 2). 厨房、卫生间、客厅的面积和是b·(4a -2a -a)+a·(4b -2b)+2a·4b =ab +2ab +8ab =11ab(m 2),即木地板需要4ab m 2,地砖需要11ab m 2.(2)11ab·x +4ab·3x =11abx +12abx =23abx(元). 即王老师需要花23abx 元.25.解:(1)等式右边=12(a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2)=12(2a 2+2b 2+2c 2-2ab -2bc -2ac)=a 2+b 2+c 2-ab -bc -ac =等式左边,所以等式是成立的.(2)原式=12[(2 016-2 017)2+(2 017-2 018)2+(2 018-2 016)2]=3.26.解:(1)(x -1)(x 5+x 4+x 3+x 2+x +1)=x 6-1.(2)26+25+24+23+22+2+1=(2-1)×(26+25+24+23+22+2+1)=27-1=127. (3)22 017+22 016+22 015+…+22+2+1=(2-1)(22 017+22 016+22 015+…+22+2+1) =22 018-1. 2 018÷4=504……2,所以22 018的个位数字是4.所以22 018-1的个位数字是3,即22 017+22 016+22 015+…+22+2+1的值的个位数字是3.(120分,90分钟)题 号 一 二 三 总 分一、选择题(每题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是()2.下列作图能表示点A到BC的距离的是()3.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个(第5题)(第6题)(第7题)6.如图,AB∥CD,EF⊥CD,FG平分∠EFC,则()A.∠1<∠2 B.∠1>∠2 C.∠1=∠2 D.不能确定7.如图,已知∠B+∠DAB=180°,AC平分∠DAB,如果∠C=50°,那么∠B等于()A.50°B.60°C.70°D.80°8.如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()(第8题)(第9题)(第10题)9.如图,AB∥CD,CD∥EF,则∠BCE等于()A. ∠2-∠1B. ∠1+∠2 C.180°+∠1-∠2 D.180°-∠1+∠210.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n等于()A.180°n B.(n+1)·180°C.(n-1)·180°D.(n-2)·180°二、填空题(每题3分,共24分)11.尺规作图是指用____________________________画图.12.如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=________.(第12题)(第13题)(第14题)13.如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:______________________________.14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.15.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a________c.若a∥b,b∥c,则a________c.若a∥b,b⊥c,则a________c.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.(第16题)(第17题)(第18题)17.如图,某煤气公司安装煤气管道,他们从点A 处铺设到点B 处时,由于有一个人工湖挡住了去路,需要改变方向经过点C ,再拐到点D ,然后沿与AB 平行的DE 方向继续铺设.已知∠ABC =135°,∠BCD =65°,则∠CDE =________.18.如图,沿虚线剪去长方形纸片相邻的两个角,使∠1=115°,则∠2=________. 三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.已知一个角的余角比它的补角的23还小55°,求这个角的度数.20.如图,已知AD ∥BC ,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:(第20题)解:因为AD ∥BC(已知),所以∠1=∠3( ). 因为∠1=∠2(已知), 所以∠2=∠3.所以BE ∥________( ). 所以∠3+∠4=180°( ).21.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∠DOE =4 1.求∠AOF 的度数.(第21题)22.将一副三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.(第22题)23.如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP=∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.(第23题)24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.(第24题)25.如图,已知BE平分∠ABD,DE平分∠BDC,且∠EBD+∠EDB=90°.(1)试说明:AB∥CD;(2)H是BE的延长线与直线CD的交点,BI平分∠HBD,写出∠EBI与∠BHD的数量关系,并说明理由.(第25题)答案一、1.C 2.B 3.B 4.B 5.C 6.C7.D8.C9.C(第10题)10.C点拨:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥A n C,所以A3E∥A2D∥…∥A1B∥A n C.所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,….所以∠A1+∠A1A2A3+…+∠A n-1A n C =(n-1)·180°.二、11.圆规和没有刻度的直尺12. 105°13.垂线段最短 14.50° 点拨:因为AB ∥CD ,所以∠1=∠AGF.因为∠AGF 与∠EGB 是对顶角,所以∠EGB =∠AGF.