平面直角坐标系练习题
- 格式:ppt
- 大小:302.00 KB
- 文档页数:12
平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果a b=0,那么点P的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若a b>0,那么点P的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在。
;点(b,0)在.6.若点A(n-3,m-1)在x轴上,点B(2n+1,m+4)在y轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y轴平行,且A B=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y轴的直线上,点A 到y轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x轴的距离为,到y轴的距离为,到原点的距离为.11.点M在y轴的左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为.12.点P(3,-2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y轴上,则点P关于x轴的对称点的坐标为.14.若点P 先向左平移 2 个单位,再向上平移 1 个单位得到P′(-1,3),则点P的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a个单位后的坐标为;点(x,y)向下平移b个单位后的坐标为;点(x,y)先向上平移a个单位,再向右平移b个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1.B2.D3.C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( 2 ,2),(2, 2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)#。
初中数学八年级(上)—平面直角坐标系点的坐标专项练习一、选择题(共20小题)1.在平面直角坐标系中,点P (﹣2,12+x )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)3.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.点P (4,﹣3)关于原点的对称点是( )A .(4,3)B .(﹣3,4)C .(﹣4,3)D .(3,﹣4)5.在平面直角坐标系中,点(﹣1,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点()11+-x x P ,不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图坐标系中,小正方形边长为1个单位,则点C 的坐标为( )A .(﹣1,5)B .(﹣5,1)C .(5,﹣1)D .(1,﹣5)8.点A 在x 轴上,且到坐标原点的距离是2,则点A 的坐标为( )A .()0,2-B .()0,2C .()20-,或()2,0 D .()()0,20,2或- 9.点P (3,﹣5)关于y 轴对称的点的坐标为( )A .(﹣3,﹣5)B .(5,3)C .(﹣3,5)D .(3,5)10.已知点()a a P +3 ,在第二象限,则a 的取值范围是( )A .0<aB .3->aC .03<<-aD .3-<a11.点M (﹣3,﹣2)到y 轴的距离是( )A .3B .2C .﹣3D .﹣212.在平面直角坐标系中,点P (1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知点P (﹣2,4),与点P 关于x 轴对称的点的坐标是( )A .(4,﹣2)B .(﹣2,﹣4)C .(2,﹣4)D .(2,4)14.在平面直角坐标系中,点P (a 2+1,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限15.下列各点中,在第二象限的点是( )A .(﹣3,2)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2)16.若m 是任意实数,则点()2,22-+m M 在第( )象限A .一B .二C .三D .四17.若点P (x ,y )的坐标满足0=xy ,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上18.点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为( )A .(4,﹣3)B .(3,﹣4)C .(﹣3,﹣4)或(3,﹣4)D .(﹣4,﹣3)或(4,﹣3)19.点P (x ,y )在第二象限,且P 到x 轴、y 轴的距离分别为3,7,则P 点坐标为( )A .(﹣3,7)B .(﹣7,3)C .(3,﹣7)D .(7,﹣3)20.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A .(4,2)B .(﹣2,﹣4)C .(﹣4,﹣2)D .(2,4)二.填空题(共10小题)21.点M (﹣2,1)关于x 轴对称的点N 的坐标是 .22.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.23.在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是.24.平面直角坐标系内,点A(n,1﹣n)一定不在.25.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.26.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.27.已知点P(a+1,2a﹣1)关于x轴对称点在第一象限,则a的取值范围为.28.点A(﹣1,2)关于y轴的对称点坐标是.29.若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是.30.点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=,b=.三.解答题(共5小题)31.已知点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的所有“整数点A”.32.