2022年人教版八年级数学上册第十五章分式教案 分式方程(第2课时)
- 格式:docx
- 大小:64.66 KB
- 文档页数:9
《分式方程》教案2
【活动1】(情景图片)
教学反思
1.在本课的教学过程中,我大胆放手让学生走进文本.在教学中我根据学生的实际情况进行了适当调整.因势利导提出一些质疑问题激发了学生学习兴趣.整节课我安排四个活动,活动一,通过实际中的行程问题,引导学生从分析入手,列出含未知数的式子表示有关量,并列出方程,引发学生学习兴趣,提出问题引发思考,为探索分式方程及分式方程的解法作准备,引出学习课题.活动二,让学生运用“转化思想”探讨解分式方程的方法,鼓励学生从多角度思考问题,解释所获得结果的合理性.活动三,让学生通过自己探索实践,找出分式方程无解的原因及验根的必要性.学生在教学活动中通过积极参与和有效参与,来达到知识与能力、过程和方法、情感态度与价值观的全面落实,设计思考性、探索性的习题,激发学生的学习兴趣,培养学生的创新意识和实践能力.活动四,让不同层次同学发表意见培养学生语言表达和总结知识能力.
2.本节课的教学采用“问题情境—建立模型—探究总结与拓展”的模式展开,整节课为学生提供开放式、互动的、自主探究的学习方式,注重合作意识以及探究力的培养,最大限度地调动学生全员参与,关注每一位学生个体,关注学习过程中的团队精神,合作意识,为教学目标的有效实现打下坚实基础.
3.不足之处:由于操作电脑水平有限,板书设计应设计成思维导图的形式,便于学生及时对知识梳理,掌握重难点,归纳题型.如果在课堂上我会用思维导图进行板书设计.。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“分式”.1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,“数与式”是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,现阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性.“数与式”的教学:教师应该把握“数与式”的整体性,一方面,通过负数、有理数和实数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表述,进而体会实数与数轴上的点一一对应的数形结合的意义,会进行实数的运算;另一方面,通过代数式和代数式运算的教学,让学生进一步理解字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析人教版教材八年级上册第十五章“分式”,本章包括三个小节:15.1分式;15.2分式的运算;15.3分式方程.“数与式”主题通过从计算物体个数的活动中抽象出整数的概念,从把一个具体物体分为若干份的活动中抽象出分数的概念,这是一种从实物到数的抽象;为更好地反映这个一般规律,在研究整数和分数的过程中,又抽象出整式和分式的概念,这是一种从数到式的抽象.分数与分式是具体与抽象、特殊与一般的关系,即相对于分式而言,分数是具体的、特殊的对象,分式是把具体的分数一般化后的抽象形式.本单元强调的是“从具体到抽象,从特殊到一般”的认识事物的一般规律,处处突出类比在本单元学习中的重要作用,在概念、基本性质、约分与通分、四则运算法则等方面,分数与分式均相对应,两者具有一致性,也可以说是数式通性.本单元自始至终重视分式与实际的联系,选择一些适合分式内容又接近学生生活的实际问题展开编写.一方面要体现与研究分数类似,研究分式同样也是实际需要;另一方面以分式为工具,分析、解决实际问题,提高学生把实际问题转化为数学问题的能力,让学生认识到代数式(包含分式)、分式方程是解决现实问题的数学模型,体会数学中的建模思想,进一步培养学生应用数学知识解决实际问题的兴趣和意识,这将有助于培养学生的创新精神.三、单元学情分析本单元内容是人教版教材数学八年级上册第十五章分式,它是“数与代数”中重要的一部分,学生在前面已经学习了整数与整式、一元一次方程、二元一次方程组等知识,初步积累了一定的用字母表示数以及四则混合运算的数学学习经验,特别是对一元一次方程的解法及基本思路已经比较熟悉,因此本单元运用类比的数学思想来展开分式教学,大大降低了学生学习的难度,同时这种“从具体到抽象、由特殊到一般”的认识事物的基本方法,会潜移默化地引导学生养成良好的学习习惯.建立分式方程的模型来解决实际问题是本单元的一个重要任务,能否以分式方程为工具,分析和解决问题是对学生应用意识和模型观念的一个重要考量,也是教学的关键.