CUMCM2013-碎纸片的拼接复原(全国一等奖)
- 格式:pdf
- 大小:1.37 MB
- 文档页数:32
碎纸片的拼接复原刘啸泽;李璞;陈香【期刊名称】《电子测试》【年(卷),期】2014(000)007【摘要】本文通过使用Euclidean距离来衡量两张碎纸片之间的相似程度来实现碎纸片的拼接还原问题。
首先使用贪心模型和TSP模型来分别完成仅纵切的碎纸片的还原问题并相互印证结果。
然后又推广使用了TSP模型并完成了同时纵切和横切的碎纸片拼接复原。
%In this paper,by using the Euclidean distance to measure the similarity between the two pieces of scraps of paper to realize mosaic scraps of paper reduction problem.First use the reduction problem greedy model and TSP model respectively complete the scraps of paper only longitudinal and corroborated the results.Then use the TSP model and finished at the same time scraps of paper splicing longitudinal and transverse restoration.【总页数】3页(P46-48)【作者】刘啸泽;李璞;陈香【作者单位】西安电子科技大学,陕西西安,710126;西安电子科技大学,陕西西安,710126;西安电子科技大学,陕西西安,710126【正文语种】中文【相关文献】1.基于数字图像的碎纸复原模型与算法--2013年全国大学生数学建模B题碎纸片的拼接复原问题 [J], 刘铁2.基于MATLAB的碎纸片拼接复原技术研究 [J], 唐巧玲;陈佳3.基于MATLAB的碎纸片拼接复原技术研究 [J], 唐巧玲;陈佳4.基于量子算法的碎纸片拼接复原问题 [J], 王彦超;刘鑫磊;武良隆;刘晓东;范兴奎5.碎纸片的拼接复原研究 [J], 赵辰;乔振宇;李思漫因版权原因,仅展示原文概要,查看原文内容请购买。
碎纸片的拼接复原摘要本文研究了碎纸片的复原问题。
对已有的碎纸片,我们利用Matlab求碎纸片边各侧边线的灰度值,通过最小偏差平方和法进行碎纸片间的相互匹配,中间加入人工干预进行筛选,将附件中的碎纸片全部还原。
之后,我们将该方法进行推广,可用以处理更复杂形状碎图片的的还原问题。
对问题一:首先假定附件一所给仅纵切的碎纸片的行文方向与各碎纸片两侧边线垂直,在此基础上先人工干预,根据碎纸片的剪切规范,甄选出原始图片的第一张和最后一张碎纸片,编号分别为008和006。
其次通过Matlab求出图片边线处各小网格点的灰度值,采用最小偏差平方和法,对编号008碎片右边线处的灰度值和其它碎纸片的左边线处的灰度值进行对应网格点的数值匹配,找到最匹配的碎纸片。
附件二碎片的处理进行了类似处理,给出的复原图片见附表4。
对问题二:附件三文本既纵切又横切,同样我们假设所给附件三中碎纸片的行文方向与碎纸片的上下左右边线分别平行或垂直。
在问题一的算法基础上,通过Matlab求出各碎纸片的4条边线的边界灰度值,然后利用最小偏差平方和法,对上下左右四边进行灰度值匹配,当结果多个时,我们进行了人工干预。
附件四依照附件三的方法类似处理,最终的复原见附表7和附表9。
对问题三:附件五中的图片既纵切又横切而且是正反面。
我们参照问题一、二的处理方法,加入反面的灰度值测算,随机选择一张碎纸片与其他碎纸片进行遍历匹配,得出4张匹配的碎纸片后,以这4张碎纸片为下一起点,扩张匹配,最终给出的复原图见附表12。
为适应更一般的情形,我们在模型改进部分,给出了当碎纸片的文字行文方向与碎纸片两侧边线不垂直时的处理方法(只处理了边线为直线的情形)。
首先是通过测算出的碎纸片灰度值确定出碎纸片的边缘线,其次定出碎纸片边缘线附近网格点的灰度值,最后完成边线的的匹配。
关键词:人工干预灰度矩阵灰度值最小偏差平方和法一问题重述1.1问题背景纸片文字是人们获取和交换信息的主要媒介,尤其是在计算机技术飞速发展、数码产品日益普及的今天。
碎纸片的拼接复原模型
邓方清;邓小安
【期刊名称】《数学学习与研究:教研版》
【年(卷),期】2016(000)022
【摘要】针对碎纸片的拼接复原问题,本文从边缘像素矩阵入手,通过对该矩阵数据的标准化处理、求取像素平均值、定义像素255的频率、矩阵分块等方法,运用相关的匹配度算法分析,建立了纵切又横切的碎片拼接复原模型.
