题型二
求分段函数的函数值
x 1, x 0, 【例 2】 已知 f( x) = π, x 0, 求 f{f[ f( -3) ] }. 0, x 0,
分析: 先求 f(-3), 设 f( -3 ) =m, 再求 f(m), 设 f(m) =n, 再求 f( n) 即可. 解: ∵ -3<0, ∴ f(-3)=0. ∴ f[f(-3) ]=f(0) = π. 又∵ π>0, ∴ f{f[f(-3) ]}=f(π) =π+1, 即 f{f[f(-3)] }=π+1. 反思: ( 1)求分段函数的函数值, 一定要注意所给自变量的值所在的范围, 再代入 相应的解析式求得. (2)像本题中含有多层“f”的问题, 要按照“由里到外”的顺序, 层层处理.
1.理解映射的概念 剖析: 对于映射 f: A→B , 可以从以下几个方面理解: (1)映射中的两个集合 A 和 B 可以是数集、点集或由图形组成的集合等; (2)映射是有方向的, A 到 B 的映 射与 B 到 A 的映射往往是不一样的; (3)映射要求对集合 A 中的每一个元素在集 合 B 中都有元素与之对应, 而且这个与之对应的元素是唯一的, 这样集合 A 中元 素的任意性和在集合 B 中对应的元素的唯一性就构成了映射的核心; (4)映射允 许集合 B 中存在元素在 A 中没有元素与其对应; (5)映射允许集合 A 中有不同的 元素在集合 B 中有相同的对应元素, 即映射只能是“多对一”或“一对一”, 不能 是“一对多”.
题型一
判断映射
【例 1】 下列对应是 A 到 B 的映射的有( ①A=R, B=R, f: x→y= 1 x ;
) .
x 1
②A={2010 年广州亚运会的火炬手}, B={2010 年广州亚运会的火炬手的体重}, f: 每个火炬手对应自己的体重; ③A={非负实数}, B=R, f: x→y=± x . A.0 个 B.1 个 C.2 个 D.3 个 解析: ①中, 对于 A 中元素-1, 在 B 中没有与之对应的元素, 则①不是映射; ②中, 由 于每个火炬手都有唯一的体重, 则②是映射; ③中, 对于 A 中元素 4, 在 B 中有两个 元素 2 和-2 与之对应, 则③不是映射. 答案: B 反思: 判断一个对应是否为映射, 依据是映射的定义.判断方法为: 先看集合 A 中 每一个元素在集合 B 中是否均有对应元素.若没有, 则不是映射; 若有, 再看对应 元素是否唯一, 若唯一, 则是映射, 若不唯一, 则不是映射.