高中物理教案 电磁学 (6)
- 格式:doc
- 大小:547.00 KB
- 文档页数:8
《磁场对通电导线的作用力》优质教案6一、教学内容本节课选自高中物理教材《电磁学》第四章第二节,详细内容主要围绕磁场对通电导线的作用力进行讲解。
包括磁场的基本概念、安培力的计算方法以及左手定则的应用。
二、教学目标1. 让学生理解磁场对通电导线的作用力原理,掌握安培力的计算方法。
2. 培养学生运用左手定则解决实际问题的能力。
3. 激发学生对电磁学的学习兴趣,提高学生的科学素养。
三、教学难点与重点难点:安培力的计算方法,左手定则的应用。
重点:磁场对通电导线的作用力原理,安培力与电流、磁场的关系。
四、教具与学具准备1. 教具:电流表、电压表、导线、磁铁、演示用电磁铁、电源等。
2. 学具:学生分组实验所需电流表、电压表、导线、磁铁、电源等。
五、教学过程1. 实践情景引入:用演示用电磁铁吸引铁屑,引导学生思考磁场对通电导线的作用力。
2. 讲解磁场对通电导线的作用力原理,引导学生学习安培力计算方法。
3. 举例讲解:通过例题讲解安培力计算方法,左手定则的应用。
4. 随堂练习:让学生分组实验,测量不同电流、磁场下导线的受力情况,验证安培力计算方法。
六、板书设计1. 磁场对通电导线的作用力原理:安培力计算方法:F = BILsinθ左手定则2. 实例分析:安培力计算与左手定则应用3. 随堂练习:分组实验数据及结论七、作业设计1. 作业题目:(1)计算题:一根长为1m,电流为2A的直导线,垂直放置于磁感应强度为0.5T的磁场中,求导线所受安培力。
(2)应用题:简述左手定则,并说明其在实际中的应用。
2. 答案:(1)F = BILsinθ = 0.5 2 1 sin90° = 1N(2)左手定则:伸开左手,使拇指、食指和中指垂直,中指指向磁场方向,食指指向电流方向,拇指所指方向即为安培力的方向。
实际应用:判断电磁铁的极性,判断电动机的转向等。
八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了磁场对通电导线的作用力原理,安培力的计算方法及左手定则的应用。
第三节电磁感应现象第四节电磁波及其应用学习目标:1.[科学探究]通过观察演示实验,归纳、概括出产生感应电流的条件。
2.[科学态度与责任]了解电磁感应的应用。
3.[科学探究]了解麦克斯韦电磁场理论,观察演示实验了解电磁波的形成和传播。
4.[物理观念]了解电磁场的物质性。
5.[科学态度与责任]了解电视广播、电视、雷达的工作原理。
一、电磁感应现象的发现1.电磁感应法拉第把他发现的磁生电的现象叫作电磁感应现象,产生的电流叫感应电流。
2.发现电磁感应现象的意义(1)使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
(2)使人们找到了磁生电的条件,开辟了人类的电气化时代。
二、产生感应电流的条件1.探究导体棒在磁场中运动是否产生电流(如图所示):实验操作实验现象(有无电流)实验结论导体棒平行磁感线运动无闭合回路包围的面积变化时,回路中有感应电流;包围的面积不变时,回路中无感应电流导体棒切割磁感线运动有2.探究磁铁在通电螺线管中运动是否产生电流(如图所示):实验操作实验现象(有无电流)实验结论N(或S)极插入线圈有线圈中的磁场变化时,线圈中有感应电流;线圈中的磁场不变时,线圈中无感应电流N(或S)极停在线圈中无N(或S)极从线圈中抽出有实验操作实验现象(线圈B中有无电流)实验结论开关闭合瞬间有线圈B中磁场变化时,线圈B中有感应电流;线圈B中磁场不变时,线圈B中无感应电流开关断开瞬间有开关保持闭合,滑动变阻器滑片不动无开关保持闭合,迅速移动滑动变阻器的滑片有感应电流产生的条件:只要穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生。
