3-4焊接残余变形
- 格式:ppt
- 大小:5.30 MB
- 文档页数:56
焊接残余变形名词解释
焊接残余变形是指在焊接过程中,由于被焊工件受到不均匀温度场的作用而产生的形状、尺寸变化。
这种变化在焊接过程中或焊接完成后,会残留在焊件上,导致其形状、尺寸与初始状态不一致,这种现象称为焊接残余变形。
焊接残余变形包括瞬时变形和残余变形。
瞬时变形是指在焊接过程中随温度变化而变化的变形,而残余变形则是指被焊工件完全冷却到初始温度时的改变。
焊接残余变形对结构安装精度有很大影响,过大的变形将显著降低结构的承载能力。
因此,在焊接过程中需要采取措施控制变形,如选择合适的焊接工艺、采用反变形法等。
同时,在焊接完成后,也可以采用矫形措施来减小变形。
焊接残余变形的基本形式
(一)收缩变形
这种变形又可具体分为纵向缩短和横向缩短,如图8—1a所示的两块对接钢板,经焊接后。
长度和宽度方向的尺寸都比原来变短。
这种变形是由于焊缝
的纵向收缩和横向收缩引起的。
(二)角变形
这种变形是由于焊缝横截面形状不对称或施焊层次不合理,致使焊缝在板厚度方向上横向收缩量不一致所产生的。
如图8—1b所示V形坡口对接焊后发生了角变形,主要是由于焊缝截面上宽下窄使焊缝的横向收缩量上大下小而引起的。
(三)弯曲变形
这种变形是由于焊件上焊缝布置不对称或焊件断面形状不对称,焊缝的纵向收缩所引起的。
如图8—1c所示,T型梁的焊缝位置位于梁的中心线下方,
焊后由于焊缝纵向收缩,造成了弯曲变形。
(四)波浪变形
薄板气焊时最容易产生波浪变形,如图8—1d所示。
其产生的原因是焊缝的纵向收缩和横向收缩共同作用的结果。
一方面由于焊缝的纵向收缩,使薄板边缘产生压应力,当压应力超过一定数值时,便在薄板边缘出现了波浪形的变形;另一方面由于焊缝的横向收缩引起角变形,这些角变形连贯起来就形成了波浪变形。
(五)扭曲变形
如图8—1e所示,这种变形产生的原因主要是因装配质量不好、工件搁置不当,焊接顺序和焊接方向不合理,致使焊缝纵向收缩和横向收缩不一致所造成的。
一般这种变形在气焊件中很少碰到。
综上所述,焊后焊缝的纵向收缩和横向收缩是引起各种焊接残余变形和焊接残余应力的重要原因。
同时还说明,焊缝的收缩能否转变成各种形式的变形还和焊缝在结构上的位置、焊接顺序和焊接方向以及结构的刚性大小等因素有直接的关系。
焊接残余变形量的估算公式
(1)纵向收缩变形量:
有纵向长焊缝的钢构件,单道焊时,其长度方向的收缩量估算公式为:ΔL=k1·Aw·L/A
其中Aw为焊缝截面积,mm2
A为杆件长度,mm
K1为与焊接方法、材料热膨胀系数、和多层焊层数有关的系数,对于不同焊接方法,系数k1的数值不同:CO2焊,k1=0.043
埋弧焊: k1=0.071~0.07
手工电弧焊: k1=0.048~0.057
当焊缝在构件中的位置相对于中和轴不对称时,焊缝的纵向收缩变形还会使构件弯曲而产生挠度,钢结构单道焊时,由于纵向收缩引起的挠度可用以下公式估算:f=kf·Aw·e·L/(8I) (cm)
式中:e为焊缝到构件中和轴的距离,(cm)
L为杆件长度, cm
Aw为焊缝截面积,cm2
I为杆件截面惯性矩, cm4
Kf为系数(与纵向收缩量公式中k1的数值相同)
(2)横向收缩变形量。
由于影响横向收缩的因素很多,简单的公式不能表达所有因素的影响,因而不同文献提供估算公式各不相
同,可作参考的估算公式如下:
ΔB=0.2Aw/δ+0.05b mm
式中:ΔB对接接头横向收缩量,mm
Aw为焊缝横截面积,mm2
b为根部间隙,mm。
δ为板厚,mm。
对接焊缝垂直于长构件轴线,并与中和轴不对称时,该焊缝的横向收缩也会使长构件产生挠曲,其挠度量则与焊缝布置,焊缝面积以及构件截面形式、刚度有关,不能用单一公式表达。
(3)角变形量:
Δθ=0.07B·hf1.3/δ(rad)
式中B翼缘宽,mm
δ翼缘厚,mm
hf焊脚尺寸,mm。
如何预防和消除焊接残余变形摘要:焊接残余变形的存在,会影响产品生产工艺流程的正常进行,降低产品的承载能力,使产品的尺寸精度和外形达不到设计和使用的要求。
因此,本文从焊接残余变形的种类、变形特点、如何控制及预防等方面,对焊接残余变形的相关知识点,进行了归纳总结。
帮助学生更好地理解和掌握相关知识,为今后的工作打下良好的理论基础。