虽然分式整章的学习接近学生的最近发展区,但利用分式方程解决问题的特殊性,对学生来说仍是一个难点,分式方程化整式方程的基本思路是基础,对解出的未知数进行检验确认是必不可少的步骤,所以在此体会解分式方程的基本思路是非常自然、合理的,这对学生认识水平的提高,知识体系的构建是不可缺少的.四、单元学习目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.能通过类比分数的基本性质,了解分式的基本性质,并利用分式的基本性质进行约分和通分,提高学生的知识类比和迁移能力,发展学生的推理能力.3.通过类比分数的四则运算法则,探究分式的四则运算法则,能进行简单的分式加、减、乘、除运算,逐步提高学生的运算能力.4.结合分式的运算,将指数的范围从正整数扩大到全体整数,了解整数指数幂的运算性质;能用科学记数法表示小于1的正数,发展学生的抽象能力、运算能力和模型观念.5.掌握可化分式方程为一元一次方程的解法,体会解分式方程过程中的化归思想,发展学生的运算能力和推理能力.6.经历利用分式方程解决实际问题的过程,进一步体会方程是刻画实际问题中数量关系的一种重要模型,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
15.3分式方程导学案教学目标知识与技能1.通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。
2.通过观察、思考,归纳分式方程的概念。
3.解分式方程的一般步骤。
4.说出解分式方程验根的必要性。
1.通过具体例子,独立探索方程的解法,经历和体会解分式方程的必要步骤。
2.进一步体会数学思想中的“转化“思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。
情感态度与价值观1.养成自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信心。
教学重点和难点教学重点1.解分式方程的一般步骤,熟练掌握分式方程的解法。
2.明确解分式方程验根的必要性。
教学难点明确解分式方程验根的必要性。
教学过程设计(一)复习及引入新课(5分钟)1.什么叫方程?什么叫方程的解?2.在x=0,x=1,x=-1中,哪个是方程3x xx1-=-的解,为什么?3.回到本章引言中的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用时间相等。
江水的流速为多少?设:江水的流速为v千米/时,则:轮船顺流航行速度为千米/时,逆流航行速度为千米/时,顺流航行90千米所用的时间为小时,逆流航行60千米所用的时间为 小时。
根据量间的关系列出方程:思考:这个方程和我们以前所见过的方程有什么不同?分式方程的意义:分母中含有未知数的方程叫分式方程.做一做 在方程①73x -=8+152x -,②1626x -=x , ③281x -=81x x +-,④2110525x x =--中,是分式方程的有( )A .①和②B .②和③C .③和④D .①和④(二)讲授新课,探索分式方程的解法活动1(5分钟) 如何解方程73x -=8+152x -试一试: 怎样解方程vv -=+30603090归纳:解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
《15.3 分式方程(2)》教学设计一、教学目标1.能够找出实际问题中的未知数与已知数,分析问题中的数量关系,寻找等量关系并正确列出分式方程.2.通过列分式方程解应用题,进一步掌握列方程解决实际问题的方法和步骤.3.体验到分式方程解应用题在处理实际问题中的优越性,感受数学的乐趣.二、教学重难点重点:利用分式方程解决实际问题.难点:列分式方程表示实际问题中的等量关系.三、教学过程设计1. 复习回顾(1)分式方程的概念分母里含有未知数的方程叫做分式方程(2)解分式方程的解题思路分式方程整式方程(3)解分式方程的解题步骤一化,二解,三检验,四写解(4)列整式方程解应用题的方法和步骤:1.审题分析题意;2.设未知数;3.根据题意找相等关系;4.列出方程;5.解方程;6.写答.师生活动:师生一起回顾分式方程的概念、解分式方程的基本思路和步骤,提出本节课的课题:分式方程的实际应用,并复习列整式方程解应用题的方法和步骤.