三、电磁感应的应用1.汽车防抱死制动系统(ABS)(1)ABS系统的作用:为了防止汽车紧急制动时,因车轮被抱死,从而发生侧滑。
(2)ABS系统的组成:由轮速传感器、电子控制模块和电磁阀组成。
其中轮速传感器是利用电磁感应现象测量车轮转速的。
2.无线充电技术:又称为非接触式感应充电,是利用供电设备直接将电能传送给用电器的技术。
高中物理电磁学讲解一、教学任务及对象1、教学任务本教学任务以“高中物理电磁学讲解”为主题,旨在帮助学生深入理解电磁学的基本概念、原理及其应用。
教学内容包括电荷、电场、磁场、电磁感应等关键知识点,通过系统的讲解、案例分析与实践操作,使学生能够掌握电磁学的基本理论,提高分析问题、解决问题的能力。
2、教学对象教学对象为高中二年级学生,他们在之前的学习中已经接触过一些基础的物理知识,具备一定的物理学习基础。
此外,学生在日常生活中对电磁现象有一定的了解,但可能对电磁学原理的认识不够深入。
因此,本教学设计将针对学生的实际情况,采用启发式、互动式的教学策略,激发学生的学习兴趣,提高他们的电磁学素养。
二、教学目标1、知识与技能(1)理解电荷的本质,掌握电荷守恒定律,并能运用相关公式进行计算。
(2)掌握电场、电势的概念,能描述电场的特点,运用电场力、电势能的计算公式解决实际问题。
(3)了解磁场的基本性质,掌握安培环路定律,能解释磁现象。
(4)理解电磁感应现象,掌握法拉第电磁感应定律,并能应用于实际问题。
(5)掌握电磁波的基本性质,了解电磁波在日常生活和科技领域的应用。
(6)提高运用物理知识解决实际问题的能力,培养实验操作、数据分析和处理的能力。
2、过程与方法(1)通过自主探究、合作学习等方式,使学生亲身体验科学探究的过程,培养科学思维。
(2)运用比较、分类、归纳等逻辑方法,帮助学生梳理电磁学知识体系,提高知识整合能力。
(3)运用问题驱动、案例分析等教学方法,引导学生主动思考、提问,培养解决问题的能力。
(4)组织课堂讨论,让学生充分表达自己的观点,倾听他人的意见,提高沟通与协作能力。
3、情感,态度与价值观(1)激发学生对电磁学领域的兴趣,培养他们的好奇心和探索精神。
(2)引导学生认识到电磁学在科技发展、社会进步中的重要作用,增强社会责任感和使命感。
(3)培养学生严谨、踏实的科学态度,敢于面对困难,勇于克服挑战。
(4)通过电磁学发展史的学习,使学生了解科学家们为追求真理所付出的努力,培养尊重科学、尊重人才的价值观。
高中物理电磁场教案一、教学目标1. 理解电磁场的概念及特征。
2. 掌握电荷在电磁场中的受力规律。
3. 了解电磁感应和法拉第电磁感应定律。
4. 掌握电动势、电阻、电流的关系。
5. 了解电磁振荡和电磁波的基本原理。
二、教学重点1. 电磁场的概念及特征。
2. 电荷在电磁场中的受力规律。
3. 电磁感应和法拉第电磁感应定律的理解。
三、教学内容1. 电磁场的概念及特征- 电磁场的产生- 电磁场的性质2. 电荷在电磁场中的受力规律- 洛伦兹力的方向和大小- 电荷在电磁场中的加速度3. 电磁感应和法拉第电磁感应定律- 电磁感应现象的发生条件- 法拉第电磁感应定律的表达式和含义- 自感和互感的概念及相关公式四、教学方法1. 讲述教学法:介绍电磁场的产生和特性,讲解电荷在电磁场中的受力规律。
2. 实验演示法:展示电磁感应现象,通过实验让学生亲自感受电磁场的存在。
3. 讨论解决问题法:提出问题,让学生一起思考讨论解决,激发学生思维。
五、教学过程1. 引入:通过实验演示电磁感应现象,引发学生对电磁场的探索和思考。
2. 概念讲解:介绍电磁场的产生和特性,讲解电荷在电磁场中的受力规律。
3. 理论学习:学生独立学习电磁感应和法拉第电磁感应定律的原理和公式。
4. 实验实践:学生进行相关实验,观察电磁场的影响和测量相关物理量。
5. 讨论解决问题:对学生提出的疑问或问题进行讨论解决,引导学生加深对电磁场的理解。
6. 总结反思:总结本节课的重点内容,引导学生对所学知识进行反思和巩固。
六、作业布置1. 阅读相关教材,复习本课所学内容。
