最新相交线、平行线复习课教案
- 格式:doc
- 大小:688.00 KB
- 文档页数:4
相交线与平行线学期复习教案一、教学目标1. 复习相交线与平行线的定义及性质。
2. 巩固学生对平行公理及推论的理解。
3. 提高学生解决实际问题的能力。
4. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 相交线与平行线的定义及性质。
2. 平行公理及推论。
3. 实际问题中的应用。
三、教学重点与难点1. 相交线与平行线的性质。
2. 平行公理及推论的应用。
3. 解决实际问题。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 利用多媒体课件辅助教学,增强学生的空间想象力。
3. 引导学生运用所学知识解决实际问题,提高学生的应用能力。
五、教学过程1. 导入新课:回顾上节课的内容,引导学生复习相交线与平行线的定义及性质。
2. 讲解与演示:利用多媒体课件,讲解相交线与平行线的性质,展示平行公理及推论。
3. 练习与讨论:布置练习题,让学生独立完成,进行讨论,解答疑难问题。
4. 实际问题应用:给出实际问题,让学生运用所学知识解决,引导学生将理论应用于实践。
5. 总结与反思:对本节课的内容进行总结,强调重点难点,鼓励学生反思自己的学习过程。
六、课后作业1. 巩固相交线与平行线的定义及性质。
2. 熟练运用平行公理及推论解决实际问题。
3. 总结本节课的学习收获,提出疑问。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生的练习和课后作业,评估学生对知识的掌握程度。
3. 实际问题解决:评估学生在解决实际问题时的能力,考察学生的应用水平。
八、教学资源1. 多媒体课件:展示相交线与平行线的性质、平行公理及推论。
2. 练习题:提供不同难度的练习题,巩固所学知识。
3. 实际问题:选取与生活相关的实际问题,引导学生运用知识解决。
九、教学进度安排1. 课时:2课时。
2. 教学内容:相交线与平行线的定义及性质(第1课时),平行公理及推论(第2课时)。
相交线与平行线复习学案[教学目标]1 .经历对本章所学知识回顾与思考的过程,将本章内容条理化、系统化,梳理本章的知识结构;2 .通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用几何语言说明几何图形;3 .认识平面内两条直线的位置关系,在研究平行线时,,能通过有关的角来判断直线平行和反映平行线的性质.理解平移的性质,能利用平移设计图案.【教学重点】更习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.【教学难点】垂直、平行的性质和判定的综合应用.一、画出思维导图,加深理解:二、典例精析,释疑解惑专题一相交线【例1】如图,力必(好点Q直线以过0点,Nzf的65° ,求的度数.【练习】如图,月爪CD、夕湘交于点0, N4U700 ,如平分则zcoe= ^专题二点到直线的距离血2】如图,9为△/低的高,能表示点到宜线(线段)的距离的线段有()A. 2条B.3条 C 4条 D. 5条练习:如图力CL用CDLABTHD, CI>∖. 8cm, AC=6cm, βC=8cm,则点C 到/份的距离是cm;点力到质的距离是cm;点砥必C的距离是_____ cm专题三平行线的性质和判定【例3】如图所示,N1=72° ,N2=72° ,N3=60° ,求N4的度数.练习:己规 NDAUZACBDFE=I80" ,来证:EF"BCD FC 专题四平移【例4】如图所示,卜列四组图形中,有一组中的两个图形经过平移其相交线与平行线复习三、课堂检测,巩固提高1.下列选项中,Nl与N2互为邻补角的是()3.如图,已知点O在直线AB上,CO_LDO于点0,若Nl = 145° ,则N34.如图,AD_LBD, BC±CD,ΛB=6 cm, BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 Cnl或小于6 cmD.大于4 Cnl且小于6 cm5.