基于MATLAB的泊松分布的仿真
- 格式:doc
- 大小:171.50 KB
- 文档页数:5
《应用随机过程》实验报告实验序号:1-4 日期:2013年5月30 日 姓名梁光佐 学号 201005050110 实验题目 应用随机过程综合实验实验所用软件及版本 MATLAB 20081、 实验目的(1)通过编程实现poisson 过程的模拟,运用matlab 画图这样更直观的了解poisson 过程,(2)运用计算机通过编程来辅助解题,这样解决了解题的繁琐, 使解题的效力提高了,也节约了时间。
2、实验内容实验一实验问题1.编制程序产生并输出100个二项分布的随机数,6.0,10==p n .2.进行三次Poisson 过程的模拟,3=λ,200,100,50===n n n 作图:(在同一直角坐标系下,作出‘)(,n n t N t ’的关系图实验二一、泊松过程的模拟1.基本原理根据服务系统接受服务顾客数服从泊松分布这一模型可知,{X(n),t }是一个计数过程,{,n 是对应的时间间隔序列,若(n)(n=1,2,...)是独立同分布的均值为的指数分布,则{X(n),t}是具有参数为λ的泊松。
2.具休实现过程实现步骤如下:(1).由函数random(‘exponential’,lamda)构造服从指数分布的序列。
(2).根据服务系统模型,=+。
(3).对任意t(,),X(t)=n,由此得到泊松过程的模拟。
3.过程模拟验证(1)设定t=0时刻,计数为0,满足X(0)=0这一条件。
(2) 是由random(‘exponential’,lamda)生成,间相互独立。
二、泊松过程的检验1.检验方法Kolmogorov-Smirnov检验(柯尔莫哥洛夫-斯摩洛夫),亦称拟合优度检验法,用来检用来检验模拟所得的数据的分布是不是符合一个理论的已知分布。
检验步骤及过程:(1)条件设定:H1:实验产生模拟泊松分布数据的总体分布服从泊松分布。
H0:实验产生模拟泊松分布数据的总体分布不服从泊松分布。
(2)检验准备:对于H1,已经假定所产生模拟泊松过程数据()X n服从泊松分布,而强度λ未知,利用函数poissfit(x,alpha)估算出模拟泊松过程的强度λ,再利用函数poisscdf(x,lamda)得到泊松分布的累积分布函数P。
数学实验四(概率论)一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布当随变量(),X B n p 时,在MATLAB 中用命令函数(,,)Px binopdf X n p =计算某事件发生的概率为p 的n 重贝努利试验中,该事件发生的次数为X 的概率。
例1 在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。
解 在MATLAB 中,输入 >>clear>> Px=binopdf(2,20,0.2) Px =0.1369即所求概率为0.1369。
2.用MA TLAB 计算泊松分布当随变量()X P λ 时,在MATLAB 中用命令函数(,)P poisspdf x lambda =计算服从参数为lambda 的泊松分布的随机变量取值x 的概率。
用命令函数(,)P poisscdf x lambda =计算服从参数为lambda 的泊松分布的随机变量在[]0,x 取值的概率。
例2 用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率.利用泊松分布计算. 25000.0025np λ==⋅= (1) P(保险公司亏本)=()()15250025000(3020)1(15)10.0020.998kkk k P X P X C -=-<=-≤=-⋅∑=155051!k k e k -=-∑在MATLAB 中,输入 >> clear>> P1=poisscdf(15,5) P1 =0. 9999即 15505!k k e k -=∑= P1 =0.9999故 P(保险公司亏本)=1-0.9999=0.0001 (2) P(获利不少于10万元)=()()10102500250025000(30210)(10)0.0020.998k kk kk k P X P X CC -==-≥=≤=⋅≈∑∑ =10505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(10,5) P =0.9863即 10505!k k e k -=∑=0.9863(3) P(获利不少于20万元)=()()525002500(30220)(5)0.0020.998k kk k P X P X C-=-≥=≤=⋅∑ =5505!k k e k -=∑ 在MATLAB 中,输入 >>P=poisscdf(5,5) P =0.6160即 5505!k k e k -=∑= 0.61603.用MA TLAB 计算均匀分布当随机变量(),X U a b 时,在MATLAB 中用命令函数(),,P unifpdf x a b =计算在区间[],a b 服从均匀分布的随机变量的概率密度在x 处的值。