2. 完成相关习题,巩固电磁场的概念和特性。
3. 准备下节课的讨论题目,共同讨论电磁感应和法拉第电磁感应定律。
七、教学评价1. 学生能够准确理解电磁场的概念和特性。
2. 学生能够掌握电荷在电磁场中的受力规律。
3. 学生能够正确运用电磁感应和法拉第电磁感应定律解决相关问题。
高中物理电磁学教案
教学目标:
1. 了解电磁学的基本概念和原理。
2. 掌握电磁学中的重要公式。
3. 能够应用电磁学知识解决问题。
教学重点:
1. 电磁学的基本概念。
2. 电场和磁场的相互作用。
3. 麦克斯韦方程组。
教学难点:
1. 应用电磁学知识解决实际问题。
2. 理解麦克斯韦方程组的意义。
教学过程:
一、导入(5分钟)
老师通过提问或讲解引入电磁学的基本概念,激发学生学习的兴趣。
二、授课(30分钟)
1. 电场和磁场的基本概念和特性。
2. 应用库仑定律和洛伦兹力定律解释电场和磁场的相互作用。
3. 麦克斯韦方程组的含义和应用。
三、示范实验(15分钟)
老师进行电磁学的实验演示,让学生观察电场和磁场的产生与相互作用,并引导学生做实验记录。
四、讨论与深化(10分钟)
学生就实验中观察到的现象展开讨论,深化对电磁学知识的理解。
五、作业布置(5分钟)
布置相关习题,加深学生对电磁学知识的掌握和理解。
六、课堂小结(5分钟)
对本节课学习的重点和难点进行总结,引导学生复习和巩固教学内容。
教学评价:
1. 学生对电磁学的基本概念和原理有所了解。
2. 学生能够熟练应用电磁学知识解决问题。
3. 学生对麦克斯韦方程组的理解达到一定水平。
注意事项:
1. 教师要注重引导学生主动学习,激发学生的学习兴趣。
2. 学生要积极参与课堂教学活动,主动思考和提问。
3. 课堂教学要注重实践操作,增强学生的动手能力。
物理电磁学公开课教案高中一、引言电磁学是现代物理学中重要的一门学科,涉及到电和磁的相互作用以及它们的相关现象和规律。
本公开课旨在向高中学生介绍电磁学的基本概念和原理,帮助他们建立对电磁学的整体认知,培养他们的科学思维和实验操作能力。
二、教学目标1. 了解电磁学的基本概念,并能够描述电场和磁场的性质及相互作用;2. 掌握库仑定律和洛伦兹力的计算方法;3. 理解电磁感应的原理和法拉第电磁感应定律,能够分析感应电动势的大小和方向;4. 熟悉电磁波的特性,并能够解释电磁波和物质的相互作用;5. 提高实验操作能力,通过实验验证电磁学的原理和规律。
三、教学重点1. 库仑定律和洛伦兹力的计算;2. 法拉第电磁感应定律的应用;3. 电磁波的特性及与物质的相互作用。
四、教学内容1. 电磁学的基本概念1.1 电场的概念和性质1.2 磁场的概念和性质1.3 电磁场的相互作用2. 库仑定律和洛伦兹力2.1 库仑定律的表达式和计算方法2.2 电荷在电场中受力的示意图和计算方法2.3 带电粒子在磁场中受力的示意图和计算方法3. 法拉第电磁感应定律3.1 法拉第电磁感应定律的表达式和规律3.2 感应电动势的大小和方向的计算方法3.3 感应电动势与磁通量的关系4. 电磁波的特性4.1 电磁波的概念和基本特性4.2 电磁波的传播速度和传播模式4.3 电磁波的频率和波长5. 电磁波与物质的相互作用5.1 电磁波的吸收、反射和折射5.2 电磁波的干涉和衍射5.3 电磁波和物质的共振现象六、教学方法1. 授课讲解:通过图示、公式推导、实例分析等方式向学生传授基本概念和原理;2. 实验演示:展示电磁学实验过程,引导学生观察和思考实验现象;3. 互动讨论:组织学生讨论解决问题的方法和思路,培养他们的科学思维和合作能力;4. 小组实验:分组进行电磁学实验,培养学生的实验操作能力和数据处理能力。
七、教学评估1. 学生课堂表现:包括上课专注度、回答问题的准确性和主动性等;2. 平时作业:布置与学习内容相关的作业,检验学生的理解程度和能力提高情况;3. 实验报告:要求学生完成实验并撰写实验报告,评估他们的实验操作和数据处理能力。