设计意图:通过复习分式方程的有关知识,为本节课的解决问题作知识储备,复习列整式方程解应用题的方法和步骤,让学生回顾列方程解决实际问题的经历,通过类比列整式方程解决问题的步骤,学习列分式方程解应用题.2. 列方程解实际问题练习1商场用50 000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.(1)销售问题三个量:_____________.(2)问题中哪个等量关系可以用来列方程?师生活动:教师提出问题,学生思考并回答此题属于常见实际问题中的销售问题,教师提问销售问题中涉及到哪三个量,它们之间有怎样的数量关系,学生很快能回答销售问题中有进价、售价、利润三个量,教师进一步追问:问题中哪个等量关系可以用来列方程?学生在找等量关系上可能存在一定的困难,此时教师可以通过表格的形式,提示学生分析题意,从而得到等量关系:第二次单价–第一次单价= 12,学生规范解题过程如下:解:设第一次购进x 件T恤衫186********123x x解得x =1 000检验:当x =1 000时,3x ≠0,∴x =1 000是原分式方程的解答:第一次购进1 000件T恤衫.解决问题后,教师总结方法:列分式方程解应用题的方法和步骤如下:1、审题分析题意2、设未知数3、根据题意找相等关系,4、列出方程;5、解方程,6、检验(对解分式方程尤为重要)7、写答追问:列分式方程解应用题与以前学习的列方程解应用题有什么区别?设计意图:通过常见实际问题中的销售问题,让学生在已有经验的基础上,再次体验销售问题的解决方法,同时体会列分式方程解决实际问题时和列整式方程解决实际问题的不同之处.练习2甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用的时间相等,求甲、乙每小时各做多少个零件?(1)工作量问题三个量:(2)问题中哪个等量关系可以用来列方程?师生活动:教师提出问题,学生思考并回答此题属于常见实际问题中的工程问题,教师提问工程问题中涉及到哪三个量,它们之间有怎样的数量关系,并进一步追问:问题中哪个等量关系可以用来列方程?学生在找等量关系上可能存在一定的困难,但是在练习1的基础上,学生可能会想到通过列表格或者画线段图的方法进行分析题意,从而得到等量关系:甲做的时间 = 乙做的时间,学生规范解题过程如下:解:设甲每小时做x 个零件,则乙每小时做(x -6)个零件,依题意得: 9606x x =- 解得x =18检验:当x =18时,x (x -6)≠0∴x =18是原分式方程的解,由x =18得x -6=12答:甲每小时做18个,乙每小时做12个.设计意图:通过一个比较简单的工程问题,让学生回忆起工程问题中的数量关系以及常用的分析问题的方法,让学生体会列分式方程解决工程问题的基本思路和过程.例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快.(1)工程问题三个量: .(2)问题中哪个等量关系可以用来列方程?分析:甲队1个月完成总工程的 ,设乙队如果单独施工1个月完成总工程的 ,那么甲队半个月完成总工程的_____,乙队半个月完成总工程的_____,两队半个月完成总工程的_______. 解:设乙队如果单独施工一个月能完成总工程的1x . 1111362x++= 解得:1x =检验:当x = 1 时,6x ≠0∴x = 1 是原方程的解.由上可知,若乙队单独工作一个月可以完成全部任务,所以乙队施工速度快.师生活动:教师提出问题:(1)工程问题中三个量分别是什么?(2)问题中哪个等量关系可以用来列方程?学生思考并回顾工程问题相关量以及数量关系,学生在寻找等量关系时可能会感觉到困难,此时,教师以填空的形式提示学生分析题目中的已知量、未知量,从而让学生明确数量关系:甲先做的+甲乙合作的= 1.设计意图:将问题以填空的形式分步提出,降低难度,引导学生探寻解题的思路,教师规范板书,有利于学生规范解题步骤,培养学生有条理地思考、表达的习惯.3. 课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:一、列分式方程解应用题的方法和步骤:1、审题分析题意2、设未知数3、根据题意找相等关系,4、列出方程;5、解方程,6、检验(对解分式方程尤为重要)7、写答二、分析实际问题中数量关系的方法:1.表格分析法2.线段图分析法……设计意图:通过小结,使学生梳理本节课所学内容,把握本节课的核心——列分式方程解决实际问题.4. 巩固练习一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?设计意图:巩固学生对列分式方程解决实际问题的方法的掌握情况,提高解题能力.。