【总页数】2页(P154-155)
【作者】邓方清;邓小安
【作者单位】[1]广东工业大学,广东广州510006;[2]广东石油化工学院,广东茂名525000
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.基于数字图像的碎纸复原模型与算法--2013年全国大学生数学建模B题碎纸片的拼接复原问题
2.碎纸片的拼接复原模型及其算法研究
3.基于线性规划的碎纸片拼接复原模型
4.TSP规划模型在文本碎纸片拼接复原问题中的应用
5.基于聚类分析与欧氏距离模型的碎纸片拼接复原
因版权原因,仅展示原文概要,查看原文内容请购买。
基于灰度矩阵的中文碎纸片的拼接复原算法作者:王欣洁来源:《智能计算机与应用》2013年第06期摘要:主要对碎纸片的拼接复原问题进行分析,分别对仅纵切和横纵切两种切割方式建立了模型进行求解,主要思想是对碎片的灰度值矩阵进行处理,利用文字所处的位置信息、空格的分布情况、碎片的边界信息(文字的链接情况)等信息,对所给的碎纸片进行拼接复原。
对2013年“高教社杯”大学生数学建模竞赛B题附件中的中文碎片进行拼接,拼接效率高,算法可行。
关键词:灰度值矩阵;差异度量;贪心算法;相容性;边界特征中图分类号:TP312 文献标识码:A文章编号:2095-2163(2013)06-0095-040问题提出破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
为了提高拼接复原效率,人们试图利用计算机,实现碎纸片的自动拼接。
本文对2013高教社杯全国大学生数学建模竞赛B题中提出的碎纸片拼接复原问题进行研究,主要研究其中中文碎片的拼接复原。
1模型假设和符号说明研究前,需要做出如下假设:假设所给碎片均无噪声污染;各碎片之间互有关联;并且只考虑打印稿,而不涉及手写稿;同时也要假设文件中的文字行间距确定;没有相同的两个碎片;以及附件所给碎片的原文件页边距不为零。
本文中用到的符号如下:Ai:第i个碎片图像的灰度值矩阵;aikm:第i个碎片图像的灰度值矩阵中第k行m列元素;d(Ai,Aj):两矩阵的列差异度;N1:附件1、2碎片个数;N2 :附件3、4碎片个数;F:复原序列;d(r)(Ai,Aj):两矩阵的行差异度;S1R:排在左侧的第R张碎片;GR:第R个相容的碎片集合2问题分析2.1仅纵切问题的分析对于仅纵切的情形,各碎片的边界特征信息(文字的链接情况)较为丰富,故可以利用边界特征进行拼接复原。
首先根据左侧的第一张碎片通常存在着左边的页边距的特点,即其灰度值矩阵中左边几列的元素均为255,从而可以找出排在左边的第一张碎片。
数学建模中的碎纸片拼接复原要点研究基于模拟退火算法与系统聚类法,文章首先依次介绍了仅纵切、既有横切又有纵切、双面打印三种情形下的碎纸片拼接复原要点,然后对全文进行了总结与展望。
标签:碎片;拼接;复原;模拟退火算法;系统聚类法碎纸片拼接复原工作在诸多领域中有着极其重要的应用,如历史文物的考证、司法鉴定以及情报获取等。
在计算机技术发展起来之后,传统的人工复原方式导致效率低下的弊端日益凸显,因此,通过数学建模的方法得到碎纸片自动拼接复原模型以提高拼接效率显得尤为重要,已有文献对此做了一些研究[1-3]。
文章以2013年全国大学生数学建模竞赛B题为例,基于模拟退火算法与系统聚类分析,依次介绍仅纵切、既有横切又有纵切、双面打印三种情形下的碎纸片拼接复原要点。
1 仅纵切的碎纸片拼接复原要点步骤6:降温。
选定降温系数θ(一般取为接近1的数)进行降温,即用θT 取代T,从而得到新的温度。
步骤7:算法终止条件。
用选定的终止温度Te,判断退火过程是否结束。
若T<Te,算法结束并输出当前的状态。
这样,由于碎纸片较大,图片信息较明显,因此不需要人工干预,复原率可达100%。
附件2中的英文图片可类似处理。