如图,在已标注数字的角中,与N4是同旁内角的是与/4是同位角的是.与/4是内错角的是.6.下列说法:①过一点有且只有一条直线与已知真线平行;②平移不改变图形的大小和形状:③垂直于同一直线的直线平行.其中正确有()A. 3个B. 2个 C. 1个 D. O个7,已知:EF±AB, CD±ΛB, ZEFB=ZGDC,求证:Z AGD=ZACB O证明:•・• EFlAB, CDlAB (已知)Λ EF/7 CD ()・•・ZEFB= ZDCB (两直线平行,同位角相等)V ZEFB=ZGD C(已知)Λ ZDC B=ZGDC().•・DG〃BC (内错角相等,两直线平行):.NAGD=/ACB ( )四、螺旋上升,拓展应用:8.如图,已知/.W¾4+N创>乙VO=360° .⑴求证物〃,修(2)若/力皮=70° , Z.ACE=Z^ ,BP,别平分//劭,ZACE,求/游曲度数.9,已知直线a〃无将一块含30°角的三角尺力比按图所示方式放置(/ 砌CN(T ),并且顶点4 C分别落在直线多6上.若NI=I8° ,则/2的度数是.五、学后反思:本节课你有什么收获?课后作业:1、如图,直线44〃09,分/月4〃/1与4° ,求/2的度数.2、如图,点力,B、C,麻一条宣线上,也与6校于点G N∕1=N1,CE//DF. 试说明:NE=N之3、如图,已知Nl + N2=180° , N3 = N反试判断N血〃与NC的大小关系,并对结论进行说明.。
相交线与平行线复习课最新教案和讲义模版一、教学目标1. 复习巩固相交线与平行线的基本概念及性质。
2. 提高学生运用相交线与平行线解决实际问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 相交线与平行线的定义及性质。
2. 平行线的判定与证明。
3. 相交线的判定与证明。
4. 平行线与相交线在实际问题中的应用。
5. 巩固练习及拓展思考。
三、教学重点与难点1. 教学重点:相交线与平行线的基本概念、性质及应用。
2. 教学难点:平行线的判定与证明,相交线的判定与证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质。
2. 利用多媒体辅助教学,直观展示相交线与平行线的关系。
3. 结合实例,让学生体会相交线与平行线在实际问题中的应用。
4. 采用小组讨论与合作交流的方式,提高学生的参与度。
五、教学过程1. 导入新课:回顾上节课的内容,引导学生复习相交线与平行线的基本概念。
2. 知识讲解:讲解相交线与平行线的性质,并通过多媒体展示实例,让学生直观理解。
3. 课堂互动:设置问题,让学生判断直线的位置关系,巩固平行线与相交线的判定方法。
4. 应用拓展:结合实际问题,让学生运用相交线与平行线解决实际问题,培养学生的应用能力。
5. 课堂练习:布置针对性的练习题,让学生巩固所学知识。
7. 课后作业:布置适量的课后作业,巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习完成情况评价:检查学生课堂练习和课后作业的完成质量,评估学生对知识的掌握程度。
3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作意识、交流能力等。
七、教学资源1. 多媒体教学课件:制作精美的课件,展示相交线与平行线的图形和实例。
2. 练习题库:准备一定数量的练习题,包括判断题、解答题等,用于巩固所学知识。
3. 教学素材:收集相关的实际问题,用于引导学生运用相交线与平行线解决实际问题。
相交线与平行线复习课最新教案和讲义模版一、教学目标:1. 让学生掌握相交线与平行线的定义及性质。
2. 培养学生运用相交线与平行线解决实际问题的能力。
3. 提高学生对几何图形的认识,培养学生的空间想象能力。
二、教学内容:1. 相交线的定义及性质。
2. 平行线的定义及性质。
3. 平行公理及推论。
4. 相交线与平行线在实际问题中的应用。
三、教学重点与难点:1. 重点:相交线与平行线的定义、性质及应用。
2. 难点:相交线与平行线的判定与证明。
