固态相变
- 格式:doc
- 大小:1.71 MB
- 文档页数:9
固态相变原理
固态相变是指物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。
在固态相变中,原子或分子重新排列,从而改变了物质的性质。
固态相变是固体物理学中的重要研究对象,对于材料科学和工程技术具有重要的意义。
固态相变的原理主要包括热力学和动力学两个方面。
热力学描述了相变过程中
物质内部的能量变化和熵变化,而动力学则描述了相变过程中原子或分子的运动和排列。
在热力学方面,相变需要克服能量壁垒,使得原子或分子从一个稳定的晶体结构转变为另一个稳定的晶体结构。
而在动力学方面,相变的速率取决于原子或分子的扩散和重新排列速度。
固态相变可以分为一级相变和二级相变两种类型。
一级相变是指在相变过程中
伴随着热量的吸收或释放,如固液相变和固气相变;而二级相变则是在相变过程中不伴随热量的吸收或释放,如铁磁相变和铁电相变。
不同类型的相变具有不同的热力学和动力学特性,因此需要采用不同的方法和技术来研究和应用。
固态相变在材料科学和工程技术中具有广泛的应用。
例如,通过控制金属材料
的固态相变,可以改变材料的硬度、强度和导电性能,从而实现对材料性能的调控。
另外,固态相变还可以应用于存储技术、传感器技术和能源材料等领域,为现代科学技术的发展提供了重要支撑。
总之,固态相变是固体物理学中的重要研究内容,对材料科学和工程技术具有
重要的意义。
通过深入研究固态相变的原理和特性,可以为材料的设计、制备和应用提供重要的理论和技术支持。
希望在未来的研究中,固态相变能够得到更加深入和全面的理解,为人类社会的发展做出更大的贡献。
第六章 固态相变初步固态相变是从固相到固相的转变,即反应相和生成相均是固态。
固态相变的生成相可能是平衡相, 也可能是亚稳相;可能是稳态组织,也可能是亚稳态组织。
即:稳态组织,平衡相 固态相变的产物 亚稳态组织,平衡相 亚稳态组织,亚稳相 固态相变可分为两大类:扩散型相变和非扩散型相变 6.1 扩散型相变扩散型相变有五种:1)沉淀 (脱溶、析出)相变 新相从母相中沉淀析出 β α脱溶相变一般都是经过形核和长大两个过程,与结晶过程相似。
2) 共析分解γ α+β典型实例:珠光体转变3) 调幅分解α α1+α2特征:1、α、α1、α2结构相同,点阵常数不同 2、没有形核过程3、成分分布呈调幅波 (图1、图2)形成条件: 从化学成分的角度,调幅分解必需发生在G -X 曲线的拐点内(化学调幅),如图3所示。
图1图2图34) 块状转变 (图4、图5)βα 不同于脱溶晶界形核,快速长大,形貌无规则(图4)图55) 有序化转变 分两种类型(图6):一种有形核(有序畴)长大过程属一级相变(图7),另一种没有形核长大过程 (图8),属二级相变。
图6 图7 图8 6.2 沉淀相变从组织的角度,沉淀相变可分为连续沉淀和非连续沉淀,连续沉淀的生成相可能是稳态组织,也可能是非稳态组织。
从工艺的角度,沉淀相变可以在冷却过程中发生,也可以在时效过程中发生。
所谓时效是指将材料置于一定的温度下保温。
时效分人工时效和自然时效。
后者是在室温下自然放置,前者则是人为地将材料置于设定的温度,时效的时间根据时效时间和材料性能之间的关系而决定。
因此,在工业上也有时效相变的说法。
沉淀相变的分类方法可参看图9.图96.2.1连续沉淀和非连续沉淀 (1) 连续沉淀一般情况下脱溶是以连续沉淀的方式进行的连续脱溶的形核大多数是非均匀形核(因为晶体内部存在大量缺陷),形核借助于缺陷,因此可能的形核位置有,晶界、位错、和空位。