2 有横、纵切的碎纸片拼接复原要点对于既有横切又有纵切的碎纸片拼接复原,若利用上一问的方法直接对全部的209张图片进行拼接,一方面必然会导致算法运行效率大大降低;另一方面,由于区分各图片间边界差异的灰度值信息较少,易导致拼接时重码率高而复原率低。
因此,我们采用的方法是,首先提取出所有图片的行特征;然后对209张图片建立行聚类模型,对各行聚类依据上一问的方法将其中图片重排;最后对排好序的各行类似的作横向排序即可将碎片拼接复原。
具体的步骤如下:第一步,提取图片的行特征。
利用Matlab读入图片,将每张图片转化为一个180*72的灰度值矩阵;再用Matlab可计算出中文字符高为40像素点,行间距为31像素点。
第二步,建立行聚类模型。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于文字特征的碎纸片拼接匹配算法【摘要】破碎文件的拼接在许多领域都有着重要的应用,现有的拼接算法主要针对边界不规则碎纸片,利用边缘形状匹配进行拼接。
基于人们的生活习惯和碎纸机的广泛使用,很多情况下文字碎片都有着规则的边界。
寻找对于边界规则的碎纸片有效快速的拼接算法是亟待解决的问题。
碎纸片的拼接复原摘要破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
传统上,拼接复原工作由人工完成,虽准确率高,但效率很低。
特别是当碎片数量巨大,人工拼接难以完成任务。
因此随着计算机信息技术的发展,开发一个碎纸片的自动拼接技术,并建立简便的拼接复原模型,提高拼接复原效率,具有重要的实现意义。
文章通过对所给的附件图片数据进行分析研究,在综合考虑了碎片边缘的尖点特征、尖角特征、面积特征等几何特征下,我们将图片读入电脑,并进行二值化转换,考虑边界值的匹配,建立了图片边界匹配模型。
依据模型,只要边界能匹配上就可以拼接,并依次解决了如下问题。
对于问题一,由于给定图片来自同一页印刷文字文件仅纵切破碎纸片,针对附件1、附件2给出的碎片数据,建立了碎纸片拼接复原的边界匹配模型。
根据模型,我们首先对附件1、附件2中的图片用Matlab软件进行二值转化,得到一个储存图片的二值灰度矩阵,并利用边界相关性比较法判断矩阵中两边界变量是否能匹配得上,如果匹配得上就拼接在一起,按此算法,附件1、附件2中的碎纸片就能拼接成功,具体的算法结果见附录中的附件1、附件2。
对于问题二,由于碎纸机既有纵切又有横切的情形,算法的设计上要相对复杂一些,我们在前面模型的基础上进行了修改和补充,对图片的上下左右的边界都进行了边界提取。
首先,我们选将图片作二值转换,分别用矩阵进行保存,然后任迁一个,对其余的进行全程扫描,按照问题一中的边界匹配模型,逐一对其边界进行扫描匹配,其间,有些矩阵的边界数据可能一样(如空白时),我们便跳出模型,进行适当的人工干预,干预完成,再进入模型进行迭代,按此方法便可拼接成功,具体的算法结果见附录中的附件3。
对于问题三,根据现实问题中的双面打印文件的碎纸片拼接复原问题,由于多了双面的问题,在算法的设计上,我们考虑了正反两的边界匹配,在原有模型的基础上,将问题一和问题二的模型相结合,建立一个新的双面碎纸片拼接模型。
碎纸片的拼接复原模型摘要本文针对破碎纸片形状规则和碎片间无有效重叠区域等特点,选取了信息熵、差方和、欧氏距离、相关系数、互信息和灰色斜率关联度作为碎纸片之间的相似性判别准则,给出了碎纸片拼接复原模型和算法,解决了破碎纸片的拼接复原问题.对于问题1,引入信息熵来衡量每个碎片含有的信息量,将熵值最小的碎片确定为印刷文字文件的第一列;利用差方和计算出第1列右端与其余碎片左端的相似程度,求得碎纸片之间的最佳匹配组合,借助Matlab软件成功实现了附件1和附件2的碎片拼接复原.对于问题2,通过计算每个碎片的信息熵,找到印刷文字文件第一列的11个碎片;再利用互信息和相关系数评价碎纸片之间的相似性程度,确定出碎片间的上下位置关系,得到了印刷文字文件的第一列;然后利用欧氏距离作为相似性测度,进一步进行碎片间的粗拼接.