关键词:焊接残余变形变形种类产生原因消除方法焊接变形和焊接应力同时存在于焊接结构中,焊接残余变形的存在,不仅会影响产品生产工艺流程的正常进行,使产品达不到设计和使用的质量要求,严重时还会使产品产生报废。
因此,理解和掌握生产过程中,产品的变形种类、变形特点、预防和消除的方法在保证产品质量方面,就显得尤为重要。
一、焊接残余变形的种类及影响因素:在焊接结构中,我们按焊接变形对整个结构产生的影响程度,可将焊接变形分为二大类,即整体变形和局部变形。
整体变形通常包括纵向收缩变形、横向收缩变形、弯曲变形和扭曲变形。
局部变形通常包括角变形和波浪变形。
焊接变形的基本形式主要有:收缩变形、角变形、波浪变形和扭曲变形。
其中,收缩变形是在焊接过程中最容易出现的。
1、收缩变形焊件尺寸在焊后缩短的现象称为收缩变形。
它分为纵向收缩变形和横向收缩变形。
1)、纵向收缩变形即沿着焊缝轴线方向上尺寸的收缩。
产生的主要原因是由于焊缝及其附近区域在焊接高温的作用下产生纵向的压缩塑性变形,待焊件冷却后,这些纵向的压缩塑性变形导致焊件沿焊缝长度方向尺寸缩短,即产生了纵向收缩变形。
影响纵向收缩变形的因素主要有构件的长度、截面积、焊接方向、焊接方法、焊接热输入及焊接工艺,其中,最重要的是焊接热输入。
2)、横向收缩变形沿垂直于焊缝轴线方向上尺寸的收缩现象称为横向收缩变形。
产生的主要原因是因为热源附近高温区金属的热膨胀受到约束,产生了塑性应变,熔池凝固后焊缝附近金属开始降温而收缩。
另一方面是焊缝本身的收缩,但其较小,仅占横向收缩总量的10%左右。
防止和减少焊接残余变形与应力的措施随着现代制造业的发展,焊接在各行各业中扮演着至关重要的角色。
无论是航空航天、汽车制造还是建筑工程,在这些领域中,焊接都是不可或缺的连接工艺。
然而,随之而来的焊接残余变形与应力问题也愈加引起人们的关注。
焊接过程中产生的残余变形与应力,不仅会影响工件的外观质量,还可能引发裂纹和变形等问题,严重影响其使用性能和寿命。
如何有效地预防和减少焊接残余变形与应力,成为了焊接工艺中的重要课题。
1.选材:材料的选择对于焊接残余变形和应力的控制至关重要。
在焊接过程中,通常会选择具有较高熔点和较小线膨胀系数的材料,以减少焊接时热影响区的热变形;还应根据实际情况选择合适的填充材料。
2.焊接方式:合理选择焊接方式是减少焊接残余变形和应力的关键。
一般来说,采用低热输入、低变形的焊接方式,例如脉冲焊、激光焊等,能够有效降低焊接工件的残余变形和应力。
3.焊接顺序:合理规划焊接顺序也是减少残余变形和应力的重要手段。
通常情况下,应该首先焊接边缘,然后逐渐向内焊接,以减少焊接区域的热输入,降低残余变形和应力。
4.预热和后热处理:在一些情况下,通过预热和后热处理也能有效减少焊接残余变形和应力。
预热能够降低材料的硬度,减少焊接残余应力;后热处理则能够通过回火或退火处理,消除残余应力,提高焊接接头的韧性和稳定性。
5.夹具和辅助装置:采用合理的夹具和辅助装置也能有效减少焊接残余变形和应力。
夹具的设计应在尽量避免约束工件的能够保证焊接接头的稳固性;而辅助装置则可以提供额外的支撑,减少工件在焊接过程中的变形。
总结回顾:在焊接工艺中,预防和减少焊接残余变形与应力是至关重要的。
通过合理选材、焊接方式、焊接顺序、预热和后热处理、夹具和辅助装置等措施,可以有效控制焊接过程中的残余变形和应力,保证焊接接头的质量和稳定性。
个人观点:作为焊接工艺的重要环节,防止和减少焊接残余变形与应力对于提高焊接接头的质量和稳定性至关重要。
中级电焊工考试试题考试题库【3套练习题】模拟训练含答案答题时间:120分钟试卷总分:100分姓名:_______________ 成绩:______________第一套一.单选题(共20题)1.CO2气瓶使用时须()放置,严禁敲击、碰撞等。
A、平B、直立C、倒立D、倾斜2.弧焊整流器属于()电源。
A、逆变式B、交直流C、交流D、直流3.外观检验一般以肉眼为主,有时也可利用()的放大镜进行观察A3~5倍B5~10倍C8~15倍D10~20倍4.手工钨极氩弧焊设备中没有()。
A、控制系统B、行走机构C、气路系统D、水路系统5.铝及铝合金焊接时,熔池表面生成的氧化铝薄膜熔点高达()A1025℃B2850℃C2050℃D3000℃6.职业道德首先要从()的职业行为规范开始。