四、教学方法:1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质。
2. 利用几何画板软件,直观展示相交线与平行线的变化过程。
3. 结合实际例子,让学生学会运用相交线与平行线解决实际问题。
五、教学过程:1. 导入新课:通过复习旧知识,引导学生回顾相交线与平行线的定义及性质。
2. 讲解与演示:利用几何画板软件,展示相交线与平行线的性质及变化过程。
3. 练习与讨论:让学生自主完成相关练习题,教师引导学生讨论解题思路。
4. 应用拓展:结合实际例子,让学生运用相交线与平行线解决实际问题。
6. 布置作业:布置相关练习题,巩固所学知识。
附:讲义模版一、相交线的定义及性质1. 相交线的定义:在同一平面内,两条直线相交于一点,称这两条直线为相交线。
2. 相交线的性质:(1)相交线交点处的内角和为180度。
(2)相交线交点将两条直线分为两对对应角,对应角相等。
(3)相交线交点将两条直线分为两条对称轴。
二、平行线的定义及性质1. 平行线的定义:在同一平面内,永不相交的两条直线称为平行线。
2. 平行线的性质:(1)平行线之间的距离相等。
(2)平行线上的对应角相等。
(3)平行线上的内角和为180度。
三、平行公理及推论1. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
2. 平行公理的推论:(1)平行线上的任意一对对应角相等。
(2)平行线上的任意一对内角和为180度。
(3)平行线之间的距离相等。
相交线与平行线复习教案一、教学目标1. 知识与技能:(1)能识别和画出相交线和平行线;(2)理解平行线的性质和判定;(3)掌握相交线的性质和判定。
2. 过程与方法:(1)通过实例和练习,提高学生对相交线和平行线的识别能力;(2)运用几何画图工具,巩固画图技能;(3)培养学生的逻辑思维能力和问题解决能力。
3. 情感态度价值观:(1)激发学生对几何学科的兴趣;(2)培养学生的团队合作意识和交流能力;(3)渗透数学美感,提高学生的审美素养。
二、教学内容1. 相交线与平行线的概念及性质;2. 平行线的判定与性质;3. 相交线的性质与判定;4. 平行线和相交线在实际问题中的应用。
三、教学重点与难点1. 教学重点:(1)相交线与平行线的识别;(2)平行线的性质和判定;(3)相交线的性质和判定。
2. 教学难点:(1)平行线的判定;(2)相交线的性质和判定。
四、教学准备1. 教具:黑板、粉笔、几何画图工具;2. 学具:学生用书、练习本、铅笔、橡皮。
五、教学过程1. 导入新课:(1)复习相关知识:直线、射线、线段的概念及性质;(2)引入相交线与平行线的概念,引导学生回顾已学知识。
2. 知识讲解:(1)讲解相交线与平行线的性质;(2)讲解平行线的判定与性质;(3)讲解相交线的性质与判定。
3. 课堂练习:(1)根据教师提供的题目,学生独立完成练习;(2)学生相互交流答案,教师进行点评。
4. 应用拓展:(1)提出实际问题,引导学生运用所学的知识解决问题;(2)学生分组讨论,展示解题过程和答案。
5. 课堂小结:(1)教师引导学生总结本节课所学内容;(2)学生分享学习收获和体会。
6. 布置作业:(1)巩固所学知识,提高平行线和相交线的识别和应用能力;(2)培养学生的自主学习能力。
六、教学策略1. 采用问题驱动的教学方法,引导学生通过观察、思考、探究,发现相交线与平行线的性质和判定方法;2. 利用几何画图工具,直观展示相交线与平行线的特点,增强学生的空间想象力;3. 通过小组合作、讨论交流,培养学生团队合作意识和交流能力;4. 设计富有思考性的练习题,激发学生的思维,提高学生解决问题的能力。