平面直角坐标系中,△ABC的三个顶点坐标分别为()()()1,,,A.B,C0-3,442(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.33.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.34.已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.35.36.37.38.39.35.已知点()6a-aM,,试分别根据下列条件,求出M点的坐标.3+2(1)点M在x轴上;(2)点N(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.初中数学八年级(上)—平面直角坐标系点的坐标专项练习参考答案与试题解析一.选择题(共20小题)1.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2) D.(2,﹣2)【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2)C.(1,﹣2) D.(2,﹣1)【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.点P(4,﹣3)关于原点的对称点是()A.(4,3)B.(﹣3,4) C.(﹣4,3) D.(3,﹣4)【解答】解:点P(4,﹣3)关于原点的对称点是(﹣4,3),故选:C.5.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣1,2)在第二象限.故选:B.6.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.7.如图坐标系中,小正方形边长为1个单位,则点C的坐标为()A.(﹣1,5) B.(﹣5,1) C.(5,﹣1) D.(1,﹣5)【解答】解:如图所示:点C的坐标为:(﹣1,5).故选:A.8.点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0) B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)【解答】解:∵点A在x轴上,且到坐标原点的距离是2,∴点A的坐标为:(﹣2,0)或(2,0).故选:D.9.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5) D.(3,5)【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.10.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣3【解答】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<0.故选:C.11.点M(﹣3,﹣2)到y轴的距离是()A.3 B.2 C.﹣3 D.﹣2【解答】解:∵点(﹣3,﹣2)到y轴的距离是其横坐标的绝对值,且|﹣3|=3,∴点到y轴的距离是3.故选A.12.在平面直角坐标系中,点P(1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(1,1)位于第一象限.故选:A.13.已知:点P(﹣2,4),与点P关于x轴对称的点的坐标是()A.(4,﹣2) B.(﹣2,﹣4)C.(2,﹣4) D.(2,4)【解答】解:与点P(﹣2,4)关于x轴对称的点的坐标是(﹣2,﹣4).故选:B.14.在平面直角坐标系中,点P(a2+1,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(+,﹣)∴点P在第四象限.故选:D.15.下列各点中,在第二象限的点是()A.(﹣3,2) B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.16.若m是任意实数,则点M(m2+2,﹣2)在第()象限.A.一B.二C.三D.四【解答】解:∵m2≥0,∴m2+2≥2,∴点M(m2+2,﹣2)在第四象限.故选:D.17.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点 D.在x轴上或在y轴上【解答】解:因为xy=0,所以x、y中至少有一个是0;当x=0时,点在y轴上;当y=0时,点在x轴上.当x=0,y=0时是坐标原点.所以点P的位置是在x轴上或在y轴上.故选:D.18.点P在x轴的下方,且距离x轴3个单位长度,距离y轴4个单位长度,则点P的坐标为()A.(4,﹣3) B.(3,﹣4) C.(﹣3,﹣4)或(3,﹣4) D.(﹣4,﹣3)或(4,﹣3)【解答】解:∵点P在x轴的下方,∴点P在第三象限或第四象限,∵点P距离x轴3个单位长度,距离y轴4个单位长度,∴点P的横坐标为4或﹣4,点P的纵坐标为﹣3,∴点P的坐标为(﹣4,﹣3)或(4,﹣3).故选:D.19.点P(x,y)在第二象限,且P到x轴、y轴的距离分别为3,7,则P点坐标为()A.(﹣3,7) B.(﹣7,3) C.(3,﹣7) D.(7,﹣3)【解答】解:∵P到x轴、y轴的距离分别为3,7,∴P的横坐标的绝对值为7,纵坐标的绝对值为3,∵点P(x,y)在第二象限,∴P的坐标为(﹣7,3).故选:B.20.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(﹣2,﹣4)C.(﹣4,﹣2)D.(2,4)【解答】解:∵点P位于x轴下方,y轴左侧,∴点P在第三象限;∵距离y轴2个单位长度,∴点P的横坐标为﹣2;∵距离x轴4个单位长度,∴点P的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4),故选:B.二.填空题(共10小题)21.点M(﹣2,1)关于x轴对称的点N的坐标是N(﹣2,﹣1).【解答】解:根据题意,M与N关于x轴对称,则其横坐标相等,纵坐标互为相反数;所以N点坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).22.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为(2,0).【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+1=0,解得,m=﹣1,∴横坐标m+3=2,则点P的坐标是(2,0).23.在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,则点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).