故∠EGB =50°.15.∥;∥;⊥ 16.90° 点拨:因为AB ∥CD ,所以∠BAC +∠ACD =180°.因为CE ,AE 分别平分∠ACD ,∠CAB ,所以∠1+∠2=90°.(第17题)17.110° 点拨:如图,过点C 作CF ∥AB ,因为AB ∥DE ,所以DE ∥CF.所以∠CDE =∠FCD.因为AB ∥CF ,∠ABC =135°,所以∠BCF =180°-∠ABC =45°.又因为∠FCD =∠BCD +∠BCF ,∠BCD =65°,所以∠FCD =110°.所以∠CDE =110°.故填110°.(第18题)18.155° 点拨:过E 作EF ∥AB ,如图所示.因为AB ∥CD , 所以EF ∥CD.所以∠1+∠3=∠2+∠4=180°. 所以∠3=180°-115°=65°. 所以∠4=90°-∠3=90°-65°=25°. 所以∠2=180°-∠4=180°-25°=155°.三、19.解:设这个角的度数为x ,依题意有23(180°-x)-55°=90°-x ,解得x =75°.故这个角的度数为75°.20.两直线平行,内错角相等;DF ;同位角相等,两直线平行;两直线平行,同旁内角互补21.解:因为OE 平分∠BOD , 所以∠DOE =∠EOB.又因为∠AOD ∠DOE =41,∠AOD +∠DOE +∠EOB =180°, 所以∠DOE =∠EOB =180°×16=30°,∠AOD =120°.所以∠COB =∠AOD =120°. 因为OF 平分∠COB , 所以∠BOF =60°. 所以∠AOF =180°-60°=120°. 22.解:(1)因为CF 平分∠DCE , 所以∠1=∠2=12∠DCE.因为∠DCE =90°, 所以∠1=45°. 因为∠3=45°, 所以∠1=∠3.所以CF ∥AB(内错角相等,两直线平行). (2)因为∠D =30°,∠1=45°,所以∠DFC=180°-30°-45°=105°.23.解:过点P作PE∥CD交AD于E,则∠DPE=∠α.因为AB∥CD,所以PE∥AB.所以∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B.24.解:因为AE平分∠BAD,所以∠1=∠2.因为AB∥CD,∠CFE=∠E,所以∠1=∠CFE=∠E.所以∠2=∠E.所以AD∥BC.25.解:(1)因为BE平分∠ABD,DE平分∠BDC,所以∠ABD=2∠EBD,∠BDC=2∠EDB.因为∠EBD+∠EDB=90°,所以∠ABD+∠BDC=2(∠EBD+∠EDB)=180°.所以AB∥CD.(2)∠EBI=12∠BHD.理由如下:因为AB∥CD,所以∠ABH=∠BHD.因为BI平分∠EBD,BH平分∠ABD,所以∠EBI=12∠EBD=12∠ABH=12∠BHD.第三章达标检测卷(120分,90分钟)一、选择题(每题3分,共24分)1.在利用太阳能热水器加热水的过程中,热水器的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.气温y(℃)随高度x(km)的变化而变化的情况如下表,由表可知,气温y随着高度x的增大而()A.升高B.降低C.不变D.以上都不对3.长方形的周长为24 cm,其中一边长为x cm(其中0<x<12),面积为y cm2,则该长方形中y与x 的关系式可以写为()A.y=x2B.y=(12-x)2C.y=(12-x)·x D.y=2(12-x)4.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明离家后他到学校剩下的路程s关于时间t的图象,那么符合小明行驶情况的图象大致是()(第5题)5.如图是某市某一天的气温变化图,根据图象,下列说法中错误的是()A.这一天中最高气温是24 ℃B.这一天中最高气温与最低气温的差为16 ℃C.这一天中2时至14时之间的气温在逐渐升高D.这一天中只有14时至24时之间的气温在逐渐降低6.某校组织学生到距学校6 km的光明科技馆参观.王红准备乘出租车去科技馆,出租车的收费标准如下表:里程数收费/元3 km以下(含3 km) 8.003 km以上每增加1 km 1.80则收费y(元)与出租车行驶里程数x(km)(x≥3)之间的关系式为()A.y=8x B.y=1.8x C.y=8+1.8x D.y=2.6+1.8x7.均匀地向如图所示的容器中注满水,能反映在注水过程中水面高度h随时间t变化的图象的是()(第7题)8.A,B两地相距20 km,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系.下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是()A.1 B.2 C.3 D.4(第8题)(第11题)(第12题)(第13题)二、填空题(每题5分,共30分)9.同一温度的华氏度数y()与摄氏度数x(℃)之间的关系是y=95x+32.如果某一温度的摄氏度数是25 ℃,那么它的华氏度数是________.10.小雨画了一个边长为3 cm的正方形,如果将正方形的边长增加x cm,那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为______________.11.如图是甲、乙两名运动员在自行车比赛中所走路程与时间的关系图象,则甲的速度________乙的速度(用“>”“=”或“<”填空).12.小明早晨从家骑车到学校,先上坡,后下坡,行驶情况如图所示,如果返回时上、下坡的速度与去学校时上、下坡的速度相同,那么小明从学校骑车回家用的时间是________.13.某航空公司行李的托运费按行李的质量收取,30 kg以下免费,30 kg及以上按图中所示的关系来计算,若某人行李的质量为200 kg,则他需要付托运费________.14.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同).一个进水管和一个出水管的进出水速度如图①所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图②所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是________.(第14题)三、解答题(15~17题每题10分,其余每题12分,共66分)15.