若某个碎纸片与多个碎片的欧氏距离相等,则利用灰色斜率关联度进行碎纸片间的细拼接,借助Matlab软件完成了对附件3和附件4给出的碎片拼接复原.对于问题3,基于模糊聚类方法,粗略地确定出每个碎片的正面和反面;然后利用问题2的算法对已分类的正面碎纸片进行拼接复原;针对无法复原的碎纸片,借助Matlab 软件和最优搜索算法进行人工干预,确定出附件5文件正面的拼接复原;根据碎片数据编号的命名规则,在正面碎片数据的拼接复原结果中填充对应编号的反面碎片数据,实现了附件5文件反面的拼接复原.最后,对碎纸片的拼接复原模型和算法进行了分析和展望.关键词:破碎纸片的拼接复原;信息熵;差方和;互信息;欧氏距离;灰色斜率关联度;模糊聚类1. 问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率,需解决以下几个问题:问题1,考虑对于给定的来自同一页印刷文字文件仅纵切的破碎纸片的拼接复原模型和算法,并针对B 题附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,还需要写出干预方式及干预的时间节点.并就附件1和附件2的碎片数据给出拼接复原结果.问题2,考虑对于碎纸机既纵切又横切的情形,设计出碎纸片拼接复原模型和算法,并针对B 题附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预的时间节点.并就附件3和附件4的碎片数据给出拼接复原结果.问题3,则需要考虑更一般的情形,即考虑有双面打印文件的碎纸片拼接复原问题.对B 题附件5给出的是一页英文印刷文字双面打印文件的碎片,设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果.2. 模型假设(1) 碎纸片的切割是等间距的,忽略切割碎纸片时由机器工作所产生的摩擦误差; (2) 碎片切缝处的图像灰度平滑;(3) 碎片在缩放的情况下,像素点保持稳定; (4) 碎片上的文字只显示黑白两种颜色.3. 符号说明N :每张碎片像素点的数目;ij a 、ij b :图像A 、B 在()j i ,的像素值;),(B A SSD :A 与B 的差方和;)(a h A :图像A 中第a 个灰度级的像素个数与总的像素个数之比;)(ab h AB :图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比;)(A H 、)(B H :图像A 和B 各自含有的信息量;)(AB H :两幅图像A 和B 的联合信息熵;ij d :两幅图像A 和B 的欧式距离;ij a 、ij b :图像A 和B 在 ()j i ,位置的像素值; a :图像A 像素值的平均值;),(B A C :两幅图像A 和B 的相关系数;)(a P A 、)(b P B :碎片边缘概率密度; )(ab P AB :两碎片A 和B 的联合概率密度;);(B A I :两碎片A 和B 的互信息;)(t X :系统特征函数;)(t Y i :相关因素函数;tt x ∆∆)(:系统特征函数)(t X 在t 到t t ∆+的斜率; tt y i ∆∆)(:相关因素函数)(t Y i 在t 到t t ∆+的斜率; )(t x ∆:系统特征函数在t 到t t ∆+的增量;)(t y i ∆:相关因素函数在t 到t t ∆+的增量; x :系统特征函数的均值;i y :相关因素函数的均值;)(t i ξ:)(t X 与)(t Y i 在t 时刻的灰色斜率关联系数;D :对称距离矩阵;i ε:)(t X 与)(t Y i 在t 时刻的灰色斜率关联度.4. 问题分析由于文章以行书写,只有段首段尾有空白,切缝处恰好以列之间的空白或笔画出断开的概率较小,在拼接碎纸片前需要对B 题附件1—5的碎片内图像进行二值化处理,进而获取由0和1组成的矩阵.