高中物理课《电磁现象》科学教案、教学设计一、教学目标知识与技能1. 了解电磁现象的基本概念,掌握电荷、电流、磁场之间的关系。
2. 学会使用电磁学基本公式,解决实际问题。
3. 理解电磁波的产生和传播,了解电磁波在现代科技中的应用。
过程与方法1. 通过实验观察电磁现象,培养学生的观察能力和实验技能。
2. 利用数学方法分析电磁现象,提高学生的数学建模能力。
3. 采用项目学习的方式,让学生深入了解电磁波的产生和应用。
情感态度价值观1. 培养学生对物理学的兴趣,提高学生对科学探究的热情。
2. 使学生认识到电磁现象在日常生活和科技发展中的重要性。
3. 培养学生团结协作、积极进取的精神风貌。
二、教学内容1. 电磁现象的基本概念1.1 电荷1.2 电流1.3 磁场2. 电磁学基本公式2.1 库仑定律2.2 欧姆定律2.3 法拉第电磁感应定律3. 电磁现象的观察与实验3.1 静电现象实验3.2 电流磁场实验3.3 电磁感应实验4. 电磁波的产生与传播4.1 电磁波的产生4.2 电磁波的传播4.3 电磁波的应用三、教学过程1. 导入新课通过生活中的实例,引导学生关注电磁现象,激发学生的学习兴趣。
2. 讲解与演示1. 讲解电磁现象的基本概念,展示相关图片和视频。
2. 演示静电现象实验、电流磁场实验和电磁感应实验。
3. 讲解电磁学基本公式,分析实际问题。
3. 动手实践1. 学生分组进行实验,观察电磁现象,记录实验数据。
2. 学生根据实验数据,分析电磁学基本公式的应用。
4. 知识拓展1. 引导学生了解电磁波的产生和传播,展示相关图片和视频。
2. 讲解电磁波在现代科技中的应用,如无线通信、雷达等。
5. 课堂小结对本节课的主要内容进行总结,强调重点知识点。
6. 作业布置1. 巩固课堂所学内容,完成相关习题。
2. 预习下一节课的内容。
四、教学策略1. 情境教学通过生活中的实例和实验,创设情境,引导学生主动探究电磁现象。
2. 分组合作学生分组进行实验,培养团队协作能力。
电磁学物理教案人教版高中
教学内容:电磁学
教学目标:通过本节课的学习,学生能够掌握电磁学的基本概念和原理,了解电场和磁场的产生和作用,掌握电磁感应和法拉第电磁感应定律等知识。
教学重点:电场和磁场的产生和作用,电磁感应和法拉第电磁感应定律。
教学难点:法拉第电磁感应定律的理解和应用。
教学准备:教材、课件、实验器材等
教学过程:
1.导入:通过展示一些具有电磁特性的物品或实际应用,引起学生对电磁学的兴趣。
2.讲解电场和磁场的概念及产生:通过讲解电荷之间的相互作用和磁铁的磁场产生机制,让学生了解电场和磁场的概念及产生原理。
3.讲解电磁感应和法拉第电磁感应定律:通过实验或案例分析,引导学生理解电磁感应和法拉第电磁感应定律的基本原理和应用。
4.讲解感应电流和感应电动势:通过讲解感应电流和感应电动势的产生原理和计算方式,让学生掌握相关知识。
5.实验操作:设计一些简单的电磁感应实验,让学生动手操作并观察实验现象,加深他们对电磁学知识的理解和掌握。
6.课堂讨论:组织学生讨论电磁学在生活中的应用和意义,培养他们动手实践和创新思维能力。
7.总结:通过本节课的学习,让学生总结电磁学的基本概念和原理,巩固所学知识。
教学反思:针对学生在学习中出现的问题和不理解的地方,及时进行讲解和引导,帮助他们提高学习效果。
教学延伸:根据学生的学习兴趣和水平,设计一些拓展性的活动或实验,帮助他们深入理解电磁学知识。
以上为电磁学物理教案,希望对您有所帮助。
祝教学顺利!。
高中物理教案电磁学基础知识的学习高中物理教案——电磁学基础知识的学习1. 引言在高中物理学习中,电磁学作为一个重要的分支学科,涉及到电和磁的基本原理、现象、规律和应用等内容。
学好电磁学基础知识对于理解电磁现象,以及后续学习电磁学相关内容具有至关重要的作用。
本教案旨在帮助学生系统学习电磁学的基础知识。