故答案为:(﹣2,5).24.平面直角坐标系内,点A(n,1﹣n)一定不在第三象限和原点.【解答】解:由题意可得、、、,解这四组不等式可知无解,因而点A的横坐标是负数,纵坐标是正数,不能同时成立,即点A一定不在第三象限.又n和1﹣n不能同时为0,故也一定不在原点.故答案为:第三象限和原点.25.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).26.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是(﹣3,2),(﹣3,﹣2).【解答】解:∵P(x,y)到x轴的距离是2,到y轴的距离是3,∴x=±3,y=±2;又∵点P在y轴的左侧,∴点P的横坐标x=﹣3,∴点P的坐标为(﹣3,2)或(﹣3,﹣2).故填(﹣3,2)或(﹣3,﹣2).27.已知点P(a+1,2a﹣1)关于x轴对称点在第一象限,则a的取值范围为﹣1<a<.【解答】解:∵点P(a+1,2a﹣1)关于x轴对称点在第一象限,∴点P在第四象限,∴,解得:﹣1<a<,故答案为:﹣1<a<.28.点A(﹣1,2)关于y轴的对称点坐标是(1,2).【解答】解:由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点A关于y轴的对称点的坐标是(1,2).29.若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是.【解答】解:根据题意可知,解不等式组得,即<m<4.30.点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=2,b=﹣5.【解答】解:根据平面直角坐标系中对称点的规律可知,点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=2,b=﹣5.故答案为:2;﹣5.三.解答题(共5小题)31.已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.【解答】解:(1)由题意得,,解不等式①得,m<1,解不等式②得,m>﹣,所以,m的取值范围是﹣<m<1;(2)∵m是整数,∴m取﹣1,0,所以,符合条件的“整数点A”有(﹣2,2),(﹣1,6).32.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4)B(2,4)C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.【解答】解:(1)略;(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).33.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【解答】解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).34.已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.【解答】解:由第二象限内的点的横坐标小于零,得a=﹣3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(﹣3,8).35.已知点M(3a﹣2,a+6).试分别根据下列条件,求出M点的坐标.(1)点M在x轴上;(2)点N(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.【解答】解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.2.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y 轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.4.坐标确定位置平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:a=b;②二、四象限:a=﹣b.5.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.6.关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).7.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)?P(x+a,y)①向左平移a个单位,坐标P(x,y)?P(x﹣a,y)①向上平移b个单位,坐标P(x,y)?P(x,y+b)①向下平移b个单位,坐标P(x,y)?P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)8.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.。
平面直角坐标系练习题及答案6.1.2 平面直角坐标系基础过关作业1.点 P(3,2) 在第一象限。
2.如图,矩形 ABCD 中,A(-4,1),B(2,1),C(2,3),则点D 的坐标为(-4,3)。
3.以点 M(-3,0) 为圆心,以5为半径画圆,分别交 x 轴的正半轴,负半轴于 P、Q 两点,则点 P 的坐标为(4,0),点 Q 的坐标为(-2,0)。
4.点 M(-3,5) 关于 x 轴的对称点 M1 的坐标是(-3,-5);关于y 轴的对称点 M2 的坐标是(3,5)。
5.已知 x 轴上的点 P 到 y 轴的距离为3,则点 P 的坐标为(C) (0,3) 或 (0,-3)。
6.在平面直角坐标系中,点(-1,m2+1) 一定在第二象限。
7.在直角坐标系中,点 P(2x-6,x-5) 在第四象限中,则 x 的取值范围是(B) -3<x<5.8.如图,在所给的坐标系中描出下列各点的位置:A(-4,4)、B(-2,2)、C(3,-3)、D(5,-5)、E(-3,3)、F(0,0)。
这些点没有明显的关系。
综合创新作业9.(综合题) 在如图所示的平面直角坐标系中描出 A(2,3)、B(-3,-2)、C(4,1) 三点,并用线段将 A、B、C 三点依次连接起来,其面积为 12.5.10.如图,是儿童乐园平面图。
建立适当的平面直角坐标系,各娱乐设施的坐标为:滑梯(5,5)、秋千(2,2)、跷跷板(-3,-3)、摇摆(0,0)。
11.(创新题) 在平面直角坐标系中,画出点 A(0,2)、B(-1,0),过点 A 作直线 L1 ∥x轴,过点 B 作 L2 ∥y轴,分析 L1、L2上点的坐标特点,由此,可以总结出在平面直角坐标系中,如果一条直线平行于 x 轴,那么这条直线上的点的 y 坐标相等;如果一条直线平行于 y 轴,那么这条直线上的点的 x 坐标相等。