数学实验-概率学院:理学院班级:xxxx姓名:xxxx学号:xxxx指导教师:xxxxx实验名称:概率试验目的:1)通过对mathematica软件的练习与运用,进一步熟悉和掌握mathematica软件的用法与功能。
2)通过试验过程与结果将随机实验可视化,直观理解概率论中的一些基本概念,并初步体验随机模拟方法。
实验步骤:1)打开数学应用软件——Mathematica ,单击new打开Mathematica 编辑窗口;2)根据各种问题编写程序文件;3)运行程序文件并调试;4)观察运行结果(数值或图形);5)根据观察到的结果写出实验报告,并析谈学习心和体会。
实验内容:1)概率的统计定义2)古典概型3)几种重要分布1)二项分布2)泊松分布4)概率问题的应用(一)概率的统计定义我们以抛掷骰子为例,按古典概率的定义,我们要假设各面出现的机会是等可能的,这就要假设:(1)骰子的质料绝对均匀;(2)骰子是绝对的正方体:(3)掷骰子时离地面有充分的高度。
但在实际问题中是不可能达到这些要求的,假设我们要计算在一次抛掷中出现一点这样一个事件 的概率为多少,这时,已无法仅通过一种理论的考虑来确定,但我们可以通过试验的方法来得到事件 概率:设反复地将骰子抛掷大量的次数,例如n 次,若在n 次抛掷中一点共发生了 次,则称是 这个事件在这n 次试验中的频率,概率的统计定义就是将 作为事件 的概率P( )的估计。
这个概念的直观背景是:当一个事件发生的可能性大(小)时,如果在同样条件下反复重复这个实验时,则该事件发生的频繁程度就大(小)。
同时,我们在数学上可以证明:对几何任何一组试验,当n 趋向无穷时,频率 趋向同一个数。
<练习一>模拟掷一颗均匀的骰子,可用产生1-6的随机整数来模拟实验结果1) 作n=200组实验,统计出现各点的次数,计算相应频率并与概率值1/6比较;2) 模拟n=1000,2000,3000组掷骰子试验,观察出现3点的频率随试验次数n 变化的情形,从中体会频率和概率的关系。
在Matlab中进行模拟和仿真Matlab是一种功能强大的数学软件,广泛应用于科学研究、工程设计和数据分析等领域。
它不仅拥有丰富的数学函数库和绘图工具,还提供了一套强大的仿真和模拟功能,使用户能够更加方便地进行系统建模和性能评估。
本文将以Matlab中的模拟和仿真为主题,介绍其应用和原理,希望能为读者提供一些有用的参考和指导。
一、模拟与仿真的基本概念模拟和仿真是现代科学和工程中常用的研究方法,通过对实际系统进行数学建模和计算机模拟,可以在不进行实际试验的情况下,预测和评估系统的性能和行为。
模拟和仿真能够节省时间和成本,提高研究效率,使得科学家和工程师能够更快地了解和优化系统。
在Matlab中,模拟和仿真一般包括以下几个步骤:首先,确定系统的数学模型,即建立数学方程或差分方程描述系统的动态行为。
其次,选择仿真方法和算法,根据系统的特点和需求,确定合适的模拟算法,如欧拉法、龙格-库塔法等。
然后,设定仿真参数,包括仿真时间、步长等,这些参数将影响仿真结果的准确性和计算效率。
最后,执行仿真,并对仿真结果进行分析和评估。
二、Matlab中的模拟功能在Matlab中,模拟功能是通过内置的仿真工具和函数库来实现的。
Matlab提供了一系列用于数学建模和仿真分析的函数、工具箱和工具。
例如,Simulink是Matlab中最常用的仿真工具之一,它基于图形化仿真模型,可以快速搭建各种系统的模型,并进行仿真和分析。
Simulink提供了丰富的模块和工具箱,能够满足不同系统的建模和仿真需求。
用户可以通过拖放模块、连接信号线的方式,构建系统模型,并设置参数、仿真时间等。
Simulink还支持自定义模块和函数,用户可以根据具体需要,编写自己的模块和函数,以满足特定的仿真需求。
除了Simulink之外,Matlab还提供了其他一些实用的仿真函数和工具,如ode45函数用于解非刚性系统的常微分方程,ode15s函数用于解刚性系统的常微分方程等。
