251平面向量应用举例
- 格式:ppt
- 大小:6.35 MB
- 文档页数:53
2.5 平面向量应用举例1.向量在平面几何中的应用向量在平面几何中的应用主要有以下方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的意义.(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件: .(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件: .(4)求与夹角相关的问题,往往利用向量的夹角公式 .(5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.2.向量在物理中的应用数学中对物理背景问题主要研究下面两类:(1)力向量力向量是具有大小、方向和作用点的向量,它与前面学习的自由向量不同,但力是具有大小和方向的量,在不计作用点的情况下,__ __.(2)速度向量速度向量是具有大小和方向的向量,因而__ __.[知识点拨]向量方法在平面几何中应用的几点说明:(1)要证明两线段平行,如AB ∥CD ,则只要证明存在实数λ≠0,使AB →=λCD →成立,且AB 与CD 无公共点.(2)要证明A 、B 、C 三点共线,只要证明存在一实数λ≠0,使AB →=λAC →.(3)要求一个角,如∠ABC ,只要求向量BA →与向量BC →的夹角即可.1.四边形ABCD 中,若AB →=12DC →,则四边形ABCD 是 ( ) A .平行四边形B .矩形C .菱形D .梯形 2.下列直线与a =(2,1)垂直的是 ( )A .2x +y +1=0B .x +2y +1=0C .x -2y +4=0D .2x -y +4=0 3.已知两个力F 1,F 2的夹角为90°,它们合力大小于10N ,合力与F 1的夹角为60°,则F 1的大小为________N ( )A .53B .10C .5 2D .54.若直线l :mx +2y +6=0与向量(1-m,1)平行,则实数m 的值为__ __.命题方向1 ⇨向量在平面几何中的应用典例1 如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2.求对角线AC 的长.〔跟踪练习1〕如图所示,四边形ABCD 是菱形,AC 和BD 是它的两条对角线,试用向量证明:AC ⊥BD .命题方向2 ⇨向量在物理中的应用典例2 如图,在细绳O 处用水平力F 2缓慢拉起所受重力为G 的物体,绳子与铅垂方向的夹角为θ,绳子所受到的拉力为F 1.(1)求|F 1|、|F 2|随角θ的变化而变化的情况;(2)当|F 1|≤2|G |时,求角θ的取值范围.〔跟踪练习2〕两个力F 1=i +j ,F 2=4i -5j 作用于同一质点,使该质点从点A (20,15)移动到点B (7,0)(其中i 、j 分别是与x 轴、y 轴同方向的单位向量).求:(1)F 1、F 2分别对该质点所做的功;(2)F 1、F 2的合力F 对该质点所做的功.用向量方法探究存在性问题做题时,我们会遇到一些存在性问题、比较复杂的综合问题等等,解决此类问题常常运用坐标法,坐标法就是把向量的几何属性代数化,把对向量问题的处理程序化,从而降低了解决问题的难度.另外,坐标法又是实现把向量问题转化为代数问题的桥梁.因此我们要善于运用坐标法把几何问题、代数问题、向量问题进行相互转化.典例3 在△ABC 中,已知AB =AC =5,BC =6,M 是边AC 上靠近点A 的一个三等分点,试问:在线段BM (端点除外)上是否存在点P ,使得PC ⊥BM ?〔跟踪练习3〕△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .对向量相等的定义理解不清楚典例4 已知在四边形ABCD 中,对角线AC 、BD 相互平分,且AC ⊥BD ,求证:四边形ABCD 是菱形. 〔跟踪练习4〕如右图所示,在正方形ABCD 中,P 为对角线AC 上任一点,PE ⊥AB ,PF ⊥BC ,垂足分别为E 、F ,连接DP 、EF ,求证:DP ⊥EF .1.已知作用在点A (1,1)的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1),则合力F =F 1+F 2+F 3的终点坐标是 ( )A .(8,0)B .(9,1)C .(-1,9)D .(3,1)2.在四边形ABCD 中,若AB →+CD →=0,AC →·BD →=0,则四边形为 ( )A .平行四边形B .矩形C .等腰梯形D .菱形3.过点A (2,3),且垂直于向量a =(2,1)的直线方程为 ( )A .2x +y -7=0B .2x +y +7=0C .x -2y +4=0D .x -2y -4=04.已知△ABC 的重心是G ,CA 的中点为M ,且A 、M 、G 三点的坐标分别是(6,6),(7,4),(163,83),则|BC |为 ( )A .410B .10C .102D .210A 级 基础巩固一、选择题1.若向量OF 1→=(1,1),OF 2→=(-3,-2)分别表示两个力F 1→、F 2→,则|F 1→+F 2→|为 ( )A .(5,0)B .(-5,0)C . 5D .- 52.若四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是 ( )A .正方形B .矩形C .菱形D .直角梯形3.已知点A (-2,0),B (0,0),动点P (x ,y )满足P A →·PB →=x 2,则点P 的轨迹是 ( )A .x 2+y 2=1B .x 2-y 2=1C .y 2=2xD .y 2=-2x4.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值是 ( )A .5B .-5C .32D .-325.点O 是△ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的 ( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高线的交点6.两个大小相等的共点力F 1、F 2,当它们的夹角为90°时,合力大小为20 N ,当它们的夹角为120°时,合力大小为 ( )A .40 NB .102NC .202ND .402N二、填空题7.力F =(-1,-2)作用于质点P ,使P 产生的位移为s =(3,4),则力F 对质点P 做功的是__ __.8.若平面向量α、β满足|α|=1,|β|≤1,且以向量α、β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 .三、解答题9.在△ABC 中,∠C =90°,D 是AB 的中点,用向量法证明CD =12AB . 10.某人骑车以a km/h 的速度向东行驶,感到风从正北方向吹来,而当速度为2a km/h 时,感到风从东北方向吹来,试求实际风速和方向.B 级 素养提升一、选择题1.点P 在平面上做匀速直线运动,速度v =(4,-3),设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(速度单位:m/s ,长度单位:m) ( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10) 2.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为 ( )A .5B .25C .5D .103.已知点O 、N 、P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O 、N 、P 依次是△ABC 的 ( )A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心4.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|P A |2+|PB |2|PC |2= ( ) A .2 B .4 C .5D .10二、填空题5.某人从点O 向正东走30 m 到达点A ,再向正北走303m 到达点B ,则此人的位移的大小是____m ,方向是东偏北____.6.作用于同一点的两个力F 1、F 2的夹角为2π3,且|F 1|=3,|F 2|=5,则F 1+F 2的大小为7.已知:▱ABCD 中,AC =BD ,求证:四边形ABCD 是矩形.8.如图所示,已知▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.。