如:高温合金中的γ’相。
(图10) 脱溶相呈均匀分布一般不是均匀形核。
固态相变知识点总结固态相变(solid state phase transition)是指物质在固态下,由于温度、压力等外界条件的变化,使得物质的晶体结构和性质发生显著变化的现象。
固态相变分为一级相变和二级相变两种类型,其中一级相变又称为凝固、熔化或者升华相变,而二级相变则包括了铁磁性转变、铁电性转变、铁弹性转变等多种类别。
一级相变是指固态物质在相变过程中伴随着传热的明显变化,其自由能函数在温度、压力和摩尔体积或摩尔焓差范围内不连续变化。
一级相变包括了凝固、熔化和升华三种基本类型。
凝固是物质由液态转变为固态的一种相变过程。
在凝固的过程中,液体的分子排列变得有序,形成规则的晶体结构。
凝固点是物质在一定压力下的温度,当温度降低达到凝固点时,液体开始凝固。
熔化是物质由固态转变为液态的一种相变过程。
在熔化的过程中,固体的晶体结构破坏,分子之间的相互作用减弱,形成无序排列的分子结构。
熔点是物质在一定压力下的温度,当温度升高达到熔点时,固体开始熔化。
升华是物质由固态转变为气态的一种相变过程。
在升华的过程中,固体的晶体结构破坏,分子之间的相互作用减弱,形成无序排列的分子结构。
升华点是物质在一定压力下的温度,当温度升高达到升华点时,固体开始升华。
与一级相变不同,二级相变是指固态物质在相变过程中没有明显的传热变化,其自由能函数在温度、压力和摩尔体积或摩尔焓差范围内连续变化。
二级相变包括了铁磁性转变、铁电性转变和铁弹性转变等多种类型。
铁磁性转变是指在一定温度下,物质由铁磁相转变为顺磁相或者反铁磁相的一种相变过程。
铁磁性转变常伴随着磁滞回线的出现,磁化强度和温度之间存在明显的关联。
铁电性转变是指在一定温度下,物质由铁电相转变为非铁电相的一种相变过程。
铁电性转变常伴随着电滞回线的出现,电极化强度和温度之间存在明显的关联。
铁弹性转变是指在一定温度下,物质由弹性相转变为非弹性相的一种相变过程。
铁弹性转变常伴随着应力-应变曲线的出现,应力和温度之间存在明显的关联。
固态相变的原理及应用1. 引言固态相变是指物质在不改变其化学组成的情况下,在一定条件下发生物理性质的显著变化,包括液固相变、固固相变等。
本文将介绍固态相变的原理及其在科学研究和工程应用中的重要性。
2. 固态相变的原理固态相变的原理主要涉及分子间相互作用、晶体结构和热力学的变化。
以下是固态相变的一些常见原理:2.1 同质固态相变同质固态相变是指在同一物质中固态结构的变化。
它可以由温度、压力、外界场等因素引起。
•温度引起的同质固态相变:温度的升降可以改变固体分子的平均振动能量,从而改变其固态结构。
例如,冰的固态结构在低温下是稳定的,但在高温下会发生相变为液态的水。
•压力引起的同质固态相变:压力的增加可以改变固态相对稳定的结构,使其发生相变。
例如,某些材料在高压下可以发生相变为更稳定的结晶形态。
•外界场引起的同质固态相变:外界场包括电场、磁场、光场等,它们可以改变固态相之间的平衡态,从而引起相变。
2.2 异质固态相变异质固态相变是指在不同组分或不同结构的物质之间发生的相变。
以下是几个常见的异质固态相变原理:•共晶相变:指两种或多种成分在一定温度下发生相变。
例如,凝固过程中的合金共晶相变。
•共熔相变:指两种或多种成分在一定温度下熔化,并形成单一相。
例如,某些合金在特定温度下可以共熔。