扫描后的图像有亮的图像和暗的背景组成,由于光照、拍摄角度等因素,一幅图像往往包括文字、背景还有噪声等.如果从多值的数字图像中直接提取目标,最常用的方法就是设定阈值T ,用T 将图像的数据分为两部分:大于T 的像素群和小于T 的像素群.由于5个附件中的文字显示都是黑白颜色,因此先调用Matlab 软件中的im2bw()对每个碎纸片进行二值化图像预处理,然后综合利用图像的相似性测度寻找高精度的匹配碎片,从而实现整个印刷文字文件的复原.5. 模型的建立与求解5.1 问题1的求解5.1.1 模型的建立差方和利用两幅图像对应位置的差方和均值表示图像之间的相似程度,定义为[1],∑-=ij21),()(ij ij NB A SSD b a (1) 式中,N 为每幅图像像素点的数目,ij a 和ij b 分别是图像A 和B 在()j i ,位置的像素值.当两幅图像正好可拼接时,),(B A SSD 值最小.差方和计算的时间复杂度为()2N O .信息熵反映了图像含有的信息量大小.信息熵越小,图像包含的信息量越小,往往空白区域越多,其定义为[2-4]:∑=aA A a h a h A H )(log )()( (2)其中,)(a h A 表示图像A 中第a 个灰度级的像素个数与总的像素个数之比. 5.1.2 拼接复原算法附件1和附件2中碎纸片的切割方式只有纵切一种,假设碎片的总数为n 个.考虑到纵切的特殊性,给出如下的拼接复原算法:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的一个碎片n i i A H 1)}(min{=为印刷文字文件的第1列;步骤2 计算第1列图像A 的右边与其余1-n 个碎片)1,1(≠≤≤j n j A j 的左边的差方和),(1j A A SSD ,确定出与第1列图像差方和最小的碎片为印刷文字文件的第2列;步骤3 重复步骤2,依次继续,直到找到印刷文字文件的n 列为止. 5.1.3 问题1的求解借助Matlab 软件对以上拼接复原算法进行仿真,得到如下结果: (1) 附件1中的中文文件复原结果表1 附件1中19个碎片的信息熵从表1可以看出,19个碎片所包含的信息量中,第008碎片的信息熵最小,因此第008碎片是附件1中的中文文件的第1列.表2 附件1中19个碎片之间差方和最小的配对碎片表从表2可以得到附件1中的中文文件复原结果,如下表所示:表3 附件1中文件的拼接复原结果表附件1中的中文文件复原图结果见附录1.(2)附件2中的英文文件复原结果表4 附件2中19个碎片的信息墒从表4可以看出,所有19个碎片所包含的信息量中,第003碎片的信息墒最小,因此第003碎片是附件2文件的第1列.表5 附件2中19个碎片之间差方和最小的配对碎片表从表5可以得到附件2的英文文件复原结果,如下表所示表6 附件2英文件的拼接复原结果表附件2中英文文件的复原结果图见附录2.5.2 问题2的求解5.2.1 模型的建立由于互信息测度是从图像的统计信息出发,既不需要两幅图像的灰度关系,也不需要图像进行预处理,因此成为目前广泛使用的图像配准相似性测.在图像配准过程中,如果两幅图像精确匹配,互信息达到最大.联合熵定义如下[5]:)(log )()(,ab h ab h AB H AB ba AB ∑= (3)其中)(ab h AB 表示图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比.互信息定义为)()()();(AB H B H A H B A I -+= (4)欧氏距离被视为两个图像的相似程度,距离越近就越相似,其定义为∑-=2)(ij ijij b ad (5)相关系数是标准化的协方差函数,当两幅图像的灰度之间存在线性畸变时,仍能较好的评价两幅图像之间的匹配性程度.图像的相关系数1),(≤B A C ,它是两幅图像A 和B 特征点之间近似程度的一种线性描述.