12.(1) 已知点 P1(a,3) 与 P2(-2,-3) 关于原点对称,则a=2.(2) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(D) (-2,-800)。
6.在平面直角坐标系中,3),则顶点C的坐标是A. (3, 7)()B. (5, 3)7.如图,将ZkAOB绕点0逆时针旋转90° ,得到点"的坐标为()A. (a, 一b)B・(b, a) D.8.已知AABC在直角世标系屮的位置如图所示,如果AA' 那么点A的对应点『的坐标为()A. (-3, 4)B. (-3, -4)C. (3, -4)D. (3, 4)9.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示•如C. (-b, a) (-a, b)B ' C与Z\ABC关于y轴对称,平面直角坐标系练习题一、选择题1.在平面直角坐标系中,点P (3, -2)在()A.第一象限B.第二象限C.第三象限D.第四彖限2.如右图,点A关于y轴的对称点的坐标是()A. (3, 3)B.(-3, 3)C. (3, -3)D. (-3, -3)3.点A(m-4, l-2m)在第三象限,则m的取值范围是()1 1A. m>—B.C. —〈m〈4D. m>42 24.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()5.小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下來修车.车修好后,因怕耽误上课,故加快速度继续匀速行驶赶往学校.下图是行驶路程S (米)与时间t(分)的函数图彖,那么符合小明骑车行驶情况的图象大致是()C. (7, 3)D. (8, 2)(2,OB7,若点A的坐标为(a, b),则果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8. 6分钟 B. 9分钟 C. 12分钟 D. 16分钟A 点坐标为(3, 4),将OA 绕原点0逆时针旋转90 °得 )二、填空题11・如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点Pi, P2, P3, Pl,…1)2006 的位置,贝!JP2006 的横坐标 X2OO6- •12.先将一矩形ABCD 置于直角坐 标系中,使点A 与坐标系中原 点重合,边AB 、AD 分别落在x 轴、y 轴上(如图1),再将此 矩形在坐标平面内按逆时针方 向绕原点旋转30° (如图2), 若AB 二4, BC=3,则图1和图2 中点B 的坐标为 ____________ ,点C 的坐标为—二、解答题13.如图,在平面直角坐标系XOY 屮,直角梯形OABC, BC//AO, A (-2,0), B (-1, 1),将直角梯形0ABC 绕点0顺时针旋转90° 后,点A 、B 、C 分别落在A'、、C'处•请你解答下列问题:(1) 在如图直角坐标系XOY 中画出旋转后的梯形(T £ B zC'. (2) 求点A 旋转到A'所经过的弧形路线长.PyB R R\ : % : •・: ・・: •: •.: \:『 二 = -.AB(B) xA. (-4, 3)B. (-3, 4)C. (3, -4)D. (4, -3)(笫11题) 10.如图,在平面直角坐标系中, 到OA ,,则点A'的坐标是(14.如图,在平面直角坐标系中,三角形②、③是由三角形① 依次旋转所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.15.在平面直角坐标系屮描出下列各点A (2, 1), B (0, 1), C (-4,-3), D (6, -3),并将各点用线段依次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得AAPB、ABPC> ACPD. AAPD都是等腰三角形,请写出P点的坐标.6\y■421 1 1 1 1 1■1 L 1 1-6-4-2 0 2 4—6*-2•-4■-6■平面直角坐标系练习题答案1.在平面直角坐标系中,点P (3, -2)在(D )A.第一象限B.第二象限C.第三象限D.第四象限2.如右图,点A关于y轴的对称点的坐标是(A )A.C.3.点AB. (-3, 3)D・(一3, -3)(3, 3)(3, -3)(m-4, 加)在第三象限,1A. m> —24.学校升旗仪式上,图是下图中的(AB. m<4C.则m的取值范围是(C )—<m<4 D. m>42徐徐上升的国旗的高度与吋间的关系可以用一-幅图近似地刻画,这幅 )5.小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕耽误上课,故加快速度继续匀速行驶赶往学校.下图是行驶路程S (米) 与时间t (分)的函数图彖,那么符合小明骑车行驶情况的图象大致是(D )6.在平面直角坐标系中,3),则顶点C的坐标是(C ) A.(3, 7) B. (5, 3) 3) D. (8, 2)C.⑺(2,OB',若点A的坐标为(/ b),则7.如图,将AAOB绕点0逆时针旋转90° ,得到AA'点A'的坐标为(C )A. (a, -b)B. (b, a)C. (-b, a)8.已知AABC在直角坐标系屮的位置如图所示,如果AA' B ' C'与AABC关于y轴对称, 那么点A的对应点A'的坐标为(A )A. (-3, 4)B. (-3, -4)C. (3, -4)D. (3, 4)9.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(C )A. 8. 6分钟B. 9分钟C. 12分钟D. 16分钟D. f b)10. 如图,在平而直角坐标系屮,A 点坐标为(3, 4),将0A 绕原点0逆时针旋转90 °得 到OA',则点A ,的坐标是(A )A. (-4, 3)B. (-3, 4)C. (3, -4)D. (4, -3)填空题11. 如图,将边2为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点IS P2, P3, P4,…P2OO6的位置,贝1|卩2006的横坐标X2W6二2006・12.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系中原 点重合,边AB 、AD 分别落在x 轴、y 轴上(如图1),再将此 矩形在坐标平面内按逆时针方 向绕原点旋转30° (如图2), 若AB 二4, BC 二3,则图1和图2 中占R 的坐标为(4,0) | (2右,2),点C 的坐标为二13.