2. 目标通过本教学活动的学习,学生应能够:- 掌握电磁学的基本概念和基础知识;- 理解电场、电势和电势差的概念及其关系;- 理解磁场、磁感应强度和磁感应线的概念及其关系;- 理解电流和电磁感应现象的基本原理;- 熟悉电磁学公式的运用。
3. 教学步骤此教案主要包括以下几个教学步骤:步骤一:电场与电势1. 介绍电场的概念和性质,引导学生通过实际案例理解电场的作用和特点;2. 解释电势和电势差的概念,并引导学生了解电势的计算方法及其单位;3. 引导学生通过例题和练习题巩固学习内容。
步骤二:磁场与磁感应强度1. 介绍磁场的概念和性质,引导学生通过实验与观察理解磁场的作用和特点;2. 解释磁感应强度的概念及其与磁场、磁场线的关系;3. 引导学生通过例题和练习题巩固学习内容。
步骤三:电磁感应1. 介绍电磁感应的基本原理,包括法拉第电磁感应定律以及电磁感应中的应用;2. 引导学生通过实际案例和实验,理解电磁感应现象的产生和原理;3. 引导学生通过例题和练习题巩固学习内容。
步骤四:电磁学公式的运用1. 教授电磁学常用的公式,并解释其物理意义;2. 引导学生通过实例和应用题,练习使用电磁学公式解决问题。
4. 总结与拓展总结本次教学活动的重点和难点,强调电磁学作为物理学的重要分支,并展望其在现代科技中的应用前景。
鼓励学生在课后自主拓展电磁学领域的知识,并与实际生活和科技发展紧密联系。
5. 作业练习题:1. 计算两个电荷之间的电势差,已知电荷Q1=2C,Q2=3C,距离r=5m。
2. 一根电流为5A的长直导线,距离导线0.02m处的磁感应强度为0.1T,请计算该点处的磁场的大小。
必修三高中物理所有教案(全)一、电磁学1. 电场与电势- 教案一:电荷与静电力- 教案二:电场强度- 教案三:电场力- 教案四:电势与电势差- 教案五:带电粒子在电场中的运动- 教案六:电荷在电场中的能量2. 电流与电阻- 教案一:电流的基本规律- 教案二:欧姆定律- 教案三:串、并联电阻与分压、强弱电流- 教案四:热效应与电功率3. 电磁感应- 教案一:磁通量与安培环路定理- 教案二:电磁感应定律- 教案三:感应电动势、磁感应强度与电磁感应电流- 教案四:自感、互感与动生电动势- 教案五:发电机与电磁铁4. 电磁振荡与电磁波- 教案一:电磁振荡概述- 教案二:单摆振荡与简谐振动- 教案三:简谐振子的能量- 教案四:电磁波的基本性质二、光学1. 几何光学- 教案一:光的传播路径与光的反射- 教案二:光的折射与光的全反射- 教案三:薄透镜成像规律- 教案四:光的干涉与衍射2. 光的波动性- 教案一:光的偏振与波动模型- 教案二:光的干涉与衍射现象- 教案三:杨氏双缝干涉与普朗克光电效应3. 光的电磁波性质- 教案一:光的干涉与衍射现象- 教案二:光的偏振与波动模型- 教案三:杨氏双缝干涉与普朗克光电效应三、现代物理1. 物质的结构与性质- 教案一:物质的状态与性质- 教案二:原子的结构与周期表- 教案三:分子与离子键的成因- 教案四:物态变化与能量转化- 教案五:材料的特征与分类2. 光的粒子性质- 教案一:光的微粒性质- 教案二:波粒二象性与德布罗意假设- 教案三:波粒二象性与干涉实验3. 原子核与放射性- 教案一:原子核结构与放射性- 教案二:物质的变质与半衰期- 教案三:放射性同位素应用4. 核能的利用与核辐射的防护- 教案一:核能利用与核反应- 教案二:核电站与人工放射源- 教案三:核辐射的防护与测量以上是《必修三高中物理所有教案(全)》的目录,其中包含了电磁学、光学和现代物理三个部分,共计800多字的内容。
普通高中课程标准实验教科书—物理选修3-1[人教版]
第三章磁场
3.6 带电粒子在匀强磁场中的运动
★新课标要求
(一)知识与技能
1、理解洛伦兹力对粒子不做功。
2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动。
3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关。
4、了解回旋加速器的工作原理。