一.课题 相交线与平行线复习二.教学目标 1、利用相关知识学会进行有关推理和计算.2、会借助长方体了解直线与直线、直线与平面、平面与平面的位置关系.三.重难点四.考点及考纲要求教学内容教学反思一、回忆所学过的知识点(一)点,线,角1.点、直线、面(不定义概念)及其表示;2.射线、线段、线段的中点及其表示;3.两点确定一条直线;★ 4.两点之间线段最短(两点之间的距离);★ 5.角、角的顶点、边、角平分线的表示及其性质; 6.角的分类(锐角、直角、钝角、平角、周角)、度量(度、分、秒)及计算. (二)关系角及其性质 1.对顶角、余角、补角(邻补角)、同位角,内错角、同旁内角;2.对顶角相等;★3.同角(或等角)的余角(或补角)相等.★(三)相交线、平行线 1.垂线、垂线段最短(点到直线的距离); 2.过一点(直线上或直线外)有且只有一条直线和已知直线垂直;★3.会过一点画(作)已知直线的垂线;(一落,二靠,三画) 4.过直线外一点,有且只有一条直线与已知直线平行;★5.如果两条直线都与第三条直线平行,那么这两条直线也互相平行.★6.三线八角与平行线的关系;★①判定公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a ∥b .②判定定理1:内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a ∥b .③判定定理2:同旁内角互补,两直线平行. ∵∠1+∠2=1800 , ∴ a ∥b .④性质公理: 两直线平行,同位角相等. ∵ a ∥b , ∴∠1=∠2.⑤性质定理1:两直线平行,内错角相等. ∵ a ∥b , ∴∠1=∠2.⑥性质定理2:两直线平行,同旁内角互补. ∵ a ∥b , ∴ ∠1+∠2=1800.7.平行线之间的距离;8.会过直线外一点,画已知直线的平行线.三、框图疏理,再现知识点知识结构相交相交线两条直线相交四、基础训练,理解知识点1、直线AB 、CD 相交与于O,图中有几对 对顶角?邻补角?当一个角确定了, 另外三个角的大小确定了吗?2.直线AB 、CD 、EF 相交与于O,图中有几对对顶角? ∠AOC 的对顶角是__∠BOD_____∠CO F 的对顶角是__∠DOE______∠AOC 的邻补角是__∠COB, ∠AOD__ ∠EOD 的邻补角是__∠DOF, ∠COE__3、已知直线AB 、CD 、EF 相交于点O ,4、1、下列命题是真命题的有( ) A 、相等的角是对顶角B 、不是对顶角的角不相等C 、对顶角必相等平行线两条直线被第三条直线所截 相交线 平行线邻补角、对顶角 垂线及性质 对顶角相等 点到直线的距离 同位角、内错角、同旁内角 平行公理平移 判定 性质O ABC D1 23 4 009036DOE AOE ∠=∠=,BOE BOC ∠∠求、的度数。
相交线与平行线复习课最新教案和讲义模版一、教学目标:1. 复习并巩固学生对相交线与平行线的概念、性质和判定方法。
2. 提高学生解决实际问题的能力,培养学生的空间想象和逻辑思维能力。
3. 培养学生合作学习、积极探究的学习态度。
二、教学内容:1. 相交线与平行线的定义和性质。
2. 相交线与平行线的判定方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 重点:相交线与平行线的概念、性质和判定方法。
2. 难点:相交线与平行线在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质和判定方法。
2. 利用多媒体辅助教学,展示实例,增强学生的空间想象力。
3. 组织学生进行小组讨论,培养学生的合作学习能力。
4. 结合练习题,巩固所学知识,提高学生的解题能力。
五、教学过程:1. 导入新课:回顾相交线与平行线的定义和性质,引导学生思考相交线与平行线在实际生活中的应用。
2. 知识讲解:讲解相交线与平行线的判定方法,并通过实例进行分析。
3. 课堂练习:布置相关的练习题,让学生独立完成,并及时给予解答和指导。
4. 小组讨论:组织学生进行小组讨论,分享各自的解题方法和心得。
5. 总结提升:总结本节课所学内容,强调相交线与平行线在实际问题中的应用。
6. 布置作业:布置适量的作业,让学生巩固所学知识。
六、教学评价:1. 通过课堂练习和课后作业,评价学生对相交线与平行线的掌握程度。
2. 观察学生在小组讨论中的表现,评价其合作学习和探究能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度和积极性进行评价。
七、教学资源:1. 多媒体教学课件:包括相交线与平行线的图片、实例和动画等。
