第2课时
分段函数
分段函数
1.分段函数的定义
如果一个函数,在其定义域内,对于自变量的不同取值区间,有不同
的对应关系,则称其为分段函数.
2.分段函数的图象
分段函数有几段,它的图象就由几条曲线组成.在同一平面直角坐
标系中,根据分段函数每段的定义区间和表达式依次画出图象,要
注意确定每段图象的端点是空心点还是实心点,各段函数图象组合
x 的值并验证.
1
2
;
解:(1)f -
1
2
1
1
3
=- +2= ,
2
2
∴f - 2 =f
1
∴f - 2
3
2
=
=f
3 2
2
9
4
9
= ,
4
1
9
9
= × = .
2
4
8
(2)当 f(x)=x+2=2 时,x=0,不符合 x<0.
当 f(x)=x2=2 时,x=± 2,其中 x= 2符合 0≤x<2.
1
当 f(x)= x=2 时,x=4,符合 x≥2.
2
综上,x 的值是 2或 4.
延伸探究在本例已知条件下,若f(x)>0,求x的取值范围.
≥ 2,
0 ≤ < 2,
< 0,
解:∵f(x)>0,∴
或 2
或 1
> 0.
+2 > 0
>0
2
∴-2<x<0或0<x<2或x≥2.
∴x的取值范围是(-2,0)∪(0,+∞).
-1,x < 0,