下表是佳佳往表妹家打长途电话的收费记录:时间/min 1 2 3 4 5 6 7电话费/元0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)若佳佳的通话时间是10 min,则需要付多少电话费?16.如图表示某市2017年6月份某一天的气温随时间变化的情况,请观察此图回答下列问题:(第16题)(1)这天的最高气温是多少摄氏度?(2)这天共有多少个小时的气温在31 ℃以上?(3)这天什么时间范围内气温在上升?(4)请你预测一下,次日凌晨1时的气温大约是多少摄氏度?17.张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?(第17题)18.如图,一个半径为18 cm的圆,从中心挖去一个正方形,当挖去的正方形的边长由小变大时,剩下部分的面积也随之发生变化.(1)若挖去的正方形边长为x(cm),剩下部分的面积为y(cm2),则y与x之间的关系式是什么?(2)当挖去的正方形的边长由1 cm变化到9 cm时,剩下部分的面积由________变化到________.(第18题)19.弹簧挂上物体后会伸长.已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量/kg0 1 2 3 4 5 6 7弹簧的长度/cm12 12.5 13 13.5 14 14.5 15 15.5(1)当所挂物体的质量为3 kg时,弹簧的长度是________;(2)如果所挂物体的质量为x kg,弹簧的长度为y cm,根据上表写出y与x的关系式;(3)当所挂物体的质量为5.5 kg时,请求出弹簧的长度;(4)如果弹簧的最大长度为20 cm,则该弹簧最多能挂质量为多重的物体?20.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪家超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本练习本?答案一、1.B 2.B 3.C 4.D5.D 点拨:由题图可知,这一天中气温在逐渐降低的时段有0时至2时和14时至24时,故选D . 6.D 点拨:由题意知,当出租车行驶里程数x ≥3时,y =8+1.8(x -3)=1.8x +2.6,故选D . 7.A8.C 点拨:①③④正确,②应为乙出发2 h 后追上甲.二、9.77 点拨:将x =25代入关系式可得y =95×25+32=45+32=77,故它的华氏度数是77 .10.y =x 2+6x 点拨:边长为3 cm 的正方形的面积是9 cm 2,边长为(x +3)cm 的正方形的面积为(3+x)2 cm 2,所以面积的增加值y =(3+x)2-9=x 2+6x.11.>12.37.2 min 点拨:由题图可知,上坡速度为3 600÷18=200(m /min ),下坡速度为(9 600-3 600)÷(30-18)=500(m /min ),返回途中,上、下坡的路程刚好相反,所用时间为3 600÷500+(9 600-3 600)÷200=37.2(min ).13.340元14.③ 点拨:①0时至1时开了一个进水管,一个出水管,②1时至4时三管齐开.三、15.解:(1)反映了电话费与通话时间之间的关系;其中通话时间是自变量,电话费是因变量. (2)设电话费为y 元,通话时间为t min .则由题意可知,y 与t 之间的关系式为y =0.6t ,故当t =10时,y =6.所以需付6元电话费.16.解:(1)37 ℃. (2)9 h . (3)3时至15时. (4)25 ℃.(答案不唯一,合理即可) 17.解:(1)体育场离张阳家2.5 km .(2)因为2.5-1.5=1(km ),所以体育场离文具店1 km .因为65-45=20(min ),所以张阳在文具店逗留了20 min .(3)文具店到张阳家的距离为1.5 km ,张阳从文具店到家用的时间为100-65=35(min ),所以张阳从文具店到家的速度为1.5÷3560=187(km /h ).18.解:(1)剩下部分的面积=圆的面积-正方形的面积,所以y 与x 之间的关系式为y =πr 2-x 2=324π-x 2.(2)(324π-1)cm 2 (324π-81)cm 2 19.解:(1)13.5 cm(2)由表格可知,y 与x 之间的关系式为y =12+0.5x.(3)当x =5.5时,y =12+0.5×5.5=14.75,即弹簧的长度为14.75 cm .(4)当y =20时,20=12+0.5x ,解得x =16,故该弹簧最多能挂16 kg 重的物体. 20.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元), 在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市买收费一样.(2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .所以当y 甲=24时,24=0.7x 甲+3,x 甲=30; 当y 乙=24时,24=1720x 乙,x 乙≈28.所以拿24元钱最多可以买30本练习本(在甲超市购买).第四章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.下列各图中,作出△ABC的AC边上的高,正确的是()3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于()A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=55.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充(第3题)(第5题)(第6题)(第8题)6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是() A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF 的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)(第9题)(第10题)二、填空题(每题3分,共24分)11.桥梁上的拉杆,电视塔的底座,都是三角形结构,而活动挂架是四边形结构,这是分别利用三角形和四边形的________________________________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD =CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.