如图,在平面直角坐标系XOY 中,直角梯形OABC, BC 〃AO, A (-2, 0), B (-1, 1), 将直角梯形0ABC 绕点0顺时针旋转90°后,点A 、B 、C 分别落在A'、、C '处•请 你解答下列问题:(1) 在如图直角坐标系XOY 中画出旋转后的梯形V A z B zC'. (2) 求点A 旋转到A'所经过的弧形路线长.13.解:(1)如图所示,(2 )点A 旋转到A '所经过的弧形路线长2岔 2兀x 2= --------- = -------------- =714 4(DyCD<\^^O(A) bxO(A)Xy: :c•/•AoX14.如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转所得的图形. (1) 在图中标出旋转中心P 的位置,并写出它的坐标; (2) 在图上画出再次旋转后的三角形④.------------- 图笫」輕) 图(4, 3), ( 4不-3 3巧+ 4 ) :2' -2应用与探究15.在平面直角坐标系中描出下列各点A (2, 1), B (0, 1), C (-4, -3), D (6, -3),并将各点用线段依次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得AAPB、ABPC. ACPD. AAPD 都是等腰三角形, 请写出P点的坐标.[15.解:画图如右,(1)是等腰梯形;(2)P(1, V7-3)](1)四边形ABCD是等腰梯形。
七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
坐标练习题加答案一、选择题1. 在平面直角坐标系中,点P(3,4)关于x轴的对称点的坐标是:A. (3,-4)B. (-3,4)C. (4,3)D. (-3,-4)答案:A2. 点Q(-1,2)与点R(1,-2)的中点坐标是:A. (0,0)B. (0,2)C. (1,0)D. (-1,0)答案:A3. 若点M的坐标为(2,-3),点N的坐标为(-2,3),则MN的长度是:A. 2√2B. 4√2C. 6√2D. 8√2答案:B二、填空题4. 在平面直角坐标系中,若点A的坐标为(a,b),且点A关于y轴的对称点的坐标为(-a,b),则a的取值范围是______。
答案:a ≠ 05. 已知点P(x,y)在第一象限,若x+y=10,且x>y,则x的取值范围是______。
答案:0 < x < 10三、解答题6. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
解:根据中点公式,中点的坐标为:\[ M(x_m, y_m) = \left(\frac{x_A + x_B}{2}, \frac{y_A +y_B}{2}\right) \]代入点A和点B的坐标,得到:\[ M = \left(\frac{2 + (-1)}{2}, \frac{3 + (-2)}{2}\right) = (\frac{1}{2}, \frac{1}{2}) \]所以,线段AB的中点坐标为(0.5, 0.5)。
7. 已知点C(4,5)和点D(-3,1),若点E是线段CD的中点,求点E的坐标。
解:同样使用中点公式,代入点C和点D的坐标,得到:\[ E = \left(\frac{4 + (-3)}{2}, \frac{5 + 1}{2}\right) = (0.5, 3) \]因此,点E的坐标为(0.5, 3)。
四、应用题8. 在平面直角坐标系中,有一个矩形ABCD,其中A(0,0),B(6,0),C(6,8)。
坐标系的相关练习题一、选择题1. 在平面直角坐标系中,点P(3, 2)关于x轴的对称点坐标是()。
A. (3, 2)B. (3, 2)C. (3, 2)D. (3, 2)2. 在平面直角坐标系中,点A(2, 1)关于原点的对称点坐标是()。
A. (2, 1)B. (2, 1)C. (2, 1)D. (2, 1)3. 已知点B(3, 4),则点B到x轴的距离是()。
A. 3B. 4C. 5D. 74. 在平面直角坐标系中,点C(0, 5)位于()。
A. 第一象限B. 第二象限C. y轴上D. 第四象限5. 若点D在第二象限,且到x轴的距离等于到y轴的距离,则点D的坐标可能是()。
A. (3, 3)B. (4, 2)C. (5, 5)D. (6, 6)二、填空题1. 在平面直角坐标系中,点E(___, ___)关于y轴的对称点坐标是(5, 3)。
2. 已知点F(___, ___),点F到原点的距离是5个单位长度。
3. 在平面直角坐标系中,点G(___, ___)位于第三象限,且到x 轴的距离是4个单位长度。
4. 若点H(___, ___)在第一象限,且到x轴的距离等于到y轴的距离,则点H的坐标是(___, ___)。
5. 点I(___, ___)关于原点对称的点是(___, ___)。
三、解答题1. 在平面直角坐标系中,求点J(4, 3)关于x轴、y轴和原点的对称点坐标。
2. 已知点K(2, 5),求点K到x轴和y轴的距离。
3. 在平面直角坐标系中,点L位于第四象限,且到x轴的距离是3个单位长度,到y轴的距离是4个单位长度,求点L的坐标。
4. 若点M在第二象限,且到x轴的距离是6个单位长度,到y轴的距离是8个单位长度,求点M的坐标。
5. 已知点N在第一象限,且到原点的距离是10个单位长度,求满足条件的点N的坐标(至少写出两个)。
四、作图题1. 在平面直角坐标系中,画出点A(2, 3)、点B(3, 2)、点C(2, 3)和点D(3, 2),并标出每个点的坐标。
平面直角坐标系练习题一(考试时间:100分钟 满分:100分)一、选择题(每小题3分,共30分) 1、点A (3-,3)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴四个单位长,点P 的坐标是( ) A .(3,4-)B .(3-,4)C .(4,3-)D .(4-,3)3、若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上 4、坐标平面内下列各点中,在x 轴上的点是( )A .(0,3)B .(3-,0)C .(1-,2)D .(2-,3-) 5、如果yx<0,),(y x Q 那么在( )象限 A .第四 B .第二 C .第一、三 D .第二、四 6、若点P (m ,n )在第三象限,则点Q (m -,n -)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、线段AB 两端点坐标分别为A (1-,4),B (4-,1),现将它向左平移4个单位长度,得到线段11B A ,则11B A ,的坐标分别为( )A .1A (5-,0),1B (8-,3-) B . 1A (3,7),1B (0,5)C .1A (5-,4),1B (8-,1)D . 