小学奥数——多人行程问题——最新习题汇总
- 格式:docx
- 大小:1.39 MB
- 文档页数:11
奥数专题行程问题50道题目详解1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9—(3+4)=2千米.2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67。
5-60)=36分钟,所以路程=36×(60+75)=4860米。
3、A,B两地相距540千米.甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快.设两辆车同时从A地出发后第一次和第二次相遇都在途中P地.那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。
所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。
第二次相遇,乙正好走了1份到B地,又返回走了1份.这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。
4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
三年级奥数常考题:多人行程问题(二篇)三年级奥数常考题:多人行程问题 1关于时钟的问题有:求某一时刻时针与分针的夹角,两针重合,两针垂直,两针成直线等类型。
要解答时钟问题就要了解、熟悉时针和分针的'运动规律和特点。
一个钟表一圈有60个小格,这里计算就以小格为单位。
1分钟时间,分针走1个小格,时针指走了1/60*5=1/12个小格,所以每分钟分针比时针多走11/12个小格,或者按角度计算,分针每分钟走360/60=6°,时针每分钟走1/12*6=1/2°,以此作为后续计算的基础,对于解决类似经过多长时间时针、分针垂直或成直线的问题非常方便、快捷。
例从5时整开始,经过多长时间后,时针与分针第一次成了直线?5时整时,分针指向正上方,时针指向右下方,此时两者之间间隔为25个小格(表面上每个数字之间为5个小格),如果要成直线,则分针要超过时针30个小格,所以在此时间段内,分针一共比时针多走了55个小格。
由每分钟分针比时针多走11/12个小格可知,此段时间为55/(11/12)=60分钟,也就是经过60分钟时针与分针第一次成了直线。
此题中有两个速度,分针速度大于时针速度,两针有一个初始位子且都顺时针转动,于是可以类比成追击问题。
用追击路程除以速度差便得到了答案。
我们做题时,是可以将一些陌生的模型转化为我们熟悉的模型,这样就可以理清思路,方便解题。
三年级奥数常考题:多人行程问题 2有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程。
小学四年级关于行程问题奥数例题及练习题例题:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样持续来回,直到王欣和陆亮相遇为止,狗共行了多少米?分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。
根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗持续来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。
所以狗共行了500×10=5000米。
练习题:1、甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?2、A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。
这样一直飞下去,燕子飞了多少千米,两车才能相遇?3、甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。
一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?小学四年级关于行程问题奥数例题及练习题篇二例题:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
小学奥数行程问题应用题100题及答案(1) 亮亮从家到学校需要走960米,他平时早晨7:00出发去上学,每分钟走40米,可以准时到校,亮亮今天起床晚了,他7:08才出发,为了准时到校,他每分钟需要走多少米?(2) 丹丹从家去学校,每分钟走60米,走了10分钟到达学校,问丹丹家到学校的距离有多远?(3) 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了19,结果提前一个半小时到达;返回时,按原计划的速度行驶 280 千米后,将车速提高16,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米? (4) 有一个圆形人工湖的周长是450米,小胖在雷雷前面50米处,两人同时沿顺时针方向跑。
已知小胖速度为200米/分,雷雷速度为150米/分,问:几分钟后小胖追上雷雷?(5) 甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东西两村相距多少千米?(6) 田田和牛牛两人分别从甲、乙两地同时出发,如果两个人同向而行,田田26分钟可以赶上牛牛;如果两个人相向而行的话,6分钟就可以相遇。
已知牛牛每分钟走50米,求甲、乙两地之间的路程。
(7)上学路上当当发现田田在他前面,于是就开始追田田。
当当每分钟走70米,田田每分钟走45米,当当一共经过了30分钟才追上田田,请问:两人开始相距多远?(8)飞飞和薇薇在操场上比赛跑步,飞飞每分钟跑60米,薇薇每分钟跑40米,一圈跑道长400米,他们同时从起跑点背向出发,那么第一次相遇需要多少分钟?第二次相遇需要多少分钟?第三次相遇需要多少分钟?有什么规律呢?(9)小明在420米长的环形跑道上跑了一圈,前一半时间的速度为8米/秒,后一半时间的速度为6米/秒。
问:他后一半路程用了多少时间?(10)六年级同学从学校出发到公园春游,每分钟走72米。
15分钟以后,学校有急事要通知学生,派乐乐骑自行车从学校出发用9分钟追上同学们,乐乐每分钟要行多少米才可以准时追上同学们?(11)甲、乙两人在周长为400米的环形跑道上同时同地同向而行,甲每分钟走60米,乙每分钟走40米,甲每追上乙一次,两人就会击一次掌,当两人击了第3次掌时,甲掉头往回走,每相遇一次仍击一次掌,两人又击了5次掌,此时甲走了多少米?乙走了多少米?(12)有一个周长为100米的圆形花圃,小张和小王同时从边上同一点出发,沿着同一方向跑步,已知小张的速度是5米/秒,小王的速度是3米/秒,小张跑多少圈后才能第一次追上小王?(13)小王和小李两人分别从甲、乙两地同时出发同向而行,小李在前,小王在后面。
小学奥数行程问题之多人行程练习题【三篇】
导读:本文小学奥数行程问题之多人行程练习题【三篇】,仅供参考,