(完整版)基于MATLAB的泊松分布的仿真泊松过程样本轨道的MATLAB 仿真⼀、 Poisson Process 定义若有⼀个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满⾜下列条件: 1、0N = 0;2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。
3、对任意的⾃然数n ≥2和任意的时间指标0120n t t t t =<<12110,,n n t t t t t t N N N N N N --?,--是相互独⽴的随机变量。
⼆、从泊松过程的定义可知1、泊松过程具有平稳独⽴增量性。
2、时间指标集合为[ 0 , +∞],状态空间为*S=N 。
3、泊松过程是⼀个连续时间离散状态的随机过程。
三、MATLAB 仿真泊松过程的思想1、若定义i T 为泊松过程的到达时间,1,n n n T T n τ=+-∈N 为到达时间间隔。
那么泊松过程N 的到达时间间隔{:}n n N τ∈是相互独⽴且同服从于参数为λ的指数分布。
2、若U 是服从于[0,1]的均匀分布,则1()E Ln U =-λ服从于参数为λ的指数分布。
利⽤随机变量分布函数的定义很容易证明这条性质。
3、由于1、和2、中的条件成⽴,现在我们考虑11[()]n n n T T Ln U n τ=+=--λ那么就可以推出11[()]n n T T Ln U n +=-λ在MATLAB 中我们可以⽤rand(1,K)产⽣⼀个具有K 个值的随机序列,它们在[0,1]上服从于均匀分布,利⽤上式计算出 n T ,在每⼀个到达时间 n T 处,N 的值从n-1变成n 。
⽤plot 函数就可以将样本轨道画出了。
四、MATLAB 程序1、⾸先我们建⽴⼀个poisson 函数,即poisson.m:function poisson(m)%This function can help us to simulate poisson processes. %If you give m a integer like 1 2 3 and so on ,then you will get %a figure to illustrate the m sample traces of the process. %rand('state',0); %复位伪随机序列发⽣器为0状态 K=10; %设置计数值为10%m=6; %设置样本个数color=char('r+','b+','g+','m+','y+','c+'); %不同的轨道采⽤不同的颜⾊表⽰lambda=1; %设置到达速率为1for n=1:mu=rand(1,K); %产⽣服从均匀分布的序列T=zeros(1,K+1); %长⽣K+1维随机时间全零向量k=zeros(1,K+1); %产⽣K+1维随机变量全零向量for j=1:Kk(j+1)=j;T(j+1)=T(j)-log(u(j))/lambda; %计算到达时间endfor i=1:Kplot([T(i):0.001:T(i+1)],[k(i):k(i)],color(n,[1,2])); hold on;endend2、下⾯我们在命令窗⼝键⼊以下命令:clear;poisson(1);就可以得到⼀条样本轨道,如下所⽰:键⼊poisson(2),得到的图如下:键⼊poisson(3),得到的图如下:键⼊poisson(4),仿真结果:键⼊poisson(5),仿真结果:键⼊poisson1(6),仿真结果:。
《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
matlab在球体表面按泊松分布生成点敬爱的读者:今天我想和你分享的主题是“matlab在球体表面按泊松分布生成点”。
这是一个非常有趣并且具有挑战性的话题,通过本文,我希望能够带你深入探讨这个主题,并且加深你对它的理解。
1. 背景介绍在开始深入讨论之前,我想先给你介绍一下什么是泊松分布以及Matlab的基本原理。
泊松分布是描述在一个固定时间或空间范围内事件发生次数的概率分布。
而Matlab是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
它可以让你进行矩阵操作、函数曲线绘制、数据算法实现以及创建用户界面等。
了解这些基本概念将有助于我们更好地理解如何在球体表面按照泊松分布生成点。
2. 泊松分布在球体表面的应用现在让我们来深入探讨如何在球体表面按照泊松分布生成点。
我们需要明确如何在球体表面定义一个均匀的分布。
这将涉及到球面上的参数化表示以及如何根据泊松分布在球面上生成点。