第十五章分式15.3 分式方程第2课时一、教学目标【知识与技能】能将实际问题中的等量关系用分式方程表示,列出分式方程解决简单的实际问题,并能根据实际问题的意义检验所得的结果是否合理.【过程与方法】1. 以工程问题为例,能将此类实际问题中的相等关系用分式方程表示,提高运用方程思想解决问题的能力.2.培养学生分析问题、解决问题的能力.【情感、态度与价值观】鼓励学生进行探索和交流,培养他们的创新意识和合作精神.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】实际生活中相关工程问题类的分式方程应用题的分析应用.【教学难点】将实际问题中的等量关系用分式方程表示并且求得结果.五、课前准备教师:课件、直尺、分式方程的解法等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课利用分式方程可以解决生活中的实际问题吗?这节课我们来学习怎么用分式方程来解决现实生活中的问题。
(出示课件2)教师问:同学们能不能说一下解分式方程的一般步骤是什么?学生回答:解分式方程的一般步骤.(1) 在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3) 把整式方程的根代入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去.(4)写出原方程的根.(二)探索新知1.创设情境,探究列分式方程解答实际问题教师:请同学们完成下面的题目:(出示课件4)甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用的时间相等,求甲、乙每小时各做多少个零件?学生小组讨论后回答:(出示课件5)解:设甲每小时做x个零件,则乙每小时做(x–6)个零件,依题意得:解得:x=18.经检验,x=18是原分式方程的解,且符合题意.由x=18,得x–6=12答:甲每小时做18个,乙每小时做12个.教师问:请同学们说一说列分式方程解应用题的步骤:学生讨论后回答:读题,设未知数,列方程,解答.总结点拨:(出示课件6)列分式方程解应用题的一般步骤:1. 审:分析题意,找出数量关系和相等关系.2. 设:选择恰当的未知数,注意单位统一.3. 列:根据数量和相等关系,正确列出方程.4. 解:解这个分式方程.5. 验:检验.既要检验所求的解是不是分式方程的解,又要检验是否符合实际意义.6. 答:注意单位和语言完整.教师小结:客观世界中存在着大量的问题需要用分式方程去解决,当我们掌握好相关的知识和方法后,就可以运用它们分析和解决实际问题,这也恰恰体现了我们经常谈到的一个关键词:“学以致用”.例1:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?(出示课件7)师生共同解答如下:分析:本题没有具体的工作量,常常把工作量虚拟为1,工作时间的单位为“月”.甲队一个月完成总工程的13,设乙队如果单独施工1个月能完成总工程的1x ,那么甲队半个月完成总工程的16,乙队半个月完成总工程的12x,两队半个月完成总工程的16+12x.等量关系为:甲队单独做的工作量+两队共同做的工作量=总工程量1,则有13+16+12x=1. 解:设乙队如果单独施工1个月能完成总工程的1x,依题意得(出示课件8)方程两边同乘6x ,得2x+x+3=6x , 解得 x=1.检验:x=1时,6x≠0,x=1是原分式方程的解.答:由上可知,若乙队单独施工1个月可以完成全部任务, 而甲队1个月完成总工程的 13 ,可知乙队施工速度快.例2:某列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?(出示课件11)解:设提速前列车的平均速度为x km/h ,则提速前列车行驶s km 所用的时间为s x h ;提速后列车的平均速度为(x+v )km/h ,提速后列车运行 (s+50)km ,所用时间为s+50x+v h. 根据行驶时间的等量关系可以列出方程:去分母得:s(x+v)=x (s+50) (出示课件12)去括号,得sx+sv=sx+50x.移项、合并同类项,得 50x=xv.解得x=sv 50.检验:由于v ,s 都是正数,x=sv 50时,x (x+v )≠0,x=sv 50是原分式方程的解. 答:提速前列车的平均速度为 sv 50km/h.