(二)过程与方法
通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题。
(三)情感、态度与价值观
通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。
★教学重点
带电粒子在匀强磁场中的受力分析及运动径迹
★教学难点
带电粒子在匀强磁场中的受力分析及运动径迹
★教学方法
1
实验观察法、讲述法、分析推理法
★教学用具:
洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备
★教学过程
(一)引入新课
教师:(复习提问)什么是洛伦兹力?
学生答:磁场对运动电荷的作用力
教师:带电粒子在磁场中是否一定受洛伦兹力?
学生答:不一定,洛伦兹力的计算公式为f=qvB sinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,f=qvB;当θ=0°时,f=0。
教师:带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动。
(二)进行新课
1、带电粒子在匀强磁场中的运动
教师:介绍洛伦兹力演示仪。
如图所示。
教师:引导学生预测电子束的运动情况。
(1)不加磁场时,电子束的径迹;
(2)加垂直纸面向外的磁场时,电子束的径迹;
(3)保持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹;
(4)保持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。
教师演示,学生观察实验,验证自己的预测是否正确。
实验现象:在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。
磁场越强,径迹的半径越小;电子的出射速度越大,径迹的半径越大。
教师指出:当带电粒子的初速度方向与磁场方向垂直时,电子受到垂直于速度方向的洛伦兹力的作用,洛伦兹力只能改变速度的方向,不能改变速度的大小。
因此,洛伦兹力对粒子不做功,不能改变粒子的能量。
洛伦兹力对带电粒子的作用正好起到了向心力的作用。
所以,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动。
思考与讨论:
带电粒子在匀强磁场中做匀速圆周运动,其轨道半径r 和周期T 为多大呢?
出示投影片,引导学生推导:
一带电量为q ,质量为m ,速度为v 的带电粒子垂直进入磁感应强度为B 的匀强磁场中,其半径r 和周期T 为多大?如图所示。
学生推导:粒子做匀速圆周运动所需的向心力F =m r
v 2
是由粒子所受的洛伦兹力提供的,所以
qvB =m r
v 2
由此得出
r =qB
mv ① 周期T =v
r 2
代入①式得
T =qB
m 2 ② 师生互动、总结:由①式可知,粒子速度越大,轨迹半径越大;磁场越强,轨迹半径越小,这与演示实验观察的结果是一致的。
由②式可知,粒子运动的周期与粒子的速度大小无关。
磁场越强,周期越短。
点评:演示实验与理论推导相结合,使学生从感性认识上升到理性认识,实现认识上的升华。
教师:介绍带电粒子在汽泡室运动的径迹照片,让学生了解物理学中研究带电粒子运动的方法。
投影片出示例题:
教师引导学生对结果进行讨论,让学生了解有关质谱仪的知识。
让学生了解质谱仪在科学研究中的作用。
2、回旋加速器
教师:在现代物理学中,人们为探索原子核内部的构造,需要用能量很高的带电粒子去轰击原子核,如何才能使带电粒子获得巨大能量呢?如果用高压电源形成的电场对电荷加速,由于受到电源电压的限制,粒子获得的能量并不太高。
美国物理学家劳伦斯于1932年发明了回旋加速器,巧妙地利用较低的高频电源对粒子多次加速使之获得巨大能量,为此在1939年劳伦斯获诺贝尔物理奖。
那么回旋加速器的工作原理是什么呢?
