《固态相变原理及应用》第二章 固态相变热力学原理
- 格式:pptx
- 大小:5.90 MB
- 文档页数:43
固态相变原理
固态相变是指物质在固态状态下由一种晶体结构转变为另一种晶体结构的过程。
在固态相变中,原子或分子重新排列,从而改变了物质的性质。
固态相变是固体物理学中的重要研究对象,对于材料科学和工程技术具有重要的意义。
固态相变的原理主要包括热力学和动力学两个方面。
热力学描述了相变过程中
物质内部的能量变化和熵变化,而动力学则描述了相变过程中原子或分子的运动和排列。
在热力学方面,相变需要克服能量壁垒,使得原子或分子从一个稳定的晶体结构转变为另一个稳定的晶体结构。
而在动力学方面,相变的速率取决于原子或分子的扩散和重新排列速度。
固态相变可以分为一级相变和二级相变两种类型。
一级相变是指在相变过程中
伴随着热量的吸收或释放,如固液相变和固气相变;而二级相变则是在相变过程中不伴随热量的吸收或释放,如铁磁相变和铁电相变。
不同类型的相变具有不同的热力学和动力学特性,因此需要采用不同的方法和技术来研究和应用。
固态相变在材料科学和工程技术中具有广泛的应用。
例如,通过控制金属材料
的固态相变,可以改变材料的硬度、强度和导电性能,从而实现对材料性能的调控。
另外,固态相变还可以应用于存储技术、传感器技术和能源材料等领域,为现代科学技术的发展提供了重要支撑。
总之,固态相变是固体物理学中的重要研究内容,对材料科学和工程技术具有
重要的意义。
通过深入研究固态相变的原理和特性,可以为材料的设计、制备和应用提供重要的理论和技术支持。
希望在未来的研究中,固态相变能够得到更加深入和全面的理解,为人类社会的发展做出更大的贡献。
固态相变原理1、相变的基础理论涉及三个方面的共性问题:1)相变能否进行,相变的方向2)相变进行的途径及速度3)相变的结果,即相变时结构转变的特征。
分别对应相变热力学、相变动力学和相变晶体学。
相变是朝着能量降低的方向进行;相变是选择阻力最小、速度最快的途径进行;相变可以有不同的终态,但只有最适合结构环境的新相才易于生存下来。
2、固态相变的特殊性(相界面、弹性应变能、位向关系与惯习面、亚稳过渡相、原子迁移率、晶体缺陷)。
固态相变除满足热力学条件外,还须获得额外能量来克服晶格改组时原子间的引力,即存在相变势垒。
相变势垒由激活能决定,也与是否有外加机械应力有关。
3、相变驱动力和相变阻力驱动力:体积自由能,来自晶体缺陷(点,线,面缺陷)的储存能。
储存能由大到小的排序:界面能,线缺陷,点缺陷。
界面能中界隅提供的能量最大,但体积分数小,界棱次之,界面最小,但体积分数最大。
相变阻力是界面能和弹性应变能。
弹性应变能与新旧相的比容差和弹性模量,及新相的几何外形有关。
从能量的角度来看:共格界面的弹性应变能最大,非共格界面的界面能最大。
球形新相界面能最小,但应变能最大,圆盘状新相相反,针状新相居中。
4、长大方式新相晶核的长大分为协同(共格或半共格,切变)和非协同(非共格或扩散)两种,前者速度快,后者速度慢。
原子只能短程扩散时,长大速度与过冷度(温度)存在极大值;长程扩散时,长大速度与扩散系数和母相的浓度梯度成正比,与相界面处两相的浓度差呈反比。
5、相变速率相变速率满足Johnson-Mehl方程或Avrami经验方程。
相变之初和相变结束其,相变速率最小,转变量约50%时,相变速度最大。
扩散型相变的动力学曲线呈“C”形。
是由驱动力和扩散两个矛盾因素共同决定的。
6、C曲线“C”曲线建立的原理:一定外界条件下,只要发生了相变,宏观上就能检测出某种变化(组织,结构,性能等),确定该条件下这种变化与新相转变量的关系。
相变进行的难以程度决定“C”曲线的位置。