在Matlab中,我们可以利用球面的参数化方程和随机数生成函数来实现这一目标。
当然,在实际操作中,我们还需要考虑如何控制点的密度、分布范围以及如何对生成的点进行可视化等问题。
3. 实际操作与案例分析接下来,让我们通过一个实际的案例来加深对这个主题的理解。
我们可以选择一个特定的球体参数化表示,然后利用Matlab中的相关函数来生成符合泊松分布的点集。
在生成点集之后,我们可以通过可视化工具来观察点的分布情况,并且对比理论分布和实际生成的点集之间的差异。
通过这样的案例分析,我们可以更好地理解在球体表面按照泊松分布生成点的具体步骤和方法,并且掌握如何在Matlab中进行实际操作。
4. 总结与展望通过本文的探讨,相信你已经对在球体表面按泊松分布生成点有了更深入的理解。
无论是理论知识还是实际操作,这个主题都具有一定的挑战性和深度。
在未来,我们可以进一步探讨如何在其他几何形状的表面上实现类似的点分布生成,并且结合更多实际应用场景来加深对这一主题的理解。
泊松过程样本轨道的MATLAB 仿真一、 Poisson Process 定义若有一个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满足下列条件: 1、0N = 0;2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。
3、对任意的自然数n ≥2和任意的时间指标0120n t t t t =<<<⋯<<⋯,n 个增量12110,,n n t t t t t t N N N N N N --⋯,--是相互独立的随机变量。
二、从泊松过程的定义可知1、泊松过程具有平稳独立增量性。
2、时间指标集合为[ 0 , +∞],状态空间为*S=N 。
3、泊松过程是一个连续时间离散状态的随机过程。
三、MATLAB 仿真泊松过程的思想1、若定义i T 为泊松过程的到达时间,1,n n n T T n τ=+-∈N 为到达时间间隔。
那么泊松过程N 的到达时间间隔{:}n n N τ∈是相互独立且同服从于参数为λ的指数分布。
2、若U 是服从于[0,1]的均匀分布,则1()E Ln U =-λ服从于参数为λ的指数分布。
利用随机变量分布函数的定义很容易证明这条性质。
3、由于1、和2、中的条件成立,现在我们考虑11[()]n n n T T Ln U n τ=+=--λ那么就可以推出11[()]n n T T Ln U n +=-λ在MATLAB 中我们可以用rand(1,K)产生一个具有K 个值的随机序列,它们在[0,1]上服从于均匀分布,利用上式计算出 n T ,在每一个到达时间 n T 处,N 的值从n-1变成n 。
用plot 函数就可以将样本轨道画出了。
四、MATLAB 程序1、首先我们建立一个poisson 函数,即poisson.m:function poisson(m)%This function can help us to simulate poisson processes. %If you give m a integer like 1 2 3 and so on ,then you will get %a figure to illustrate the m sample traces of the process. %rand('state',0); %复位伪随机序列发生器为0状态 K=10; %设置计数值为10%m=6; %设置样本个数color=char('r+','b+','g+','m+','y+','c+'); %不同的轨道采用不同的颜色表示lambda=1; %设置到达速率为1for n=1:mu=rand(1,K); %产生服从均匀分布的序列T=zeros(1,K+1); %长生K+1维随机时间全零向量k=zeros(1,K+1); %产生K+1维随机变量全零向量for j=1:Kk(j+1)=j;T(j+1)=T(j)-log(u(j))/lambda; %计算到达时间endfor i=1:Kplot([T(i):0.001:T(i+1)],[k(i):k(i)],color(n,[1,2]));hold on;endend2、下面我们在命令窗口键入以下命令:clear;poisson(1);就可以得到一条样本轨道,如下所示:键入poisson(2),得到的图如下:键入poisson(3),得到的图如下:键入poisson(4),仿真结果:键入poisson(5),仿真结果:键入poisson1(6),仿真结果:。
泊松回归预测matlab
泊松回归是一种用于计数数据的回归分析方法,常用于预测事
件发生的次数。