(第12题)(第13题)(第14题)13.如图,E 点为△ABC 的边AC 的中点,CN ∥AB ,若MB =6 cm ,CN =4 cm ,则AB =________. 14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB ,需要说明△C′O′D′≌△COD ,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC 的三边长分别为a ,b ,c ,若a =3,b =4,则c 的取值范围是____________;已知四边形ABCD 的四边长分别为a ,b ,c ,d ,若a =3,b =4,d =10,则c 的取值范围是____________.16.如图,在△ABC 中,AD 是BC 边上的高,BE 是AC 边上的高,且AD ,BE 交于点F ,若BF =AC ,CD =3,BD =8,则线段AF 的长度为________.(第16题)(第17题)(第18题)17.如图是由相同的小正方形组成的网格,点A ,B ,C 均在格点上,连接AB ,AC ,则∠1+∠2=________.18.如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD),若∠D =115°,则∠B =________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分) 19.在△ABC 中,AD 是角平分线,∠B =54°,∠C =76°. (1)求∠ADB 和∠ADC 的度数; (2)若DE ⊥AC ,求∠EDC 的度数.(第19题)20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.(第20题)21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD-AB.(第21题)22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.(第22题)23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.(第23题)24.如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.(第24题)25.已知点P是Rt△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE与QF的数量关系,并说明理由.(第25题)答案一、1.A2.C点拨:过顶点B向AC边所在的直线作垂线,顶点和垂足之间的线段就是高,只有选项C正确,故选C.3.A点拨:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF =6.故选A.4.D5.B点拨:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C点拨:因为∠A=60°,所以∠ABC+∠ACB=120°.因为BE,CD分别是∠ABC,∠ACB的平分线,所以∠CBE=12∠ABC,∠BCD=12∠BCA.所以∠CBE+∠BCD=12(∠ABC+∠BCA)=60°.所以∠BFC=180°-60°=120°.故选C.7.C8.B9.B点拨:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B点拨:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0,△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1,所以△ABC 的三个顶点和它内部的点P 1,P 2,P 3,…,P n ,把△ABC 分成的互不重叠的小三角形的个数=3+2(n -1)=2n +1.二、11.稳定性和不稳定性12.ASA 点拨:由题意可知,∠ECD =∠ACB ,∠EDC =∠ABC =90°,CD =CB ,故可用ASA 说明两三角形全等.13.10 cm 点拨:由CN ∥AB ,点E 为AC 的中点,可得∠EAM =∠ECN ,AE =CE.又因为∠AEM =∠CEN ,所以△AEM ≌△CEN.所以AM =CN =4 cm .所以AB =AM +MB =4+6=10(cm ).14.SSS15.1<c<7;3<c<1716.5 点拨:由已知可得,∠ADC =∠BDF =∠BEC =90°,所以∠DAC =∠DBF.又因为AC =BF ,所以△ADC ≌△BDF.所以AD =BD =8,DF =DC =3.所以AF =AD -DF =8-3=5.(第17题)17.90° 点拨:如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE , 所以△ADC ≌△BEA. 所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°. 18.65° 点拨:过点C 作CF ⊥AD ,交AD 的延长线于点F. 因为AC 平分∠BAD , 所以∠CAF =∠CAE.又因为CF ⊥AF ,CE ⊥AB , 所以∠AFC =∠AEC =90°. 在△CAF 和△CAE 中, ⎩⎪⎨⎪⎧∠CAF =∠CAE ,∠AFC =∠AEC ,AC =AC ,所以△CAF ≌△CAE(AAS ). 所以FC =EC ,AF =AE. 又因为AE =12(AB +AD),所以AF =12(AE +EB +AD),即AF =BE +AD.又因为AF =AD +DF ,所以DF =BE. 在△FDC 和△EBC 中,⎩⎪⎨⎪⎧CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC(SAS ).所以∠FDC =∠EBC. 又因为∠ADC =115°,三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°. 因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°. 20.解:能作出两个等腰三角形,如图所示.(第20题)21.解:因为AB =AC ,所以AD -AB =AD -AC =CD. 因为BD -BC<CD ,所以BD -BC<AD -AB.