第1章:奥氏体的形成1.金属固态相变的基础⑴热力学原理(自由能下降):固体中有元素扩散、自由能最低原则、降低自由能的过程⑵动力学原理(时间和温度):成份起伏,结构起伏,能量起伏→相变过程(形核、长大)发生相转变2.奥氏体的形成⑴热处理:通过加热、保温和冷却的方法,改变金属及合金的组织结构,使其获得所需要的性能的热加工工艺。
⑵奥氏体化:钢加热获得奥氏体的过程。
⑶奥氏体形成的热力学条件系统总的自由能变化ΔG:ΔG=-ΔG V+ΔG S+ΔGεΔGV——奥氏体与旧相体积自由能之差;ΔGS ——形成奥氏体时所增加的表面能;ΔGε——形成奥氏体时所增加的应变能ΔG<0,形成奥氏体。
⑷实际加热时临界点的变化加热:偏向高温,存在过热度;A C1,A C3,A CCm冷却:偏向低温,存在过冷度。
A r1,A r3,A rCm3.奥氏体的组织、结构⑴奥氏体的组织通常由多边形的等轴晶粒所组成,有时可观察到孪晶。
⑵奥氏体的结构①具有面心立方结构。
(奥氏体是C溶于γ-Fe中的固溶体。
合金钢中的奥氏体是C及合金元素溶于γ-Fe中的固溶体。
)②C是处于γ-Fe八面体的中心空隙处,即面心立方晶胞的中心或棱边的中点;③最大空隙的半径为0.052nm,与C原子半径(0.077 nm)比较接近。
C原子的存在,使奥氏体点阵常数增大④实际上奥氏体最大碳含量是2.11%(重量)4.奥氏体的性能⑴顺磁性。
用于相变点和残余奥氏体含量的测定等。
⑵比容最小。
也常利用这一性质借膨胀仪来测定奥氏体的转变情况。
⑶线膨胀系数最大。
利用奥氏体钢膨胀系数大的特性来做仪表元件。
⑷奥氏体的导热性能最差(除渗碳体外)。
奥氏体钢要慢速加热。
⑸奥氏体的塑性高,屈服强度低。
5.奥氏体的形成机制⑴奥氏体的形核①在铁素体与渗碳体的界面处依靠系统内的成分起伏、结构起伏和能量起伏形成。
②奥氏体形核于相界面处的原因:Ⅰ界面处碳浓度差大,有利于获得奥氏体晶核形成所需的碳浓度。
固态相变的原理及应用1. 引言固态相变是指物质在不改变其化学组成的情况下,在一定条件下发生物理性质的显著变化,包括液固相变、固固相变等。
本文将介绍固态相变的原理及其在科学研究和工程应用中的重要性。
2. 固态相变的原理固态相变的原理主要涉及分子间相互作用、晶体结构和热力学的变化。
以下是固态相变的一些常见原理:2.1 同质固态相变同质固态相变是指在同一物质中固态结构的变化。
它可以由温度、压力、外界场等因素引起。
•温度引起的同质固态相变:温度的升降可以改变固体分子的平均振动能量,从而改变其固态结构。
例如,冰的固态结构在低温下是稳定的,但在高温下会发生相变为液态的水。
•压力引起的同质固态相变:压力的增加可以改变固态相对稳定的结构,使其发生相变。
例如,某些材料在高压下可以发生相变为更稳定的结晶形态。
•外界场引起的同质固态相变:外界场包括电场、磁场、光场等,它们可以改变固态相之间的平衡态,从而引起相变。
2.2 异质固态相变异质固态相变是指在不同组分或不同结构的物质之间发生的相变。
以下是几个常见的异质固态相变原理:•共晶相变:指两种或多种成分在一定温度下发生相变。
例如,凝固过程中的合金共晶相变。
•共熔相变:指两种或多种成分在一定温度下熔化,并形成单一相。
例如,某些合金在特定温度下可以共熔。
•嵌段共聚物相变:指由于共聚物分子中不同段之间的相互作用力的不同,导致其发生异质结构相变的现象。
3. 固态相变的应用固态相变在科学研究和工程应用中具有广泛的应用价值。
以下是固态相变在不同领域中的一些应用:3.1 材料工程•形状记忆合金:由于固态相变的特性,一些合金材料具有形状记忆效应,可以在温度改变的条件下恢复到原来的形状。
这种特性使得形状记忆合金可以应用于医疗器械、航空航天等领域。
•热致变色材料:某些固态相变材料在温度变化时会发生颜色的变化。
这种特性使得热致变色材料可以用于温度测量和显示器件。
3.2 能源领域•储能材料:固态相变材料可以作为储能材料,通过在相变时释放储存的能量。