如果),(B AC 越接近于1,两幅图像的相似程度越大,越近似于线性关系.选择相关系数中最大的相关系数所对应的特征点为这个点的匹配特征点.当两幅图像可匹配时,相关系数达到最大值.相关系数定义如下[7-9]:2/122))(*)(()(*)(),(∑∑∑----=b b a a b b a bB AC ij ij ijij ij(6)两幅图像相关系数计算的时间复杂度为)(2N O ,其中N 为每幅图像像素点的数目. 灰色斜率关联度的基本思想是根据待拼碎片的特征曲线(称系统特征函数)与参照碎片的特征曲线(称相关因素函数)的相似程度来判断其联系是否紧密,曲线越接近,关联度就越大,反之就越小.灰色斜率关联度的定义为[10]:∑-=-=11)(11n t i i t n ξε (7) 其中,t t y yt t x x t t x x tt x x t i i ∆∆-∆∆+∆∆+∆∆+=)(*1)(*1)(*11)(*11)(ξ (8)为灰色斜率关联系数.(7)、(8)式中)(t X 为系统特征函数,)(t Y i ()m i ,,2,1 =为相关因素函数(对应于参照碎片的特征曲线),∑==nt t x n x 1)(1,)()()(t x t t x t x -∆+=∆,t t x ∆∆)(为系统特征函数)(t X 在t 到t t ∆+的斜率, ∑==nt i i t y n y 1)(1,)()()(t y t t y t y i i i -∆+=∆, t t y i ∆∆)(为相关因素函数)(t Y i 在t 到t t ∆+的斜率.对于灰色斜率关联系数)(t i ξ公式(8)有如下性质[11-13]:(1) 任意的系统特征函数)(t X 与相关因素函数)(t Y i 的灰色斜率关联系数满足:1)(0≤<t i ξ,m i ,,2,1 =;(2) 灰色斜率关联系数)(t i ξ满足对称性;(3) 灰色斜率关联系数)(t i ξ只与)(t X 与)(t Y i 的几何形状有关,与相对位置无关; (4) )(t X 与)(t Y i 的斜率越接近,灰色斜率关联系数)(t i ξ就越大;(5) )(t X 与)(t Y i 在t 到t t ∆+的变化速度相同时,它们的斜率相等,这时1)(=t i ξ; 由上述公式及性质可知,灰色斜率关联系数反映了两曲线在某一点的变化率的一致程度,而灰色斜率关联度则是整个区间上灰色斜率关联系数的平均值.灰色斜率关联度i ε具有下列性质: (1) 10≤<i ε;(2) i ε只与)(t X 与)(t Y i 的变化率有关,而与它们的空间相对位置无关; (3) 当)(t X 与)(t Y i 变化率相同时, 1=i ε; (4) )(t X 与)(t Y i 的变化率越接近, i ε就越大;5.2.2 拼接复原算法附件3和附件4中碎纸片的切割方式有纵切和横切两种,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图),具体的拼接复原算法如下:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的m 个碎片n i i A H 1)}(min{=为印刷文字文件的第1列的m 个碎片;步骤2 计算步骤1找到的m 个碎片的上半部图像和下部分图像之间互信息和相关系数,确定出m 个碎片的上下位置关系,得到印刷文字文件的第1列;步骤3 计算第1列中m 个碎片右边与其它碎片左边的欧氏距离,得到碎片之间关于欧氏距离的矩阵n m M ⨯;在矩阵n m M ⨯中,第i 行的值ij d 表示第i 个碎片与第j 个碎片之间的欧氏距离.步骤4 在n m M ⨯中,计算第)1(m i i ≤≤行的最小值i min ;若n m M ⨯中i min 在第i 行出现的次数为1且对应的列标为j ,则第i 个碎片和第j 个碎片是最佳匹配组合;若i min 在第i 行出现的次数为大于1,则进行步骤5.