2. 练习题:包括选择题、填空题和解答题等,覆盖本节课所学内容。
3. 小组讨论材料:提供相关的问题和实例,引导学生进行小组讨论。
八、教学进度安排:1. 第1-2课时:复习相交线与平行线的定义和性质。
2. 第3-4课时:讲解相交线与平行线的判定方法,并进行实例分析。
相交线与平行线(复习课)教案一、教学目标1. 知识与技能:(1)能够识别和画出相交线与平行线;(2)理解平行线的性质,能够运用平行线的性质解决问题;(3)掌握相交线的性质,能够运用相交线的性质解决问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,提高学生的空间想象能力;(2)培养学生运用数学知识解决实际问题的能力。
3. 情感态度价值观:(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生合作交流的意识,提高学生的团队协作能力。
二、教学内容1. 相交线与平行线的定义;2. 平行线的性质;3. 相交线的性质;4. 运用相交线与平行线的性质解决问题。
三、教学重点与难点1. 教学重点:(1)相交线与平行线的定义;(2)平行线的性质;(3)相交线的性质;(4)运用相交线与平行线的性质解决问题。
2. 教学难点:(1)平行线的性质;(2)相交线的性质。
四、教学准备1. 教具:黑板、粉笔、直尺、三角板;2. 学具:学生用书、练习本、铅笔、橡皮。
五、教学过程1. 导入新课(1)复习相关知识:直线、射线、线段的概念及特点;(2)引导学生回顾上节课所学内容:相交线与平行线的定义及性质;(3)提问:相交线与平行线在实际生活中有哪些应用?2. 探究与交流(1)分组讨论:让学生分组探讨相交线与平行线的性质,并总结出规律;(2)各组汇报:让学生代表汇报本组的讨论成果;(3)教师点评:对学生的讨论成果进行评价,并给予表扬。
3. 知识拓展(1)引导学生思考:在实际生活中,我们为什么需要学习和应用相交线与平行线;(2)举例说明:如建筑设计、道路规划等领域的应用。
4. 巩固练习(1)让学生独立完成练习题,检测对本节课知识的理解和掌握程度;(2)教师批改:及时批改学生的练习题,给予反馈和指导。
5. 总结与反思(1)让学生回顾本节课所学内容,总结相交线与平行线的性质及应用;(2)教师点评:对学生的学习情况进行评价,并提出改进意见。
相交线与平行线(复习课)教案一、教学目标1. 知识与技能:(1)能够识别和理解相交线与平行线的概念;(2)能够运用相交线与平行线的性质和判定定理解决实际问题。
2. 过程与方法:(1)通过观察、实践、探索等活动,加深对相交线与平行线性质的理解;(2)培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作、积极参与的精神风貌。
二、教学内容1. 相交线的概念及性质2. 平行线的概念及性质3. 相交线与平行线的判定定理4. 相交线与平行线在实际问题中的应用三、教学重点与难点1. 教学重点:(1)相交线与平行线的概念及性质;(2)相交线与平行线的判定定理及应用。
2. 教学难点:(1)相交线与平行线的判定定理的灵活运用;(2)解决实际问题中相交线与平行线的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质;2. 利用多媒体课件辅助教学,直观展示相交线与平行线的关系;3. 创设实践环节,让学生亲自动手操作,加深对知识的理解;4. 采用小组讨论法,培养学生的团队协作能力和解决问题的能力。
五、教学过程1. 导入新课:通过复习相关定义,引导学生回顾相交线与平行线的概念。
2. 知识讲解:(1)讲解相交线的性质,如相交线的夹角、对顶角等;(2)讲解平行线的性质,如平行线的距离、同位角等;(3)讲解相交线与平行线的判定定理,如同位角相等、内错角相等等。
3. 案例分析:展示实际问题,让学生运用所学的相交线与平行线的性质和判定定理解决问题。
4. 课堂练习:设计相关练习题,让学生巩固所学知识,并及时给予解答和反馈。
5. 总结提升:对本节课的主要内容进行总结,强调相交线与平行线在实际问题中的应用。
