分子发光分析法
- 格式:ppt
- 大小:1020.50 KB
- 文档页数:49
分子发光分析法五种去活化过程
一、表面活性剂洗涤
表面活性剂洗涤是一种常见的去活化过程,洗涤分子表面上的污染物,降低并去除和阻止分子表面上的污染物对发光特性的影响。
分子活性剂洗
涤试剂可以根据需要分类,包括非离子表面活性剂、离子表面活性剂和混
合表面活性剂。
通常情况下,洗涤剂应与活性剂结合,以提高洗涤效率,
同时具有良好的低温过程安全。
表面活性剂洗涤可以减少分子表面的污染物,从而改善样品的发光特性,如改善发射光谱,提高发射效率,并可能
改善分子检测的灵敏度。
二、抗化学处理
抗化学处理是指在特定条件下,通过在分子表面涂覆一层屏蔽膜,阻
止日常活动(如体积缩小,局部温度升高等)对分子表面造成的影响,从
而保持稳定性和发光性质。
抗化学处理可以在低温下进行,不改变分子组成,而且耐受性更好。
三、光致化学聚合
光致化学聚合是将分子用光进行处理,使用不同的光谱来影响分子的
特性,使其可以在恒定的环境中提供更稳定的发光性能。
四、气氛处理
气氛处理是指在恒定温度和压力的环境下,利用气体作用去活化分子
表面。
该过程可以去除表面污染物,改善发光特性,如改善发射光谱或提
高发射效率。
分子发光分析法与分子吸收分光光度
分子发光分析法和分子吸收分光光度法(MMS)是物理化学中测定物质含量和生物物质含
量的两种常用方法。
它们之间有共同点和不同之处,本文主要就这二者的原理和方法进行
介绍。
分子发光分析法(MALS)是用物质中的激发态分子把紫外线能量转换为可见光,用以表征
物质的测定方法。
该方法工作原理为紫外线照射激发态分子,激发态分子把紫外线能量转
变为可见光,然后通过光电器件检测发出的可见光,最终得出物质的测定结果。
MALS技术的优点在于检测结果准确,具有快速性,还可以检测生物样本中物质含量。
而分子吸收分光光度(MMS)是通过测量物质吸收入射光的程度,来表征物质的检测方法。
这种技术工作原理是将光源照射在样本上,样本中的物质会吸收一部分入射的紫外线,而
剩下的光经过反射和透射而到达检测器,最终通过计算获得物质的测定数值。
比较MMS和MALS,MMS技术具有更高的灵敏度,可以进行更细小物质的检测,而且不受多种物质的干扰,也可以检测生物样本中的物质含量。
总之,MALS和MMS都是通过激发态分子转换紫外线能量为可见光,然后通过光电器件检测可见光,来判断物质的含量的两种常用技术,它们的优点和特点主要是MALS检测结果准确,具有快速性,而MMS则具有更高的灵敏度,可以进行更细小物质的检测,也可以检测
生物样本中的物质含量。
第五章 分子发光分析法: 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光。
第一节 荧光分析法一、概 述 :分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
与分光光度法相比,荧光分析法的最大优点是灵敏度高和选择性高。
二、荧光产生的基本原理(一)分子荧光的产生(二)荧光效率及其影响因素1.荧光效率2.荧光与分子结构的关系(1)产生荧光的条件①必须含有共轭双键这样的强吸收基团,并且体系越大, 电子的离域性越强,越容易被激发产生荧光;大部分荧光物质都含有一个以上的芳香环,且随共轭芳环的增大,荧光效率越高,荧光波长越长。
②分子的刚性平面结构有利于荧光的产生③.取代基对荧光物质的荧光特征和强度的影响 给电子基团:-OH 、-NH2、-NR2和-OR 等可使共轭体系增大,导致荧光增强。
吸电子基团:-COOH 、-NO 和-NO2等使荧光减弱。
随着卤素取代基中卤原子序数的增加,使系间窜跃加强,物质的荧光减弱,而磷光增强。
3.环境因素对荧光强度的影响(1)溶剂极性对荧光强度的影响: 一般来说,电子激发态比基态具有更大的极性。
溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大. 奎宁在苯、乙醇和水中荧光效率的相对大小为1、30和1000。
(2)温度荧光强度的影响: 一般情况下,辐射跃迁的速率基本不随温度而改变,而非辐射跃迁的速率随温度升高而显著增大。
对大多数的荧光物质而言,升高温度会使非辐射跃迁概率增大,荧光效率降低。
由于三重态的寿命比单重激发态寿命更长,温度对于磷光的影响比荧光更大。
(3)pH 对荧光强度的影响:共轭酸碱两种体型具有不同的电子氛围,往往表现为具有不同荧光性质的两种体型,各具有自己特殊的荧光效率和荧光波长。
另外,溶液中表面活性剂的存在,可以使荧光物质处于更有序的胶束微环境中,对处于激发单重态的荧光物质分子起保护作用,减小非辐射跃迁的概率,提高荧光效率。
分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。
依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。
光致发光按激发态的类型又可分为荧光和磷光两种。
本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。
第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
早在16世纪,人们观察到当紫外和可见光照射到某些物质时。
这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。
到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。
斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。
1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。
进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。
荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。
虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。
使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。
二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。
根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。
当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。