(第22题)22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离. (3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO , 所以△AOB ≌△AOD. 所以AD =AB.23.解:△AEM ≌△ACN ,△BMF ≌△DNF ,△ABN ≌△ADM.(任写其中两对即可) 选择△AEM ≌△ACN , 因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD. 所以∠EAM =∠CAN.在△AEM 和△ACN 中,⎩⎪⎨⎪⎧∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△ACN(ASA ).选择△ABN ≌△ADM ,因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D.又因为∠BAN =∠DAM ,所以△ABN ≌△ADM(ASA ). 选择△BMF ≌△DNF ,因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D.又因为∠BAN =∠DAM ,所以△ABN ≌△ADM(ASA ).所以AN =AM.所以BM =DN.又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF(AAS ). (任选一对进行说明即可) 24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°. 因为CD ⊥AB ,所以∠BCD +∠B =90°. 所以∠ECF =∠B.在△ABC 和△FCE 中,∠B =∠ECF ,BC =CE ,∠ACB =∠FEC =90°,所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).(第25题)25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.第五章达标检测卷(120分,90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.下面所给的图中是轴对称图形的是()2.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C =∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个(第2题)(第4题)(第6题)3.下列说法正确的是()A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴4.如图,A,B,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.AC,BC两边高的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处5.如图,在△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°6.如图是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B.10:51 C.10:21 D.15:107.如图,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()(第7题)8.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则△BEC的周长为()A.11 B.12 C.13 D.14(第8题)(第9题)(第10题)9.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上A.65°B.50°C.60°D.57.5°10.如图,已知AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有()个.A.4 B.3 C.2 D.1二、填空题(每题3分,共24分)11.有些字母是轴对称图形,在E,H,I,M,N这5个字母中,是轴对称图形的是__________.12.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第12题)(第13题)(第15题)(第16题)(第17题)13.如图是一个经过改造的台球桌面示意图(该图由相同的小正方形组成),图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入________号球袋.14.等腰三角形一腰上的高与底边所夹的角为α,则这个等腰三角形的顶角为________.15.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E,F为AD上的两点,若△ABC的面积为12,则图中阴影部分的面积是________.16.如图,在直角三角形ABC中,∠B=90°,AD平分∠BAC,交边BC于点D,如果BD=2,AC =6,那么△ADC的面积等于________.17.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC=________.了一个规律.请根据他所发现的规律很快地写出111 111 111×111 111 111=________________________________________________________________________.三、解答题(19题8分,20~21题每题10分,24题14分,其余每题12分,共66分)19.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.(第19题)20.两个城镇A,B与两条公路l1,l2的位置如图所示,电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).(第20题)21.如图,在等边三角形ABC中,∠ABC,∠ACB的平分线相交于点O,作BO,CO的垂直平分线分别交BC于点E和点F.小明说:“E,F是BC的三等分点.”你同意他的说法吗?请说明理由.(第21题)。
第二章综合达标训练卷
相交线与平行线
时间45分钟满分100分一、选择题(每题3分,共45分)
1.在同一平面内两直线的位置关系必是().