引导学生阅读教材有关内容,了解各种加速器的发展历程,体会回旋加速器的优越性。
课件演示,回旋加速器的工作原理,根据情况先由学生讲解后老师再总结。
在讲解回旋加速器工作原理时应使学生明白下面两个问题:
(1)在狭缝A′A′与AA之间,有方向不断做周期变化的电场,其作用是当粒子经过狭缝时,电源恰好提供正向电压,使粒子在电场中加速。
狭缝的两侧是匀强磁场,其作用是
当被加速后的粒子射入磁场后,做圆运动,经半个圆周又回到狭缝处,使之射入电场再次加速。
(2)粒子在磁场中做圆周运动的半径与速率成正比,随着每次加速,半径不断增大,而粒子运动的周期与半径、速率无关,所以每隔相相同的时间(半个周期)回到狭缝处,只要电源以相同的周期变化其方向,就可使粒子每到狭缝处刚好得到正向电压而加速。
(三)课堂总结、点评
教师活动:让学生概括总结本节的内容。
请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
点评:总结课堂内容,培养学生概括总结能力。
教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。
(四)实例探究
☆带电粒子在匀强磁场中的匀速圆周运动
【例1】一个负离子,质量为m ,电量大小为q ,以速率v 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中,如图所示。
磁感应强度B 的方向与离子的运动方向垂直,并垂直于图中纸面向里。
(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离。
(2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线
OP 与离子入射方向之间的夹角θ跟t 的关系是t m
qB 2=θ。
解析:(1)离子的初速度与匀强磁场的方向垂直,在洛仑兹力作
用下,做匀速圆周运动。
设圆半径为r ,则据牛顿第二定律可得:
r
v m Bqv 2
= ,解得Bq mv r = 如图所示,离了回到屏S 上的位置A 与O 点的距离为:AO =2r
所以Bq
mv AO 2= O B S v θ P
(2)当离子到位置P 时,圆心角:t m Bq r vt ==
α 因为θα2=,所以t m
qB 2=θ。
【例2】如图所示,半径为r 的圆形空间内,存在着垂直于纸面向
里的匀强磁场,一个带电粒子(不计重力),从A 点以速度v 0垂直磁场
方向射入磁场中,并从B 点射出,∠AOB =120°,则该带电粒子在磁场
中运动的时间为_______
A .2πr /3v 0
B .23πr/3v 0
C .πr /3v 0
D .3πr/3v 0 解析:首先通过已知条件找到
所对应的圆心O ′,由图可知θ=60°,得t =qB
m T 336060π=⋅︒︒,但题中已知条件不够,没有此选项,必须另想办法找规律表示t ,由圆周运动和t = =v
R θ⨯。
其中R 为AB 弧所对应的轨道半径,由图中ΔOO ′A 可得R =3r ,所以t =3r ×π/3r 0,D 选项正确。
答案:D
【例3】电子自静止开始经M 、N 板间(两板间
的电压为u )的电场加速后从A 点垂直于磁场边界射
入宽度为d 的匀强磁场中,电子离开磁场时的位置P
偏离入射方向的距离为L ,如图所示。
求匀强磁场的
磁感应强度。
(已知电子的质量为m ,电量为e )
解析:电子在M 、N 间加速后获得的速度为v ,由动能定理得:
2
1mv 2-0=eu 电子进入磁场后做匀速圆周运动,设其半径为r ,则:
evB =m r
v 2
v
AB
电子在磁场中的轨迹如图,由几何得:
22
2d L L
+=r
d L 22+ 由以上三式得:B =e
mu d L L
2222+ ★课余作业
完成P 108“问题与练习”第1、2、5题。
书面完成第3、4题。
★教学体会
思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。
学生素质的培养就成了镜中花,水中月。