在MATLAB中,可以使用统计工具箱中的函数来进行
泊松回归分析和预测。
首先,你需要准备好你的计数数据和预测变量。
然后,使用MATLAB中的`fitglm`函数来拟合泊松回归模型。
这个函数可以指定
泊松分布作为误差分布,并且可以选择预测变量来建立模型。
接下来,你可以使用拟合好的模型来进行预测。
使用`predict`
函数可以根据你的预测变量得到对应的计数数据的预测值。
除了预测,你还可以使用泊松回归模型来进行参数估计和推断。
可以使用`coefTest`函数来进行参数的显著性检验,以及使用
`coefCI`函数来获得参数的置信区间。
另外,你还可以使用交叉验证等方法来评估泊松回归模型的性能,以及进行模型的选择和比较。
总之,在MATLAB中,你可以使用统计工具箱中的函数来进行泊
松回归分析和预测,这些函数提供了丰富的功能和选项,可以帮助你进行全面的分析和预测。
泊松过程样本轨道的MATLAB 仿真
一、 Poisson Process 定义
若有一个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满足下列条件: 1、0N = 0;
2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。
3、对任意的自然数n ≥2和任意的时间指标0120n t t t t =<<<⋯<<⋯,n 个增量
12110,,n n t t t t t t N N N N N N --⋯,--
是相互独立的随机变量。
二、从泊松过程的定义可知
1、泊松过程具有平稳独立增量性。
2、时间指标集合为[ 0 , +∞],状态空间为*
S=N 。
3、泊松过程是一个连续时间离散状态的随机过程。
三、MATLAB 仿真泊松过程的思想
1、若定义i T 为泊松过程的到达时间,1,n n n T T n τ=+-∈N 为到达时间间隔。
那么泊松过程N 的到达时间间隔{:}n n N τ∈是相互独立且同服从于参数为λ的指数分布。
2、若U 是服从于[0,1]的均匀分布,则
1
()E Ln U =-λ
服从于参数为λ的指数分布。
利用随机变量分布函数的定义很容易证明这条性质。
3、由于1、和2、中的条件成立,现在我们考虑
11[()]n n n T T Ln U n τ=+=--λ
那么就可以推出
11
[()]n n T T Ln U n +=-
λ
在MATLAB 中我们可以用rand(1,K)产生一个具有K 个值的随机序列,它们在[0,1]上服从于均匀分布,利用上式计算出 n T ,在每一个到达时间 n T 处,N 的值从n-1变成n 。
用plot 函数就可以将样本轨道画出了。
四、MATLAB 程序
1、首先我们建立一个poisson 函数,即poisson.m:
function poisson(m)
%This function can help us to simulate poisson processes. %If you give m a integer like 1 2 3 and so on ,then you will get %a figure to illustrate the m sample traces of the process. %
rand('state',0); %复位伪随机序列发生器为0状态 K=10; %设置计数值为10
%m=6; %设置样本个数
color=char('r+','b+','g+','m+','y+','c+'); %不同的轨道采用不同的颜色表示lambda=1; %设置到达速率为1
for n=1:m
u=rand(1,K); %产生服从均匀分布的序列
T=zeros(1,K+1); %长生K+1维随机时间全零向量
k=zeros(1,K+1); %产生K+1维随机变量全零向量
for j=1:K
k(j+1)=j;
T(j+1)=T(j)-log(u(j))/lambda; %计算到达时间
end
for i=1:K
plot([T(i):0.001:T(i+1)],[k(i):k(i)],color(n,[1,2]));
hold on;
end
end
2、下面我们在命令窗口键入以下命令:
clear;
poisson(1);
就可以得到一条样本轨道,如下所示:
键入poisson(2),得到的图如下:
键入poisson(3),得到的图如下:
键入poisson(4),仿真结果:
键入poisson(5),仿真结果:
键入poisson1(6),仿真结果:
(注:可编辑下载,若有不当之处,请指正,谢谢!)。