例3:关于x 的方程 无解,求k 的值.(出示课件14) 解:方程的两边同时乘(x+3)(x –3)得x+3+kx –3k=k+3整理得:(k+1)x=4k ,因为方程无解,则x=3或x = –3当x=3时,(k+1) ·3=4k,k=3,当x= –3时,(k+1)(–3)=4k , k=-37所以当k=3或k=-37时,原分式方程无解.(三)课堂练习(出示课件17-23)1. 下列方程中属于分式方程的有( );属于一元分式方程的有( ). ① ②③④ x 2 +2x –1=02.解方程:3. 某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?4. 某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队单独做a天后,再由甲、乙两工程队合作____天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?参考答案:1. ①③;①2. 解:方程两边都乘以最简公分母(x+1)(x-1)得:(x–1)+2(x+1)=4∴x=1检验:当x=1时,(x+1)(x–1)=0,所以x=1不是原方程的根.∴原方程无解.3.解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x–9)元/条,根据题意得:3120x−9=4200x,解得:x=35,经检验,x=35是原方程的解,∴x–9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200–a)条B型芯片,根据题意得:26a+35(200–a)=6280,解得:a=80.答:购买了80条A型芯片.4. 解:(1)设乙单独做x天完成此项工程,则甲单独做(x+30)天完成此项工程.由题意得:20( )=1整理得x2–10x–600=0,解得x1=30,x2= –20.经检验:x1=30,x2=–20都是分式方程的解,但x2=–20不符合题意舍去.x+30=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天.(2)设甲单独做a天后,甲、乙再合作(20–)天,可以完成此项工程.(3)由题意得1×a+(1+2.5)(20–)≤64解得a≥36答:甲工程队至少要单独做36天后,再由甲、乙两队合作完成剩下的工程,才能使施工费不超过64万元.(四)课堂小结今天我们学了哪些内容:列分式方程解应用题的一般步骤:(1)审清题意,弄清题中涉及哪些量,已知量和未知量各有几个,量与量之间的基本关系是什么.(2)设未知数,找出尽可能多的相等关系,用含有未知数的代数式表示其他未知量.注意,所设未知量的单位要明确.(3)列方程,抓住题中含有相等关系的语句,将这些语句抽象为含有未知数的等式,这就是方程.(4)解方程,检验解的合理性(包括检验是否是方程的解,是否符合实际),写出答案.注意:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是所列方程是分式方程,最后进行检验,既要检验其是否为所列分式方程的解,又要检验是否符合实际意义.(五)课前预习预习下节课157页小结的相关内容。
知道本章知识结构图七、课后作业1、教材154页练习1,22、我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价贵4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?八、板书设计:九、教学反思:1. 本节课整堂精心铺垫,结合具体的数学内容采用“问题情境——建立数学模型——解释应用与拓展”的模式展开,选择生动有趣的、有现实意义的.对学生具有一定挑战性的、有助于学生实践创新的内容,使学生在自主探索和合作交流的过程中建立数学模型,并用数学模型描述日常生活,从而使数学学习过程成为数学方法的掌握和数学思想的建构的过程,让学生形成良好的数学思维习惯和应用意识,能够自觉地用数学的眼光观察世界,提高发现问题、分析问题、解决问题的能力.2. 本节课的内容是列分式方程解应用题,重点是建立分式方程应用题的思维模型,会根据题中的条件找出等量关系,同时列出分式方程,并解答.注重从审、找、设、列、解、验、答几个步骤对应用题进行了详细的讲解,使学生对解分式方程应用题的步骤和思路有一个清晰而深刻的认识,同时也对书写的过程有准确的概念.。