1A (3,4),1B (0,1)8、如图:正方形ABCD 中点A 和点C 的坐标分别为(2-,3)和(3,2-),则点B 和点D 的坐标分别为( )A .(2,2)和(3,3)B .(2-,2-)和(3,3)C .(2-,2-)和(3-,3-)D .(2,2)和(3-,3-)9、已知平面直角坐标系内点(x ,y )的纵、横坐标满足2x y =,则点(x ,y )位于( ) A .x 轴上方(含x 轴) B .x 轴下方(含x 轴) C .y 轴的右方(含y 轴) D .y 轴的左方(含y 轴) 10、已知03)2(2=++-b a ,则P (a -,b -)的坐标为( )A .(2,3)B .(2,3-)C .(2-,3)D .(2-,3-)二、填空题(每小题4分,共24分),3(-的横坐标是,纵坐标11、有了平面直角坐标系,平面内的点就可以用一个来表示了.点)4是.12、设点P在坐标平面内的坐标为P(x,y),则当P在第一象限时x____0 ,y____0;当点P在第四象限时,x___0,y____0.13、到x轴距离为2,到y轴距离为3的坐标为.14、在平面直角坐标系中,将点(2,5-)向右平移3个单位长度,可以得到对应点坐标(__,__);将点(2-)向左平移3个单位长度可得到对应点(_,_);将点(2,5)向上平移3单位长度可得对-,5应点(__,___ );将点(2-,5)向下平移3单位长度可得对应点(_ ,_).三、解答题(共5小题,计46分,解答应写出过程)15、(本题7分)在平面直角坐标系中,依次描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)16、(本题8分)将下图方格中的图案作下列变换,请画出相应的图案:(1)沿y轴正向平移4个单位;(2)关于y轴轴对称.17、(本题10分)下图中标明了小英家附近的一些地方.以小英家为坐标原点,建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,1-),(0,1-),(1-,2-),(3-,1-)的路线转了一下,又回到家里,写出路上她经过的地方.18、(本题10分)在如图所示的直角坐标系中,四边形ABCD 的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0)确定这个四边形的面积.你是怎样做的?19、(本题11分)用围棋棋子可以在棋盘中摆出许多有趣的图案.如图(1),•在棋盘上建立平面直角坐标系,以直线x y =为对称轴,我们可以摆出一个轴对称图案(其中A 与A ′是对称点),你看它像不像一只美丽的鱼.(1)请你在图(2)中,也用10枚以上..的棋子摆出一个以直线x y =为对称轴的对称图案, 并在所作的图形中找出两组对称点,分别标为B 、B ′、C 、C ′(•注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B 、B ′、C 、C ′的坐标分别是:B ______,B ′______,C _______,C ′_______;根据以上对称点坐标的规律,写出点P (a ,b )关于对称轴x y =的对称点P ′的坐标是________.yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10平面直角坐标系练习题精选二一、填空题1.点(-3,2)在第______象限;点(2,-3)在第______象限.2.点(p,q)既在x轴上,又在y轴上,则p=______;q=_________.3.点(p,q)到x轴距离是________;到y轴距离是________.4.点P(a,-a)是在______象限的角平分线上;或在________.5.若P1(x1,y1)、P2(x2,y2)两点关于原点对称,则x1与x2关系为_______,y1与y2•的关系为_______.6.如图1为某地区A、B、C、D四座城市,附近要建一所核电站E,向四座城市供电,试建立适当的直角坐标系,写出各点的坐标_____________________________________________________.二、选择题7.已知P(-4,3),与P关于x轴对称的点的坐标是()A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,-3)8.已知x轴上一点A(6,0),y轴上一点B(0,b),且AB=10,则b的值为()A.8 B.-8 C.±8 D.以上答案都不对9.一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)、(1,2),则第四个顶点的坐标为()A.(-1,2) B.(1,-2) C.(3,2)D.(1,-2)或(-1,2)或(3,2)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)11.直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为() A.(-3,-7) B.(-7,3) C.(3,-7) D.(7,-3)三、解答题12.边长为5的等边三角形ABC,以B点为原点,以BC边所在的直线为x•轴建立直角坐标系写出A、B、C各点的坐标.13.求以点(0,3)为圆心,5为半径的圆与x轴、y轴的四个交点的坐标.14.收集一些校园附近有代表性的建筑,绘制出相关的平面分布图.平面直角坐标系练习题一参考答案1、参考答案:B .考核的知识点:象限内点坐标的特征2、参考答案:B .考核的知识点:点坐标到坐标轴的距离与坐标之间的关系3、参考答案:D .考核的知识点:坐标轴上点的特征4、参考答案:B .考核的知识点:坐标轴上点的特征5、参考答案:C .考核的知识点:象限内点坐标的特征6、参考答案:C .考核的知识点:象限内点坐标的特征7、参考答案:C .考核的知识点:平移的性质8、参考答案:B .考核的知识点:关于坐标轴对称的点坐标的特征 9、参考答案:A .考核的知识点:函数图像上点坐标的特征 10、参考答案:C .考核的知识点:通过计算确定点的坐标 二、填空题(每小题4分,共24分)11、参考答案:坐标(或有序数对);3;4-.考核的知识点:平面直角坐标系的概念 12、参考答案:>,>;>,<.考核的知识点:象限内点坐标的特征 13、参考答案:(3,2)、(3,2-)、(3-,2)、(3-,2-).考核的知识点:平面直角坐标系中的点到坐标轴的距离 14、参考答案:(5,5-);(5-,5-);(2,8);(2-,2).考核的知识点:平面直角坐标系中点坐标平移的特征 三、解答题(共5小题,计46分,解答应写出过程)15、参考答案:如图所示:考核的知识点:平面直角坐标系中点的坐标 16、参考答案:如图所示:考核的知识点:坐标平面内图形的平移 17、参考答案:(1)汽车站(1,1),消防站(2,2-);(2)小英路上经过的地方:游乐场,公园,姥姥家,宠物店,邮局.