步骤5 i m i n 在i 行中出现的次数为大于1,则计算第i 个碎片的右边图像与其余碎片左边图像的灰色斜率关联度)1(n f if ≤≤ε,记灰色斜率关联度最大的值ih ε对应的列为k ;若第k 个碎片在步骤4的最佳匹配组合中没有出现,那么第i 个碎片和第k 个碎片是最佳匹配组合;若第k 个碎片已在步骤4的最佳匹配组合中出现过,选择灰色斜率关联度仅次于ih ε)(ih iy εε<的值对应的列y ;若第y 个碎片在步骤4的最佳匹配组合中没有出现,则第i 个碎片和第y 个碎片是最佳匹配组合,否则继续寻找第i 个碎片的最佳匹配碎片,直止找到满足斜率关联度最大且在以前的最佳匹配组合中没出现条件的碎片.步骤6 重复以上步骤,直到所有的碎片找到最佳的匹配组合为止.按照最佳匹配组合的关系将所有碎片链接起来,并在第1列中出现的碎片位置出换行,便可对文件的所有碎片数据进行拼接复原. 5.2.3 问题2的求解运行matlab 软件对以上算法进行仿真,得到如下的结果.(1) 附件3中的中文文件复原结果表7 附件3中碎片的排列序号附件3中文件的最终复原图见附录4.(2) 附件4中的英文文件复原结果附件4的复原结果表格形式如下表所示:表8 附件4中碎片的排列序号附件4中文件的最终复原图见附录6.5.3 问题3的求解5.3.1 模型的建立模糊聚类分析是一种将样本或者变量分类的统计方法,基于物以类聚的思想,它根据样本数量计算样本之间的距离(相似程度),按距离的大小,将样本或变量逐一归类,关系密切的类聚到一个小的分类单位,使同一类的对象之间具有较高的相似度,然后逐步扩大,使得关系疏远的类聚合到一个大的分类单位,知道所有的样本或变量都累计完毕.模糊聚类分析法常用的距离为绝对值距离和欧式距离,其中,欧氏距离在聚类分析中用的最广.计算流程如下[14-15]:(1) 将n 张碎纸片分为n 类,取其中一个碎纸片右侧一列和另外任意碎纸片左侧一列作为样本,两个样本之间的距离构成一个对称距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00021221112 n n n n d d d d d d D (2) 选择)0(D 中的非对角线上的最小元素,设这个最小元素是pq D ,此时{}p P x G =与{}q q x G =的距离最近,将q P G G 和合并成一个新类{}q P r G G G ,=.在)0(D 中消去q P G G 和所对应的行与列,并加入由新类r G 与剩下的其他未聚合的类间的距离所组成的新的距离矩阵)1(D ,它是n-1阶方阵;(3) 从)1(D 出发重复(2)的做法得)2(D ,再由)2(D 出发重复上述步骤,直到碎纸片聚成一个整体,聚类完成. 5.3.2 拼接复原算法附件5的碎片均为双面,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图的正面),具体的拼接复原算法如下:步骤1 基于模糊聚类分析法的思想,借助Matlab 软件编程将所有碎片区分粗分为正面和反面两大类;步骤2任选某一大类的碎片,利用问题2的拼接复原算法对该类的碎片进行拼接复原;步骤3 对无法拼接的碎片进行人工干预,直至所有的最碎片找到最佳的匹配组合为止.将所有的碎片进行链接,可复原文件的原图.根据碎片编号的命名规则,如果一面的原图复原成功,选择原图每个碎片对应序号的反面,可直接拼接复原出反面的原图.5.3.3 问题3的求解运行matlab软件对以上算法进行仿真,得到如下的结果.(1)附件5中的文件正面复原结果附件5中的文件正面复原结果见表9.附件5中文件正面的复原结果中间图见附录7.附件5中文件正面的复原结果中间图见附录8.对附录8中的碎片49a、161b、108b、045b、021a、042a、048b、180b、041b、202b和175b进行人工干预,得到附录9。