A、服务群众,奉献社会B、爱岗敬业,忠于职守C、诚实守信,办事公道D、遵纪守法,廉洁奉公7.电渣焊主要缺点是()A晶粒细小B晶粒均匀C晶粒粗大D晶粒畸变8.电光性眼炎的发病要经过一定的潜伏期,一般发病在受照后6—8h,故发作常在()。
A、中午或晚上B、早晨或下午C、下午或晚上D、夜间或清晨9.职业道德的意义很深远,但是不包含()。
A、有利于推动社会主义精神文明建设B、有利于企业建设和发展C、有利于企业体制改革D、有利于个人的提高和发展10.熔化极MAG焊,碳钢中厚板立位对接接头焊接时,选用实芯焊丝,可选择()熔滴过渡方式,焊接工作效率最高。
A、短路过渡B、半短路过渡C、粗滴过渡D、射流过渡11.()不是影响是否需要预热及预热温度的因素。
A、钢材化学成分B、结构刚度C、焊接方法D、接头型式12.下列()是减小焊接应力的措施。
A、采用合理的焊接顺序B、采用较大的焊接线能量C、火焰法D、热处理法13.动圈式弧焊变压器电流的粗调节是通过()。
A、通过改变一次线圈匝数来实现B、通过改变二次线圈匝数来实现C、通过改变一次线圈、二次线圈匝数来实现D、调节活动铁心与固定铁心的相对位置来实现的14.()不是CO2焊氮气孔的产生原因。
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施作者:李廷凯李玉振来源:《世界家苑》2018年第02期摘要:随着焊接技术也已经发展的越来越普及,但是焊接残余应力和焊接变形对钢结构的影响非常大,必须加强对焊接质量研究。
本文对焊接残余应力和焊接变形对钢结构的影响以及消除和调整进行了探讨分析。
关键词:焊接残余应力;焊接变形;钢结构;消除和调整1 焊接残余应力产生的原因1.1 塑性压缩造成的纵向残余应力在焊接的过程中,由于温度上的差距,焊缝及其周围都会受到因热膨胀和周围温度较低的金属的拘束,从而产生压缩塑性应变。
当焊接完成之后,温度骤减,母性材料就会制约着焊缝和近缝区域之间的收缩,这就在很大程度上导致了残余应力的存在。
并且残余应力的范围将会和高温环境下造成的塑性范围相一致,弹性拉伸区域和残余拉应力也是相对应的。
从这些都可以看出来,塑性压缩就是造成焊接过程中纵向残余应力的主要原因。
1.2 塑性压缩的应变导致的横向残余应力塑性压缩的应变,除了能够说成是造成纵向残余应力的主要原因,同时也能理解为造成横向残余应力的原因之一,但是造成横向残余应力的主要原因是母材的收缩。
当对母材进行焊接时,母材会出现膨胀现象,并且当焊接缝的金属材料逐渐形成固体时,膨胀中的母材必定会受到压缩,这种塑性压缩是横向收缩中的重要的一部分,焊缝自身那一小部分收缩仅仅只占到横向收缩的十分之一左右。
主要的横向收缩那部分存在于焊接缝沿着焊缝轴线进行切割后的中心区域,那才是拉应力中的横向应力。
2消除残余应力的方法2.1 热处理的方法这种方法对于焊件的性能有着至关重要的作用,它不仅可以消除残余应力,还能够改进焊接接头的性能。
热处理方法就是在焊件还处在高温条件下的时候,去降低屈服点和蠕变现象,从而实现去除残余应力的一种方法。
这种方法分为两个步骤,首先就是总体热处理,其次是局部热处理。
在总体热处理的过程中,加热的温度和保温时间和加热以及冷却速度都会影响到去除焊接残余应力的效果。
焊接残余变形量的影响因素
主要影响因素包括:
①焊缝截面积的影响:焊缝面积越大,冷却时引起的塑性变形量越大。
焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且起主要的影响。
②焊接热输入的影响:一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
对纵向、横向及角变形都有变形增大的影响。
③工件的预热、层间温度影响:预热、层间温度越高,相当于热输入增大,使冷却速度慢,收缩变形增大。
④焊接方法的影响:各种焊接方法的热输入差别较大,在其他条件相同情况下,收缩变形值不同。
⑤接头形式的影响:焊接热输入、焊缝截面积、焊接方法等因素条件相同时,不同的接头形式对纵向、横向及角变形量有不同的影响。
⑥焊接层数的影响:横向收缩在对接接头多层焊时,第一道焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊时已与堆焊的条件和变形规律相似,因此收缩变形相对较小;纵向变形,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。