A相交B平行 C垂直D相交或平行
2.如图 OC⊥AB于点O,∠1=∠2,则图中互余的角共有(
A.2对
B.3对
C.4对
D.5对
3..下列说法正确的是().
A相等的角是对顶角B对顶角相等
C两条直线相交所成的角是对顶角
D有公共顶点且又相等的角是对顶角
4.下列说法正确的是().
A邻补角是互补的角B锐角小于它的余角
C锐角大于它的余角D. 3 40的角的余角是6 60的角
5.如图直线a, b都与直线l 相交,下列条件中
能说明a // b 的是().
①∠1=∠2②∠2=∠7③∠2=∠8 ④∠1+∠4=1800
A ①②
B ①②③C①②④D①②③④
6.下列说法不正确的是().
A同旁内角相等 ,两直线平行B内错角相等,两直线平行
C.同位角相等,两直线平行D若两个角的和是1800,则这两个角互补
7.在下面的四个图形中∠1和∠2是对顶角的是().
8.如果两个角互余那么这两个角().
A都是锐角B都是钝角
C一个锐角,一个钝角 D都是450的角
9.冰冰婷婷芳芳和琪琪四位同学在做课外作业时,关于,平行线的识别方法提出了四种不同的说法
冰冰:两条直线被第三条直线所截,如果同位角相等那么这两条直线平行;
婷婷:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
芳芳:两条直线被第三条直线所截,那么这两条直线平行;
琪琪:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
他们的说法中正确的共有().
A 1个
B 2个
C 3个
D 4个
10.如图,直线 a,b 被 c 所截, a // b 若∠1= 350,则∠2的大小为().
A. 350
B. 1450
C. 550
D. 1250
11.如图,直线AB 与CD 相交于点O ,EO ⊥CD ,垂足为O ,则图中∠AOE 和∠BOD 的关系是().
A.相等角
B.互为补角
C.对顶角
D.互为余角
12.如图是小鱼做的一道作业题,她拿给小丽看,小丽告诉她其中有一个推理不.正.确.,它是().
A.因为 AB //CD, 所以∠ABC=∠C
B.因为∠1=∠2,所以 AD// BC
C.因为 AD//BC ,所以∠3=∠4
D.因为∠A+∠ADC= 1800,所以 AB // CD
13.如图直线a,b 被直线c 所截,下列说法正确的是().
A当∠1=∠2时一定有a//b
B.当a//b 时一定有∠1=∠2
C.当a//b 时一定有∠1+∠2=1800
D.当a//b 时一定有∠1+∠2=900
14.如图AC//BD, AE//BF,下列结论错误的是().
A.∠A=∠B
B.∠A=∠APB
C.∠B=∠DPE
D.∠A+∠B=1800
15.如图BF ,CD相交于点O,∠D=400,下列说法正确的是().
A.当∠C =400时, AB// CD
B.当∠B =400时, AC //DE
C.当∠E=1200时, CD //EF
D.当∠B OC=1400时,BF //DE
二、填空题(每题3分,共15分)
16.如图∠1=∠2, ∠BAD=570,则∠B= .
17.如图,当∠1=时, AD //BC ;当∠1=时, DC// AB.
18..将两块直角三角尺的直角顶点重合为如图所示的位置若∠AOD=1100,则∠BOC=
.
19.如图AB// CD,∠ABE=1150,则∠ECD= .
20.如图,岛C在岛A的北偏东600方向,在岛B的北偏西450方向,则从岛 C 看A B两岛的视角∠ACB= .
三、解答题(每题8分,共40分)
21.如图AB//CD ,∠1=500,∠D=∠C ,依次求出∠D、∠C、∠B 的度数.
22.如图,如果∠B+∠E =1800 ,且BC// DE ,那么AB与EF平行吗?为什么?
23.如图CD 平分∠ACB, DE// BC,∠AED=600,求∠EDC 的度数.
24.如图AB⊥BC ,BC⊥CD, // CF ,你能判断出∠1 和∠2的关系吗?说明的理由.
25.如图,在四边形ABCD 中∠A=1040-∠2∠ABC=760+∠2,BD⊥CD, EF⊥CD ,垂足分别为D、 F 能判断∠1=∠2吗?试说明理由.。