第二段的定义域为[0,2],值域为[-1,0].
所以该分段函数的定义域为[-1,2],值域为[-1,1).
(2)①当0≤x≤2时,f(x)=1+x-2 x=1;
当-2<x<0时,f(x)=1+-x2-x=1-x.
∴f(x)=11,-x,
0≤x≤2, -2<x<0.
②函数f(x)的图象如图所示,
③由②知,f(x)在(-2,2]上的值域为[1,3). [答案] (1)[-1,2] [-1,1)
[活学活用] 4-x2,x>0,
已知函数f(x)=2,x=0, 1-2x,x<0.
(1)求f(f(-2))的值; (2)求f(a2+1)(a∈R)的值; (3)当-4≤x<3时,求f(x)的值域.
解:(1)∵f(-2)=1-2×(-2)=5, ∴f(f(-2))=f(5)=4-52=-21. (2)当a∈R时,a2+1≥1>0,∴f(a2+1)=4-(a2+1)2=-a4- 2a2+3(a∈R). (3)①当-4≤x<0时,f(x)=1-2x, ∴1<f(x)≤9; ②当x=0时,f(x)=2; ③当0<x<3时,f(x)=4-x2, ∴-5<f(x)<4. 故当-4≤x<3时,函数f(x)的值域是(-5,9].
[类题通法] 1.求分段函数的函数值的方法 先确定要求值的自变量的取值属于哪一段区间,然后代入 该段的解析式求值.当出现f(f(a))的形式时,应从内到外依次求 值,直到求出值为止. 2.求某条件下自变量的值的方法 先假设所求的值在分段函数定义区间的各段上,然后相应 求出自变量的值,切记代入检验.
第二课时 分段函数与映射
分段函数 [提出问题] 某市空调公共汽车的票价按下列规则制定: (1)5千米以内,票价2元; (2)5千米以上,每增加5千米,票价增加1元(不足5千米的按5 千米计算). 已知两个相邻的公共汽车站间相距1千米,沿途(包括起点站 和终点站)有11个汽车站.