•嵌段共聚物相变:指由于共聚物分子中不同段之间的相互作用力的不同,导致其发生异质结构相变的现象。
3. 固态相变的应用固态相变在科学研究和工程应用中具有广泛的应用价值。
以下是固态相变在不同领域中的一些应用:3.1 材料工程•形状记忆合金:由于固态相变的特性,一些合金材料具有形状记忆效应,可以在温度改变的条件下恢复到原来的形状。
这种特性使得形状记忆合金可以应用于医疗器械、航空航天等领域。
•热致变色材料:某些固态相变材料在温度变化时会发生颜色的变化。
这种特性使得热致变色材料可以用于温度测量和显示器件。
3.2 能源领域•储能材料:固态相变材料可以作为储能材料,通过在相变时释放储存的能量。
1. 固态相变与液固相变在形核、长大规律和组织等方面的主要区别。
答:固态相变形核要求有一个临界过冷度△Tc,只有当过冷度△T>△Tc时才满足相变热力学条件。
这是固态相变形核与液-固相变的根本区别。
相同:形核和长大规律相同,驱动力相同都存在相变阻力都是系统自组织的过程。
异处:不同点:(1)液-固相变驱动力为自由焓之差△G 相变,阻力为新相的表面能△G表,基本能连关系为:△G = △G 相变+△G表,而固态相变多了一项畸变能△G畸,基本能连关系为:△G = △G 相变+△G界面+△G畸(2)固态相变比液-固相变困难,需要较大的过冷度。
固态相变阻力增加了应变能等,即固态相变中形核困难.
3.固态相变时为什么常常首先形成亚稳过渡相。
佳美试卷P31P33
(1)能量方面,所需要驱动力,平衡相大于过渡相,过渡相的界面能和应变能要低,形成有利于降低相变阻力。
(2)成分和结构方面。
过渡相在成分和结构更接近母相,两相易于形成共格或半共格界面,减少界面能,降低形核功,形核容易进行。
4.如何理解脱溶颗粒在粗化过程中的“小粒子溶解”和“大粒子长大”现象。
(1)粗化过程驱动力是界面能的降低当沉淀相越小,其中每个原子分到的界面能越多,化学势越高,与它处于平母相中的溶质原子浓度越高即c(r2)>c(r1)。
由此可见,在大粒子r1和小粒子r2之间体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度的作用下,大粒子通过吸收基体中的溶质而不断长大,小粒子要不断溶解收缩,放出溶质原子来维持这个扩散流。
所以出现了大粒子长大、小粒子溶解的现象
(2)
粗化过程中,小粒子溶解,大粒子长大,粒子总数减小,r增加。
小粒子溶解更快。
温度T升高,扩散系数D增大,使dr/dt增大。
所以当温度升高,大粒子长大更快,小粒子溶解更快。
5.如何理解调幅分解在热力学上无能垒,但在实际转变过程中有阻力。
(1)应变能,溶质溶剂原子尺寸不同
(2)梯度能,原子化学键结合
(3)相间点阵畸变
6.调幅分解与形核长大型脱溶转变的主要区别。
见佳美试卷P14 P34
7.如何从热力学角度理解马氏体相变的无扩散性。
8.在分析正火作用时,是应根据C曲线、CCT曲线,还是Fe-F3C相图?为什么?
以Al(2~4.5)%Cu合金为例,结合下图说明该合金脱溶过程规律和机理。
佳美P8
规律:
9.马氏体相变的特征 P40
10佳美P71
11.具备热弹性马氏体合金的必要条件和机理 P62
12.条幅分解,浓度波动方程佳美P7 P20 P34
13.Bain畸变和点阵不变
14.
15.
12.双球状更稳定。
(界面能,形核功)佳美P70
13.为什么温度太高太低,速度都很慢,中温时转变最快
条幅分解热力学条件,为什么无能垒有阻力
应变能(溶质溶剂源自尺寸不同),梯度能(原子化学键结合),相间点阵畸变。