考核的知识点:平面直角坐标系在生活中的应用18、参考答案:面积为5+10.5+35+12=62.5.用分割法:可将四边形分成三个直角三角形和一个矩形来进行计算. 考核的知识点:点的坐标与四边形面积的综合题 19、参考答案:(1)如图所示:(2)(3,10);(10,3);(7,10);(10,7);(b ,a )yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10考核的知识点:坐标平面内对称点的性质平面直角坐标系练习题二参考答案1.二四 2.0 0 3.│q││p│ 4.二、四原点 5.x1+x2=0 y1+y2=0 6.答案不唯一7.B 8.C 9.D 10.A 11.B12.A(2.5,),B1(0,0),C1(5,0);2),B2(0,0),C2(5,0);A2(2.5,-2),B3(0,0),C3(-5,0);A3(-2.5,2A4(-2.5,),B4(0,0),C4(-5,0);13.(4,0),(-4,0),(0,-2),(0,8)14.略。
一、选择题1,点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4) 2,在直角坐标系xOy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.2个B.3个C.4个D.5个3,如图1所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4,在平面直角坐标系中,若点()13-+,m m P 在第四象限,则m 的取值范围为( )A 、-3<m <1B 、m >1C 、m <-3D 、m >-3 5,已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A.3B.5C.6D.76,小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向 7、已知如图2中方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格的顶点上确定一 点C ,连结AB ,AC ,BC ,使△ABC 的面积为2平方单位.则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2) 8,如图3,若△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-3)那么将△ABC 作同榉的平移得到△A 1B 1C 1,则点A 的对应点A 1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9,已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10,已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( )A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能二、填空题11,已知点M (a ,b ),且a ·b >0,a +b <0,则点M 在第___象限. 12,如图4所示,从2街4巷到4街2巷,走最短的路线的走法共有___种.13,如图5所示,进行“找宝”游戏,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母___的下面寻找.14,点P (a ,b )与点Q (a ,-b )关于___轴对称;点M (a ,b )和点N (-a ,b ) 关于___轴对称.15,△ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为___、___、___.16,已知点M (-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M 在新坐标系内的坐标为___.17,在一座共8层的商业大厦中,每层的摊位布局基本相同.小明的父亲在6楼的位置如图3所示,其位置可以表示为(6,2,3).若小明的母亲在5楼,其摊位也可以用如图6表示,则小明的母亲的摊位的位置可以表示为___.18,观察图象,与如图7中的鱼相比,图5中的鱼发生了一些变化.若图7中鱼上点P 的坐标为(4,3.2),则这个点在如图8中的对应点P 1的坐标为___(图中的方格是1×1).19,长方形ABCD 中,A 、B 、C 三点的坐标分别是A (6,4),B (0,4),C (0,0)则D 点的坐标是 .20,如图9在一个规格为4×8的球台上,有两个小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则O 点的位置可表示为 .三、解答题(共36分)21,如图10所示的直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),确定这个四边形的面积.22,如图11所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23,如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y-1)在坐标平面内的什么位置?图4(街)(巷)2354114532图7图8图5(2)A B C D E F G H I J K L M N O P Q R S TU V W X Y图10(3,6)(16,0)(14,8)(0,0)C D B A xy图112365417图3相帅炮图1图3 图2图924,如图12所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为-2,3,线段BD =5;A 、B 两点的横坐标分别为-3,-2,线段AB =1.(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少?(2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?25,如图13,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置.26,如图14将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?图12图14第6章平面直角坐标系综合练习题(2)一、1,B;2,C;3,C;4,A;5,A;6,B;7,C;8,A;9,C;10,C.二、11,三;12,6;13,X;14,x、y;15,(0,1)、(3,0)、(2,2);16,(-1,5);17,(5,4,2);18,P1(4,2.2);19,(6,0);20,(3,4).