6. 作业布置:布置适量作业,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论中的表现,评价学生的积极性、合作能力和问题解决能力。
精锐教育学科教师辅导讲义
学员编号:年级:课时数:学员姓名:辅导科目:学科教师:
授课类型C(几何图形初步) C (相交线与平行线)T (平行线与角、三角形的综合应用)
授课日期及时段
教学内容
一.专题导入
知识点1.多姿多彩的图形:基本几何体的认识
知识点2.直线、射线、线段:
图形直线射线线段
端点个数无一个两个
表示法直线a
直线AB(BA)
射线AB
线段a
线段AB(BA)
作法叙述作直线AB;
作直线a
作射线AB
作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延长射线
AB
延长线段AB;
反向延长线段BA
知识点3.两点的所有连线中,线段最短;
知识点4.距离:连接两点间的线段的长度,叫做这两点的距离;
知识点5.角:
(1)角的分类:锐角:0°<角<90°;直角=90°;钝角:90°<角<180°;平角=180°;周角=360°(2)互为余角:如果两个角的和等于90°同角或等角的余角
(3)为互补角:如果两个角的和等于180°同角或等角的补角
(4)角的比较:①度量法;②叠合法;
(5)角的表示:
二、专题精讲
例1.如图所示的几何体的俯视图是().
解析:选B .由几何体的三视图的定义可得题中几何体的俯视图是选项B中的图形,故选B.
例2.按如图方式把圆锥的侧面展开,会得到的图形是( ).
解析:选C. 圆锥的侧面展开图是扇形.
例3.30°角的余角是( )
A.30°角B.60°角C.90°角D.150°
解析:选B. 90°-30°=60°.
例4.你认识直线、射线、线段吗?找一找,填一填.
直线:________;射线:________;线段:__________
考点:直线、线段和射线的认识.
专题:平面图形的认识与计算.
分析:根据直线、射线和线段的含义:线段有2个端点,有限长,可以度量;射线有一个端点,无限长;直线无端点,无限长;进而解答即可.
解:③⑥是直线,④⑦是射线,②⑤是线段;
故答案为:③⑥,④⑦,②⑤.
例5. 下列说法中,正确的个数为()
①线段AB和线段BA是同一条线段②射线AB和射线BA是同一条射线
③直线AB和直线BA是同一条直线④直线AB的长为6cm
A 1
B 2
C 3
D 4
例6. 下列写法正确的是()
A 直线AB、CD交于点m
B 直线a、b交于点m
C 直线a、b交于点M
D 直线ab、cd交于点M
例7.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC 的长等于( )
A .3cm
B .6cm
C .11cm
D .14cm
解析:CD=DB -CB=3㎝,由线段的中点定义可知AC=2CD=6㎝,故选B.
例8.如图,已知点C 是线段AD 的中点,AC=15cm ,BC=22cm ,分别求线段AD 和BD 的长度. 考点:两点间的距离.
分析:求出AD=2AC ,即可求出AD ,求出AB ,代入BD=AB-AD 求出即可. 解:∵点C 是线段AD 的中点, ∴AD=2AC, ∵AC=15cm ∴AD=30cm, ∵AC=15c m ,BC=22cm , ∴AB=AC+BC=37cm, 又∵AD=30cm, ∴BD=AB -AD=37-30=7cm .
点评:本题考查了求两点之间的距离的应用,主要考查学生的计算能力. 例9.下列图中角的表示方法正确的个数有……………………………(
)
A 、1个
B 、2个
C 、3个
D 、4个
例10. 如图:O 为直线AB 上的一点,OC 为一条射线,OD 平分∠AOC ,OE 平分∠BOC ,那么图中互余的角 共有 ( )对 A 1对 B 2对 C 4对 D 6对
三.专题过关:
1.棱柱的侧面都是( )
A 三角形
B 长方形
C 五边形
D 菱形 2.指出下列平面图形是什么几何体的展开图?
第3题图D
C
B
A
C
2
4
13
2 A E
B
C O D。