如果觉得很不错,欢迎点评和分享。
【第一篇】B在A,C两地之间.甲从B地到A地去送信,
出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙
发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速
度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
解析:
让丙先去追后出发的乙,10÷(3-1)=5分钟追上,
拿到信后去追甲,甲乙相距甲行10+10+10+5+5=40分钟
的路程,
丙用40÷(3-1)=20分钟追上甲
交换信后返回追乙,这时乙丙相距乙行40+20×2=80分钟的
路程,
丙用80÷(3-1)=40分钟追上乙,把信交给乙。
所以,共用了5+20+40=65分钟。
乙共行了65+10=75分钟,丙回到B地还要75÷3=25分钟。
所以共用去65+25=90分钟
换个思路,追上并返回。
追上乙并返回,需要10÷(3-1)×2=10分钟
追上甲并返回,需要10×3÷(3-1)×2=30分钟
再追上乙并返回,需要(10×2+30)÷(3-1)×2=50分钟共用10+30+50=90分钟【第二篇】【第三篇】答案。
小学五年级奥数题行程问题1.小学五年级奥数题行程问题张工程师每天早上8点准时被司机从家接到厂里。
一天,张工程师早上7点就出了门,开始步行去厂里,在路上遇到了接他的汽车,于是,他就上车行完了剩下的路程,到厂时提前20分钟。
这天,张工程师还是早上7点出门,但15分钟后他发现有东西没有带,于是回家去取,再出门后在路上遇到了接他的汽车,那么这次他比平常要提前_________分钟。
答案解析:第一次提前20分钟是因为张工程师自己走了一段路,从而导致汽车不需要走那段路的来回,所以汽车开那段路的来回应该是20分钟,走一个单程是10分钟,而汽车每天8点到张工程师家里,所以那天早上汽车是7点50接到工程师的,张工程师走了50分钟,这段路如果是汽车开需要10分钟,所以汽车速度和张工程师步行速度比为5:1,第二次,实际上相当于张工程师提前半小时出发,时间按5:1的比例分配,则张工程师走了25分钟时遇到司机,此时提前(30-25)x2=10(分钟)。
这道题重要是要求出汽车速度与工程师的速度之比。
2.小学五年级奥数题行程问题1、汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?2、赵伯伯为锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少米?答案1、解答:假设AB两地之间的距离为480÷2=240(千米),那么总时间=480÷48=10(小时),回来时的速度为240÷(10-240÷4)=60(千米/时)。
2、解答:设赵伯伯每天上山的路程为12千米,那么下山走的路程也是12千米,上山时间为12÷3=4小时,下山时间为12÷6=2小时,上山、下山的平均速度为:12×2÷(4+2)=4(千米/时),由于赵伯伯在平路上的速度也是4千米/时,所以,在每天锻炼中,赵伯伯的平均速度为4千米/时,每天锻炼3小时,共行走了4×3=12(千米)=12000(米)。
【#小学奥数# 导语】行程问题是小学奥数中的一大基本问题。
行程问题有相遇问题、追及问题等近十种,是问题类型较多的题型之一。
行程问题包含多人行程、二次相遇、多次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送问题等。
以下是?无忧考网整理的《小学三年级奥数多人行程练习题》相关资料,希望帮助到您。
1.小学三年级奥数多人行程练习题1、小明上午九点上山,每小时走3千米,在山顶休息1小时后开始沿原路下山,每小时走4千米,下午一点半到达山下,问他共走了____千米。
【答案解析】上午九点上山下午1点半下山,用时4.5小时,除去休息的一个小时,上山和下山共用时3.5小时。
上山速度3千米/小时,下山速度4千米/小时,则上山用2小时,下山用1.5小时,路程应为3×2×2=12(千米)。
2、某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达。
返回时,先骑21小时自行车,再骑8小时摩托车也正好到达。
从甲地到乙地如果全骑摩托车需要多少时间?摩托车的速度是xkm/h,自行车速是ykm/h。
21y+8x=12x+9y4x=12yx=3y所以摩托车共需12+9/3=15小时2.小学三年级奥数多人行程练习题1、两人合修一条长16。
8千米的公路,计划12天完成,甲队每天修0。
8千米,乙队每天修多少千米?2、一列火车从车头到车尾全长240米,以每秒15米的速度通过一座长600米的大桥,一共用了几秒?3、小明站在铁路道口的一边,这时一列火车正好用了15秒经过,现在知道这列火车经过一座1200米的大桥用了75秒,那么这列火车的长度是多少米?4、快车和慢车同时从甲、乙两地相对开出,已知快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时与慢车还相距7千米,慢车每小时行多少千米?5、兄妹两人同时离家去上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,突然发现忘记带课本,立即沿原路回家去取,行至离学校180米处与妹妹相遇,问他们家离学校有多远?3.小学三年级奥数多人行程练习题1、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?2、在地铁车站中,从站台到地面有一架向上的自动扶梯。
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
行程问题---多人相遇问题及练习板块一多人从两端出发——相遇问题【例1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【例2】(2009年四中入学测试题)在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C 从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少km?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙两车的速度分别为52 千米/时和40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。
求这辆卡车的速度。
【巩固】甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【例3】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?【例4】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。