三、21,94;22,3个格;23,根据题意可得3x+3=0,x+3y-2=0,解得y=1,x=2-3y=-1,所以点P(x,y),即P(-1,1) 在第二象限Q(x+1,y-1),即Q(0,0)在原点上;24,(1)MN=x2-x1.(2)PQ=y2-y1;25,A1(2,-1),B1(-1,6) C1(4,-4),图略;26,(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度;27,P2(1,-1) ,P7(1,1) ,P100(1,-3).第6章平面直角坐标系综合练习题(3)一、选择题1,如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2,如图2所示,横坐标正数,纵坐标是负数的点是( )A.A 点B.B 点C.C 点D.D 点 3,(2008年扬州市)在平面直角坐标系中,点P (-1,2)的位置在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4,已知点A (-3,2),B (3,2),则A 、B 两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度5,点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上 6,若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限7,已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )A.第一象限B.第二象限C.第三象限D.第四象限 8,把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( ) A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)9,如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是( )A.(2,2)(3,4)(1,7) B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)10,在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A 与A ′的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位 二、填空题11,电影票上“4排5号”,记作(4,5),则5排4号记作___. 12,点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.13,在平面直角坐标系中,点(3,-5)在第___象限. 14,已知a <b <0,则点A (a -b ,b )在___象限.15,△ABO 中,OA =OB =5,OA 边上的高线长为4,将△ABO 放在平面直角坐标系中,使点O 与原点重合,点A 在x 轴的正半轴上,那么点B 的坐标是___.16,已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.17,△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B 、C 两点坐标分别为 , .18,把面积为10cm 2的三角形向右平移5cm 后其面积为 . 19,菱形的四个顶点都在坐标轴上,已知其中两个顶点的坐标分别是(3,0),(0,4),则另两个顶点的坐标是____.20,如图4所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.三、解答题21,用有序数对表示物体位置时,(-3,2)与(2,-3)表示的位置相同吗?请结合图形说明.22,如果点A 的坐标为(-a2-3,b 2+2),那么点A 在第几象限?说说你理由.23,如图5所示,图中的“马”能走遍棋盘中的任何一个位置吗?.24,在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来.(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0); (2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.25,如图6笑脸的图案中,左右两眼的坐标分别为(4,3)和(6,3),嘴角左右端点分别为(4,1)和(6,1)试确定经过下列变化后,左右眼和嘴角左右两端的点的坐标.(1)将笑脸沿x 轴方向,向左平移2个单位的长度. (2)将笑脸沿y 轴方向,向左平移1个单位的长度.图5(1)DCB A五行三行六行六列五列四列三列二列一列图1 图2(3)图4图3图626,如图7,在平面直角坐标系中,已知点为A (-2,0),B (2,0). (1)画出等腰三角形ABC (画出一个即可); (2)写出(1)中画出的ABC 的顶点C 的坐标.27,如图8,△ABC 三个顶点的坐标分别为A (4,3),B (3,1),C (4,1).(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得△A 1B 1C 1与三角形ABC 的大小、形状和位置上有什么关系?(2)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?第6章平面直角坐标系综合练习题(3)一、1,A ;2,B ;3,B ;4,D ;5,A ;6,B ;7,B ;8,C ;9,C ;10,B .二、11,(5,4);12,(0,0);13,四;14,三;15,(3,4)或(3,-4);16,(-3,2);17、B (一3,一6)、C (一4,一1);18,10;19,(-3,0)、(0,-4);20,(-2,3)、(0,2)、(2,1)、(-2,1).三、21,不同,图略;22,第二象限,因为-a 2-3<0,b 2+2>0;23,马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可;24,至少要向上平移3个以单位长度;25,(1)(2,3)、(4,3)、(2,1)、(4,1).(2)(4,4)、(6,4)、(4,2)、(6,2);26,略;27,(1)所得△A 1B 1C 1与△ABC 的大小、形状完全相同,△A 1B 1C 1可以看作△ABC 向左平移6个单位长度得到的.(2)类似地△A 2B 2C 2与△ABC 的大小、形状完全相同,可以看作△ABC 向下平移5个单位长度得到的.图略.图7图8。